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Systems of three quadratic forms
by
B.J. BircE (Manchester) and D.J. Lewis (Ann Arbor, Mich.)*

1. Introduetion. Artin conjectured that a set of forms fi,..., 7.
of degrees d,, ..., d, respectively, in » variables over a p-adic field & has
a common non-trivial zero in k provided that » > Y d}. This conjecture
has been verified in the following cases: (i} one quadratic form ([9]),
(ii) one cubic form ({71, [11], {6], [14]), (iii) two quadratic forms ([8],
[2]), (iv) one quintic form ([1]) and (v) one form of degree 7 or 11 ([10]),
provided in cases (iv) and (v) that the residue class field is large enough.

As Artin has shown, it is sufficient for the proof of the conjecture
to show that it holds for the case of a single form of arbitrary degree.
On the other hand, for example, if ¥ (2) is the reduced norm form of a di-
vision algebra of degree two over k, then ¥ is a quadratic form over %
in four variables that has only the trivial zero in %; and if fi, ..., f, are
quadratic forms over % then f = N(fi,...,fs) is a quartic form whose
zeros in & are precisely the common zeros in k of fi, ..., f;. Thus, in examin-
ing the truth of the conjecture for a single quartic we need to know
whether the conjecture is valid for a system of quadratics. It is this last
problem which we shall investigate in this note. Many of our results
hold for any system of quadratics, but eventually the work becomes
80 involved that we restrict ourselves to three quadratics. Our arguments
are in essence very similar to those used in [2]; however, our proof is far
more involved, because in contrast to the case of two quadraties there
does not seem to be any elegant utilizable property of a system of three
quadratics which has only singular zeros (compare Lemma 2 of [2]).
For reasons which will become clear later, our proof will work only if the
residue clags field is not too small and has odd characberistic.

Throughout this note, k¥ will denote a p-adic field with ring of in-
tegers O with maximal prime ideal p. The residue class field O/p will
be denoted by k*. We denote the characteristic of ¥* by p and the number

* Thig paper was begun during a period in which the authors received support
from the National Science Foundation under Grant GPS88.
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of elements by ¢. The homomorphism of O to %* may be extended in g
natural way to a homomorphism of the polynomial ring Ola,, ..., ,]
to k*[@,, ..., #,]; we denote the image of f(®) by f*(#). When we speak
of a zero of a set of forms, we will always mean a nontrivial zero; when
we speak of a point we will normally mean projective point. A vector z
is a nonsingular zero of a set fi, ..., fr if fi(#) = ... = f.(2) = 0 and the
matrix (0f;/0z;) evaluated at 2 has rank 7.

We say that a system fi, ..., f, of forms over a given field has order
t provided we can express these forms in terms of ¢ linear forms and

no fewer, i. e.
i

fi= Z “E;)Lir'ia
ij=1
where the aff and the coefficients of the Z; arve in a given field. The
order of a system depends only on the minimal field containing the coeffi-
cients of the system; for relative to a field K, ¢ is less than n if and only
if the relations

1=1

have a nontrivial solution with the #; in K. But these equations are equi-
valent to a system of linear equations in the z; with coefficients in the
minimal field of the system, and hence are solvable in K if and only if
they are solvable in the minimal field.

A gystem of forms in n variables is said to be nondegenerate if its
order is . .

2. Well known lemmas. We need to quote a number of well known
results.

) LEMMA 1. A set of r quadratic forms in n > 2r variables with coefficients
in a finite field k* has a zero in k* and the number of such projective points
s congruent to 1 modulo the characteristic of %*.
This is but a special case of theorems of Chevalley [5] and Warning
[15]. Note that both parts of the conclusion may break down if n < 2r.
Lesma 2. Let f be a non-degenerate quadratic form over the finite

field &*. If the order of f is at least 3 then every zero of f is monsingular
and the zeros of f do mot lie in a hyperplane.

This is essentially Lemma 1 of [2].

) LE}M:MZA 3. Leét f1, ..., f, be quadratic forms in n variables over the finite
field &*. Then there are at least n— 2r linearly independent zeros in k* which
are common zeros of fi,...,f,.

This is easily derived from Lemma 1 using induction.
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LeMMA 4. If f is a nonzero form of degree d in n variables over the Sfinite
field ¥* with g elements then f has at most dg™ " zeros in k*.

Proof. There is nothing to prove if @ > ¢. Suppose d < ¢. Since f
is not the zero polynomial there is a point not on f = 0. So ‘we may sup-
pose that f(e;) # 0. Then

F=bo@f+by(2ay ..., 3) 0 . ba(2s, ..., Tn),

where b, # 0 and the b, are forms of degree » in w,,...,z,. For each
choice of @,,...,, there are at most d values of z, for which f = 0.
Hence the conclusion follows.

Levwma 5. Let f and g be forms of degree 2 and d, respectively, over
a finite field k* and suppose the order of f is at least 3. If every nonsingular
zero of f in k* is a zero of g then f is a factor of g provided k* contwins
sufficiently many elements.

Proof. Since f has order at least 3, it has a nonsingular zero in %*.
Hence the quadric f=0 can be mapped birationally over k* onto
a hyperplane. Consequently the quadric f = 0 has approximately ¢™*
nonsingular points over k*. On the other hand f is absolutely irreducible
and if ¢ is not a multiple of f then the locus f = g = 0 has projective
dimension n—3 and so has 0{¢"®) points in k*. If ¢ is sufficiently large
this contradicts the hypothesis that each nonsingular zero of fis on g = 0.

To obtain estimates for how large ¢ must be for Lemma 5 to hold
one needs to follow a more tedious approach. Following a change of variab-
les one can assume

f= szi—lwzi‘Ff’;

t=1

where f' involves variables other than #;, ..., #,; and has order at most 2.
Thus f = 0 containg many linear spaces over k* of relatively high dimen-
sion. By using this information one can show

COROLLARY. If k* contains at least 7 elements the conclusion of Lem-

‘ma 5 holds for the cases d =2 and 3.

LemmA 6. There is a constant A(d, d') such that if k* is a finite field
with ot least A(d, &) dlements and if f, g are forms over k* of degrees d, d’
respectively, with f not of the form nh® (where 7 is a nonsquare of k*) then
there is @ point @, with coordinates in k¥, not on g = 0 for which f(a) is a non-
zero square of k*.

This lemma i a slight modification of a theorem of Carlitz, see
[31, [4], [12], [1). One can easily show that,

COROLLARY. A(6, 4) < 49.
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Leywa 7. Let f, g be two quadratic forms over a finite field &*. If the
order of the pair f, g is at least 5 and the order of each form in the pencil
A+ g is at Teast 3 then the pair f, g has a nonsingular zero in %*.

The prootf of this lemma is straightforward and occurs in the proof
of the Theorem of [2].

Lmwyma 8. If fi, ..., fr are forms with coefficients in O such that the
system fi,...,f, has a nonsingular zero in k* then the system VTR A
has @ zero in O.

This is a well known application of Newton approximation — just
a version of Hensel’s lemma. See, for example, Lemma 6 in [21.

3. An invariant. In this section we define an invariant of a system
of p-adic quadratic forms; in §4 we will apply this invariant to obtain
a method of reduction. This particular reduction technique was first
used by Davenport ([6]); we subsequently used it in [2] and it was also
used in [10].

Associated to each quadratic form f in n variables over a field not
of characteristic 2 there is a #xn symmetric matrix # such that

fl®) = &'Fa.
If fi,..., fr is a set of quadratic forms, we define
P(i) = P4y, v k) = det(21F1+-'~+lrFr)1
where F; is the matrix associated with fi- Let
oP oP
Apeeasdp (6_}.1-’ veey E}T) =D(frs - fo)

be the resultant of the polynomials OP[0, ..., 0P [0}, with respect to
the variables 4,,..., 4,. Then ¢ satisfies the following identity:

LEMMA 9. Let A = (@) be an rx v matriz and T be an nxn matriz,
both defined over k. If fi,...,f, is a system of quadratic forms over %, then

Haufi(Tw)+... 4 ay, fo(Ta), ..., e fi(T2)+-... .-ty f (Tap))
= (det A)"0"" (et TV (f,, L £

This is easy enough, though tedious, to verify. For properties of
the function 9, see [13].

Lmava 10. Let fi,...,f, be quadratic Jorms with coefficients in O.
Then there are sequences f™ of forms, all with coefficients in O, such that

Imf™ —f,,  »=1,.., 0
m-o00
and such that for each m
S, L) 0.

Systems of three quadratic forms 427

This is essentially obvious, compare step 4 on pp. 114-115 of [2]
LeMMA 11. If f™ and f,, for v — Lio.,randm =1,..., are quadratic

forms over k such that im fi™ = f, for each » and such that Sfor each m the
M—00

set ™, ..., i has a nontrivial zero in & then the set Siseeesfr has a mon-
trivial zero in k.

If a system of forms over % have a nontrivial zero in % they have
a zero whose coordinates are in O but not all are in p. One now uses the
compactness of O to obtain the Lemma,

CorROLLARY. In order to prove that any set of quadratic forms fy, ..., f,
in 4r+1 variadles over a p-adic field % has a p-adic zero it will be sufficient
to prove this for sets of quadratic forms over O with Hf1y ... fp) #0.

This is clear from Lemmas 10 and 11, since every form over %k is
a multiple of a form over O.

4. Reduced sets of quadratic forms. Two sets of quadratic forms
Juy oo frand g1, ..., g, Over & are equivalent it there is a X7 nonsingular
matrix 4 = (a,) and a nonsingular #Xn matrix T — (t:;), both with
elements in %, such that

6T = a,Fi+... 4 a,F, (» = 1,..,1);

here 28 usual ¥, & are the matrices of the forms f, g. Clearly this is an
equivalence relation on sets of quadratic forms in » variables. Given two
equivalent sets of quadratic forms, one set has a zero in % if and only if
the other set has a zero in k. Thus in our study of the existence of zeros
of a set of quadratic forms, we can always replace a set by an equivalent
set. In particular, we will always replace a set by an equivalent set with
p-adic integer coefficients. Clearly o(f;,...,f,) % 0 if and only if & is
nonzero for each set equivalent to fy,...,f,.

We say two equivalent sets are wnimodular equivalent if A and T
are matrices over O with unit determinants. If Siyeennfr and ¢y, ..., gy
are unimodular equivalent sets of forms with coefficients in O, then
iy ff and g¥, ..., gF are equivalent sets of forms over %*.

If fi, ..., f. are forms over O with #(f,,...,f,) 0, write

HHf1y oons fo) = 75’(71,‘..,1‘,.);

so that I(f), ..., ,) is a nonnegative rational integer. I is an invariant of
unimodular equivalent sets.

A set fi, ..., f, with coefficients in O will be said to be reduced if
#fiy .oy f) # 0 and if

I(fiy ooy I < I(grs -5 00)
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for every set of forms gy, ..., g, with coefficients in © equivalent to f,, ..., foe
Note that any set of forms unimodular equivalent to a reduced set is
a reduced set. Obviously, each set of forms over % is equivalent to g
reduced set of forms over O.

Associated with any set of forms fi, ..., f, over O is the order o of
the set fi,...,ff over k*. To each set of quadratic forms fy,...,f, in n
variables, with coefficients in O, we associate two other integers, H and
h. H will denote the maximal number of linearly independent zeros in
k* of the set f},...,fr, while h—1 will denote the maximal dimension
of the linear projective subspaces over k* contained in the set of zeros
of f¥,...,ff. Cleartly H >h >n—¢. Two unimodular equivalent sets
have the same g, H and h.

LEMwA 12. Let fy, ..., fr be a reduced set of forms in n variables over O,
Let A be the O-module generated by the f,. Let ¢y, ..., g be a subset of A
for which g¥, ..., gt are Uincarly independent over k*. Let o, H and % be
defined for the set gy, ..., gs. Put

1) d=h—(n—p), ZX=H—(n—p).
Then

(2) < n(1—s/2r),

(8) o = o+ snf2r,

(4) Z>o+l, i n>4rfl.

Proof. Clearly s <r. We can choose gy, ..., g, from A so that the
set g1y..., 9, 15 unimodular equivalent to fy,...,f,. Hence g,..., g,
i3 a reduced set. We make a unimodular change of variable so that
g7, ..., g5 involve the variables @y, ...,®, exactly and so that

llel+"‘+Aaea+}*q+leg+1+"'+;‘nen

is a maximal linear subspace contained in the set of zeros of gi,...,gs
in %*. Let W be the linear transformation,

We, =ne, (v=o0+1,...,0), We,=e, (»=1,...,0,0+1,...,n).
W is a nonsingular linear transformation over %, and the set
7 g (We), ey gy (W), Gor1 (W), ..., g-(We)

has integral coefficients and is equivalent to the reduced set gy, ..., g,
But

I{a™ qu(Wa), ..., (W) = [2r(e— 0)—sn](n— 1" +I(gy, ..., )
and since gy, ..., g, is a reduced set we have

2r(e—o0) = m,
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and hence
2r(n—h) = sn.

These two relations yield (3) and (2), respectively.
If » > 4r+1, then (3) implies ¢ > o+ 251 and then (4) follows
directly from Lemma 3.

COROLLARY. Let fy,...,f, be a reduced set of forms in n > 4r4-1
variables over O. Then no form in the linear system

Aft+. AL
can be expressed as

a(LyL,—L;L,),

where aek* and Ly, ..., L, are linear forms over %*.
Proof. Suppose such a form exists, say

0 = a(LyLy—LsLy) = 4 ff-+... - A fF.

. . . 1
Applying Lemma 12 with s = 1 gives & < n(1—~ ?); on the other hand
ia

h = n— 2. These two statements imply = < 4r, contrary to the hypothesis.

LeMMA 13. Let fy, ..., f, be o reduced set of quadratic forms in n > 4r+1
variables. Then the order o of f7, ..., fF is at least 2r+2 and X > 3.

Proof. It follows from (3) that ¢ > 2r-+1 and hence, by Lemma 1,
we have ¢ > 1. Butb then (3) implies ¢ = 2r+2 and (4) implies X > 2.
It follows from the second part of Lemma 1 that the set f7,...,f* has
at least 14-p projective zeros in %&* (p is the characteristic of %*). Con-
sequently, if X' = 2 then the surfaces f; = 0 would have a common line
of zeros, whence o = 2 contrary to (4). Therefore X > 3.

Levma 14. If fi, ..., fr is a reduced set of quadratic forms in n > 4r+-1
variables over O, then either X >4 or o > 2.

Proof. From Lemma 13 we have p >2r42 and X > 3. Following
a unimodular change of variable we may assume that f7,...,f¥ is a set

of forms in @, ..., ,, that e,..., e; are zeros of fi,...,f;, and that
any zero of f¥,...,f; lies in the linear space

he+...+Azex.
Let M denote the number of points over k* on the locus ff = ... =ff = 0
which lie on the hyperplane z;, = 0. Then M is the number of points
on the locus ff = ... = f} = si—#a? = 0, where 7 is a nonsquare of %*

This is a set of r+1 forms in 2r-3 variables and hence by Lemma 1,
M =1(modp). If X =3 then M >2 and consequently M >3. But
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then there is a point on A,e,+-2;€; other than e, and e, on ff = .., — Fid
= 0. Consequently the line Ae,+1e; is on ff=... =} =0, and
hence o > 2.

5. Three quadratics. We now restrict our attention to the case of
three quadratic forms.

From now on, k will always be a p-adic field whose residue clags
field &* has odd characteristic and contains at least 49 elements, i.e.
p 23, ¢ >49. We consider a reduced set of three quadratic forms fl,'
foy fs over O in at least 13 variables. We let o denote the order of 1,
fay f3, over k*. We may suppose (passing to a unimodular equivalent
sef, if necessary) that f}, fi, /5 are forms in the variables Byy Byy ooy 1,
Then the equations f; =f; = fi = 0 determine a locus V* in (e—1)
dimensional &* space. In our work we can always pass to a unimodular
equivalent set of forms and such passage will not affect our normalization
8o long as the change of variable is restricted to the variables Biyeeny By

We shall let A denote the linear system A, f;+ Ayf,-- Afs over k
and A* shall denote the linear system A4 fi+ A,f¥+ A, fF over &*

Lunvwa 15. If V* has a nonsingular point then f1y fay f3 have a nontrivial
common zero in k.

This is immediate from Lemma 8.

Levwa 16. If V* contains o line defined over &* then V* has a non-
singular point.

Proof. In this and later proofs we assume that all the points in V*,
with coordinates in &*, are singular zeros of f¥, 13, f3. We gradually accu-
mulate more and more information about the forms until we obtain
a contradiction.

The dimension of the largest linear space contained in V*, defined
over k% is ¢—1. By hypothesis ¢ > 2. We can therefore suppose, after

possibly applying a unimodular linear transformation on By ooy By,
that V* contains the linear space

Lopy = oee =&, = 0.
Then
= oLyt Az, Lyt g, (v = 1,2,3),

where the L’s are linear forms and the 9’s are quadratic forms in a,,,,

-v+y @, Since all the points of ¥* are singular, there are a,, a,, @, in k*
(not all 0) so that

alL1p+a2sz+ asLay =0 (p = 1,...,0).

Upon making a unimodular change in basis of the linear system A4, we

may assume that f3 is free of w,, ..., a,.
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Now suppose the identical rank of the matrix

Ly Ly ... Iy,
P = ( 11 12 1 )
Ly, Ly, ... Ly,
were 2; renumbering variables, we may suppose that

LuLzz*leLn =4

is not identically 0. By the Corollary to Lemma 12, ff and A are not pro-
portional and so by Lemma 5 there is a nonsingular zero of J3 with 4 0.
We may solve for @, @, to obtain a nonsingular point of V*; a contradic-
tion. Hence the identical rank of & cannot be 2. Neither can it be 0, for
if it were then ¢ would not be the order of f¥, f7, . Therefore the rank
of £ is 1. Changing the basis for 4, we may now suppose that f; and fi
are free of @y, ..., x,. Furthermore I,;, -+ Ly, must be linearly indepen-
dent over k¥, for otherwise the order of f%, f7, ff would be less than e.

Let v be the order of the pair f}, f7. Following a unimodular trans-

formation leaving @y, ...,4,, @,.y,..., s, fized, we may assume that

3 f3 are forms in @,,,, ..., @py.- Since V* contains a c—1 dimensional
linear space, it follows from Lemma 12 that o = o+ 7. Hence V* contains
4 point @ which lies on @, =... =z, = 0. If @ also lies on Loy = ...
= 4. = 0 then V* would contain a ¢ dimensional linear space; contrary
to the definition of 0. Hence some one of the coordinates Oog1y ovey Ugyry
is not 0, say @, # 0. Replacing @, (v %.0+1) by az,- R
we gee that we may assume e,,; is on V*

If e,.; were a singular point of ff = ff = 0, we could, following
& unimodular change of basis of the pencil A, fo+2sfs, assume that fi
= @y 1 M+ g5, f3 = g, where M, g,, g, arve forms in Bopay ooy Loy and M
is not identically 0. By Lemma 12, the order of g, is at least 3.

Put L,,(0, 243, ..., @) = Ly,. If Lj; is not identically zero, then
by Lemma 5 and its Corollary there is a zero of g, with LyM 0, and
this leads to a nonsingular point on V* If Lj, is identically zero, then Ly
is a multiple of #,,,. It would then follow from Lemma 5 and its Corollary
that there is a nonsingular zero of g, for which My, = 0, and again this
leads to a nonsingular point of V*.

Finally suppose e,,; is a nonsingular point on ff = f% =0 but is
& singular point on V*. The forms Ly, ..., L, must all vanish at €11,
for otherwise it is easy to demonstrate the existence of a nonsingular
point on V*. Hence

fif = @yt .+ Lyt Bop My + by
fz* = mn+1M2+ by,
f: = a+1Ms+hs,
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where the L’s, M’s and A’s are forms in &,,,, ..., %,. But then we see that
the linear space @ = ... = %, = %,,; =0 18 on V*; contrary to the

definition of o.

This completes the proof of Lemma 16.

LevMMA 17. If V* condains a planar conic defined over k*, then V*
has a nonsingular point.

Proof. We assume each point on V* with coordinates in %* is a sin-
gular point and obtain a contradiction. By Lemma 16 we may suppose
that 7* does not contain a line. By unimodular transformation, we may
suppose that the conic with equation @} = 2, lying in the plane 2,6,
+ 465+ 4,65 is contained in V*; then each of the forms f*(ay,z,,a,,
0,...,0) is proportional to #;— z, @, so by a unimodular change of basis
for the linear system A, we may suppose that

fi = 63— mas+ o, Ly + 8, Lo+ 03 L3+ g,

fi= oy My 2, My 2, M3+ g,
fi= @y N+ 2, No+ @3 N3-+-g3,
where the L,, M,, N, are linear forms and the ¢ are quadratic forms in

v F:Jroa.ll s, tin &% (s% st,1%,0,...,0) is a point -of V* which must be
singular; hence there exist a, b in &* such that aN,+bM, = 0, for » = 1,
2,3. Again changing our basis for 4, we may suppose that N,, N,, N;
are identically zero, so that f3 is free of #,, ,, ;. By Lemma 12, g; = f+
has order ab least 4. It is now convenient to make a further transformation
on @, #,, % leaving the other variables fixed so that the conic becomes
@y %+ Ly 3+ 233, = 0. Our forms are thus normalized to the shape

fi= @&yt By 3+ T3y + @y Ln - 0y Ly + @, L, - gy,
fx = o Mt a, Myt o3 Myt ¢y,  fi = gs.

If f7 is free of @, ,, #; then by Lemmas 12 and 7 the pair f7, fF
have a nonsingnlar common zero (a, ..., a,). Choose a, so that a,+Ls(a,,
..y @) #~ 0, then we can choose @, and a; so that @ is a nonsingular
point of V*; a contradiction. So at least one of M,, M,, M, is not iden-
tically zero.

Now suppose that there is a nonsingular zero @ = (ay, ..., q,) of
gs such that M,(a) = 0 and M,(a) s M;(a). Choose a,, a, such that

ay+azt+Li(a) =1, a,My(a)+asdf, (@)+g.(a) = 0.

Finally put @, = —a,a,—a, L (a)—a;L,(a)— g, (a). The point (ay, ay,
-+« @) would be a nonsingular point on V* Hence our system has the
property:
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(I) Any nonsingular zero of g5 on M; =0 is also on M; = My,
where i, j, k is a permuiation of 1, 2, 3.

We now split our proof into cases, aceording to how many of M,
M,, M; are linearly independent.

(A) Suppose M,, M,, M, are a linearly independent set.

Following 2 unimodular change of variable on Dgy ooy By, We may
suppose M, =z, M, = a5, and M, = z,. Write gs = @,8,+h, where §,
and h are forms in =, @y, ..., #,. By Lemma 12 the order of g is at least 4,
hence the order of b is at least 2. If the order of % were at least 3 then there
would exist & nonsingular zero (as, ..., a,) of h not on M 2 —M3; contrary
to (I). Hence the order of » is 2 and the Corollary to Lemma 12 shows
that kb cannot split in %* Thus

h = a,Si— bS:,

where ab + square and x, 8;, S,, S, are linearly independent forms.
Now there are points on @, =8, =8, =0, 8§, =1 and they are nonsin-
gular zeros of g; which are on M, = 0. By (I) these points are on
My— M, = z—x; = 0. Consequently

My— My = g5—z = azy+ B8, 8.
Sinee x,, 5, @ are linearly independent, one of B and y is nonzero. Hence
9 = #sT1+ o(@5— @6+ dT,)’ — T},

where ce # square and =,, 2;—a;, T,, T, are linearly independent forms.

Temporarily, let g, T;, T, etc. denote the result of replacing
by 0 in g5, Ty, T, ete. Clearly T; and —a,+ dT, are not both 0. Let ¢
denote the order of ¢(—a+dT;)*—e(T,)% If 6 =1 then 7, is a linear
combination of #; and =z, and T, is linearly independent of z, y @ and z;.
If 6 = 2 then T, is linearly independent of x; and . Thus, when 6 =1,
g: = @, T, -+ fa?, where B # 0, and hence we can find a nongingular zero
on g; which is on M, = @; = 0 and not on M;—M, = ¥, —x5 = 0; con-
trary to (I). If 6 = 2 and 7T, is not proportional to @5 then g; has order
at least 3 and we can find a nonsingular zero of ¢, which is on
@5 = M, = 0 and which is not on M, = M,; contrary to (I). If & = 2
and T, is proportional to @; then we can find a nonsingular zero of gs
which is on M; = z; = 0 and is not on M,—M, = 0; contrary to (I).

(B) Suppose M,, M,, M, generate a linear space of dimension 2.

We may suppose M;, M, are linearly independent and that M,
= aM 4 pM;. We shall now show that we can assume

M, =AM, with 4+£0,1.

Acta Arithmetica X. 4 2
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If % is any unit of %, the transformation
o = u At wm+uT ey, @ = (L w)o; 4 uag,

with 4, §, k some permutation of 1, 2, 3, is an automorph of z,2,+ w2+
+ w2, and it carries @, M;+ @, My+ w5 My into w3 M+ @y M, -+ 2, My where

(6) @ = —aui,

My = — Mt w1 u) My (L) M,

Thus the unimodular transformation (5) does not change the shape of
the forms f7, fa, f3.

If f = 1, choose w 50 that u* = f—1,and with 4 =2,j =1,%k =3
we obtain M, proportional to M;. If =1 s a, on interchanging a,
and 3 and applying (5) we also obtain M; proportional to M. Ifa = § = 1,
we have M, = M,+M;. On interchanging #, and x, we get that g = —1
and so again we can get I, proportional to M;. If M, = M,, choose
w* £ 41, i =3, j =1, k = 2; then M, =AM, with 2 #0,1.

We can, therefore, assume M;, M; are linearly independent and
M, =AM, with 1 #0,1. Make a unimodular transformation leaving
%y, %y, ®3 fixed and such that M; = z,, M; = 2. Set

gs = o, L+,

where L, h are free of z,. The order of % is at least 2. If the order of h is
at leagt 3 there is a nonsingular zero of h with x; # 0 and hence there is
2 nonsingular zero of g, on M, = 0 and not on M, —M; = 0; contrary
to (I).

If the order of % is 2, by the Corollary to Lemma 12, h cannot split
in &* and hence h = aU*—bV?, where ab # square and U, V are linear
forms. By (I), any point on @y = U =V =0 not on L =0 must be
a point on M; = 0. Hence

M; = og = amy+ U+ 9V,

where at least ome of f and y is nonzero. Then

My =u'M;, M, = uM,.

95 = @, T+ (w5 aT,)* — e},

with e¢ 7 square, and w;, 5, T;, T, are linearly independent forms. In
this case, wo see that there is a nonsingular zero of g, which is on @ = M,
=0 and not on M,— M, = (A—1)x, = 0; contrary to (I).

(C) Suppose My, M, and M; span a linear space of dimension 1.

As we saw earlier, at least one of the M, is not identically 0. Suppose
M, and M; were identically 0, then since g, has order at least 4 by Lemma 4
we can find a nonsingular zero of g; not on M; = 0; contrary to (I). When
M, is identically 0 and M, = AM,, we can use the transformation (5)
With ¢ = 3,j =1, k = 3 to obtain a form where none of the M, is identi-
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cally 0. Thus we may suppose that M, =aM,, M, =bM,;, with ab # 0.
To simplify later computation, we make the unimodular transformation
o = &+ 30— 3L, — 3L,
@y = @y 3Ly — §L,— 3L,
@3 = @3+ 33— 3Ly — 1L,
o o=x (v3>4).

This transformation takes ff into e+ za)+ ajz|-+ g}, f: into z M+
+ay Mo+ 2, M3+ gy, and leaves f fixed. Hence we may suppose L,
L,, L are identically 0. On making a further unimodular change of variable
we may also assume M, = z,. Thus we have

1 = @@+ mymy+ 232, 4 gy,

f; = #4(@,+ azs+ bas) + g,

i =gs,

where g1, g,, g, are forms in =,, veny By
Eliminating #, from fj = 0 and f; = 0 gives a form

T = @, (s34 g1) — (22 + 25) (a0, + by, gs),

which must vanish at every point of ¥* The discriminant of T, as a qua-
dratic form in @,, z; and 1, is

A = j,[g5— g,43(a* + b*+ 1 — 2a — 2b— 2ab)].

If there is a nonsingular zero of g; which is not a zero of A then Ty #0

and we can find @, and @, such that T = 0 and 65
2

so that fy = 0, we obtain a nonsingular zero of V*; contrary to hy-
pothesis.

So we may assume that each nonsingular zero of g; makes 4 vanish.
It g5 is free of z,, then every nonsingular zero of g, as a zero of A must
be a zero of g,. It follows from Lemma 5 that g, is proportional to g,
and hence some linear combination of f; and f3 has order 2; contrary
to the assumption that fi, fy, fs is a reduced set of forms. If g, involves
@, then by Lemma 2, g, has a nonsingular zero with z, s 0. Hence, after
a unimodular change of variable leaving =,, @,, #;, @, fixed, we have
gs(es) = 0; i.e. gs = x,L-+h, where L, h are free of z,, h has order at
least 2 and h is irreducible over k*. Bach point (2, ..., x,) for which I 0
gives a nonsingular zero of g;. Thus we deduce that

# 0. On é]ioosinzg Y

A=k, Lxs, ..., Lay) = S(@s, ..., )
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vanishes whenever L does not. Hence S has at least ¢*%(g—1) zeros.
Since ¢ >> 49 it follows from Lemma 4 that S is identically 0. Thus we
have g, dividing 4. Bub g, is absolubely irreducible, hence there is a qua-~
dratic form @ and constant ¢ such that

0 = ga— 60155

Putting g, = @, M +H, where H is free of x,; we see that b is a factor
of H”. Since h is irreducible over k* it follows that H is proportional to h.
Consequently there is a linear combination of f; and fy with order 2, con-
trary to fi, fo, fs being a reduced seb.

This completes the proof of Lemma 17.

6. Conclusion. We prove

TaroREM. Leét fy, fz, fa be three quadratic forms in ai least 13 variables
over a p-adic field k, where the residue class field k* has odd characteristic
and contains at least 49 elements, then fi, fyy fs have a common nontrivial
zero in k.

Proof. We may suppose by the Corollary o Lemma 11 that f;,
foy f2 have D(f1, fo, fs) # 0, and so we may suppose fis fay fs aTe a reduced
set of forms with coefficients in O. We retain the notations o, V* defined
at the beginning of § 5. By Lemma 15, it will be enough to show that v*
has 2 nonsingular point. By Lemmas 16 and 17 we may suppose that v*
contains neither a line nor a planar conic defined over k*. By Lemma 14,
V* has at least 4 linearly independent points. In case the characteristic
of k* is not 3, V* will contain at least 5 points.

Suppose a¥, ..., a® are 5 points on V*; and that each of these
points is singular and so for each » =1,2,...,5 there is a linear com-
bination

¢ = 0f+ B+
ag®

such that all the partial derivatives (j=1,2,...,0) vanish at

0z,
a®, The points i” = (A7), 1), 2)) may bé viewed as points of a pro-
jective plane and three cases arise: ‘
(I) Three of the points A" are collinear but distinct.

(II) Three of the points A" coincide.

(ITI) Three of the points 4® are linearly independent.

‘We may suppose the relevant three points are a®, a®, a®. Since
7* contains no line, these points are linearly independent. Hence by
a unimodular change of variable we may suppose @, a®, a® are the
points e;, e,, e;. Then for » =1,2,3, the form  AVf* -+ ANV fF+ ADfr is
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free of the variable »,. By a unimodular change of basis of the linear
system 4, we may further assume: In case (I) that 4® — (1,0 0)
A =(0,1,0), 49 =(1,1,0); in case (II) that AV — 1O -0 Z
(1,0,0); and in case (ITI) that 4™ = (1,0,0), 1® =(0,1,0), & =
(0,0, 1). Thus we may suppose: In case (I), that f7 is free of @y, f5 is free
of , and fi+/5 is free of m; in case (1), that f7 is free of @,, z, and
@33 and in case (III), that f is free of o, for » = 1,9, 3. We deal with
cases (I), (II) and (III) separately in Lemmas 18, 19, 20.

In case p = 3 it may occur that V* contains only 4 points. These
points must be linearly independent and we may suppose each is a sin-
gular point. In that event, in addition to the above cases, a fourth case
arises:

(IV) The four points A” coincide in pairs and ¥* has no points,
with coordinates in k*, other than e, e,, e, and e,.

As above we may suppose that fy is free of 4, and ,, fF is free of
z, and »,. We treat this case in Lemma 21.

Lemma 18. In Case (I), V* has a nonsingular poini.

Proof. In case (I) we may suppose the points e, e,, €, are on V*
and that ff is free of ), f; is free of &, and ff 4 f¥ is free of #,. Thus we
see that ff and f considered as forms in @, #,, 2, are linear. Hence V*
contains the planar conic f3 (2, , @,, 3, 0, ..., 0) = 0, and so by Lemma 17,
V* has a nonsingular zero.

Levva 19. In case (IL), V* has o nonsingular poini.

Proof. In this case we may suppose that e,, e,, &; are on V* and that
fi is free of w;, w,, @;. If any linear combination of f and fF is linear
in the variables @, m,, #;, then V* contains a planar conic and hence,
by Lemma 17, ¥V* has a nonsingular point. Furthermore, if neither fF
nor fi contains the term z,z, with a nonzero coefficient then the line
Ae,+ pe, is on V* and hence, by Lemma 16, V* has a nonsingular point.
A similar result holds regarding the terms x,z, and x,2,. Thus we are
left with the case where each of the terms z,,, ®,%;, 23, appear in one
or the other of f; and f; and each linear combination of f;, fi contains
at least one of these terms. On making a unimodular change of basis of
the linear system 4, we may suppose that

fr = g1,
fr = &12,+ am,@y+ 0, Ly + 0Ly +- 5. L+ g,
fi = 0,25+ by g+ @, My + o My 4 2 M 3+ g3,

where the I’s, M’s and ¢'s are free of #;, 4, and #;, and at least one of &
and b is nonzero. By replacing @, by #,—IL,; and z; by @;—M,, we mazy
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suppose that I; and M, are identically 0. Then g, is not proportional
to ff, since otherwise a linear combination of fi and f7 is of the shape
excluded by the Corollary to Lemma 12. Similarly g; and fi are not pro-
portional.

Suppose now that L, and M, are nob both identically 0, say L, is
not identically 0. Since fi, fo, f3 I8 @ reduced set of forms, fi has order
at least 4 and hence we can find & nonsingular zero of ff for which I s 0.
If at this point we also have g, 7 0 then on taking @, = 0, @3 = —¢,/L,.
#, = — M3— g3 /75, We obtain a nonsingular point on V*. 1i on the other
hand, every nonsingular zero of f] is a zero of L,g, then, by Lemma 5,
fi is a factor of Lyg, and since f¥ is absolutely irreducible it follows that
g, and f¥ arve proportional; an impossibility.

There remains the possibility that L, and M, are both identically 0.
Eliminating «, from f; = fi = 0 gives

0 = amyai— basg s+ 03 03 (Ly— M) + @y g — #25-

Put 2, = 4, ©; = st so that

0 = t[(as’—bs)t" 4 § (Ly— M)+ 5gs— ga].-
Write D(s) = §*(L,— M3)*— 4(as®— bs)(sg,— g3)- D(s) is the discriminant
for the guadratic polynomial ¢7C. We have seen earlier that one of «
and b is nonzero, say a = 0, and that g, is not proportional to f7. Hence
by Lemma 5 we can find a nonsingular zero of ff for which g, 0. Then,
at this point, D(s) is a cubic polynomial in s and so by Lemma 6, there
is an s such that D(s) is a nonzero square. Note that s # 0. Next choose i
to be a nonzero root of ¢ = 0. Finally take z, = —ast—L,—¢,[t. The
point so obtained is a nonsingular point on V*. ‘

This completes the proof of Lemma 19.

LEMMA 20. In case (III), V* has a nonsingular point.

Proof. In this case we may suppose e, €,, €, are on V* and f is
free of z, (v = 1, 2, 3). If the term x,2, does not appear in fi with a non-
zero coefficient the line 4,e,-+ A€, is on ¥* and, by Lemma 16, V* would
contain a nonsingular point. Hence we may suppose that wz,z, appears
with nonzero coefficient in fj, 2,2, appears with nonzero coefficient
in fy and z,z, appears with nonzero coefficient in fi. We may multiply
fis fay fs by appropriate units and assume these coefficients to be 1. Thus
we have

ff = masta M, 4+ 2,N, 4 ¢,
fr = s+ oM+ o N+ g,
fi= 1@y + & M3+ 2, N5 g5,

where the M’s, N’s and. ¢’s are free of x,;, z, and z;. On replacing z, by
@, —N3, @, by 2,— Ny, and @, by o;— N, we see that we can suppose further
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that N,, N, and N, are identically 0. We deduce from Lemma 12 that

g1, 9. and g; each have rank at least 2, and by the Corollary to Lemma 12

we see that g,, ¢,, g; are irreducible over k. Furthermore, no two of d1s g2

and g, are proportional, sinee otherwise the linear system A would contain

a form of the shape prohibited by the Corollary to Lemma 12.
Eliminating #, from f; = f§ = 0, we get

h = (23 M, g,) (@, + Ma) — g3 = 0.
Eliminating @, from & = f} = 0, we get
(6) #3(g5— Mo Ms)+ w5 (g3 My~ g My+ gy My — M, My M)+ g5 (g, — My M) = 0.
This last form is a quadratic in 2; whose discriminant is
(1 A = (g My + gy Myt g, My— M M, M — 44y gags.

By eliminating in a different order, we see that », and . satisfy similar
quadratic equations with the same discriminant 4. Furthermore, at any

. ; 0
point of V* the value of the Jacobian (af), y=1,2,3, p=1,2,3,
'
is A'*. Hence, if we can find z,, ..., s, 5o that 4 is equal to a nonzero

square and so that at least two of

(8) q— MM, g.—M.M,, g—M;M,

do not vanish, then we can find a nonsingular point on V*.

‘We observe that A4 is not identically 0, for if it were then either two
of the g, would be proportional or at least one of the g, would factor over
k*; either situation being contrary to earlier observations. Furthermore,
none of the forms in (8) are identically 0, since each g, is irreducible over
%*. It follows from Liemma 6 and its Corollary that V* has a nonsingular
point except possibly when 4 is of the form »h®, where 5 is a nonsquare
of k* and % is a cubic form over &*.

We now verify that V* has a nonsingular point when 4 has the
form #h®. We have

400,95 = (9. Ma+ g Mo+ g M — MM, MY — nh*.

Since the right hand side splits over a quadratic extension of k* and since
no two g,’s are proportional, it must be the case that each g, splits over
this extension. Since each g, has rank at least 2 and does not factorize
over %*, there are nonzero linear forms Py, @y, P, @, Ps, @, over &*
such that

6 =P—nQ (»r=1,2,3).
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We then have

4= ?7(P1P2Q3+P2P3Q1 +Py P, Qs+ 77@1@2@3)27
and

(9) 91M2+92M3+93M1—‘-M1M2D[3

= 2(P1 Py Py+ nP1Q:Q5+ nP2Q:Q1+ 1P3hQy),
identically. ) )

If the difference between the dimension of the linear space spanned
by the M’s, P’s and @’s and the dimension of the llm?ar space spanned by
the P’s and Qs is 2 or 3 then the left hand side of (9) is at least of degree 2
over k*[P;, ..., @;]. If the difference is 1 then the left hand side o_f (9)
is at least of degree 1 over K*[Py, ..., @,] since no two'g,’s a're proportional
and no g, splits over %*. Hence, we deduce from the identity (9) that the
M’s ave expressible as linear combinations of the P’s a.pd @’s. Further
examination of the identity (9) shows that it is impossible for P,, @,
Py, @y, Py, Q5 to be a linearly independent set of linear forms. On the
other hand the seb f7, fi, f3 has order at least 8 and these form.s are ex-
pressible in terms of @y, @y, @5, Py, @1y Pyy Qs Py, @55 hence the ‘d1mensmn
of the linear space spanned by the P’s and @’s is exactly 5. Without loss
of generality we can assume Py, @, P;, Q,, P, are linearly indepen.dent.
Then Q, is expressible as a linear combination of the, others an(li .Qa is not
proportional to P;. Thus we can write @; = AP,+4-@, where @, is a non-
trivial linear combination of Py, @, P,, @,. We can then solve

Py(P1Qy+P201) Qs (P1Py+1619.) = 0,
parametrically by choosing P;, @, P,, @, so that

(P1@:+PyQ1) + AP, Py +1€1Qs) # 0

and then solving a linear equation for P;. When P,, @, P,, @, satisfy
further inequalities, we obtain solutions of

PP,Q3+PPyQ, + P PiQy+10,9:95 = 0
with
G—M My #0, g—M,M, #0, g—M;M, #0.

For these points, the equation (6) is a quadratic equation in z; (the lead-
ing coefficient is not 0) with discriminant 0. The same is true for the ana-
logous quadratic equations for #; and »,. Hence there are unique values
of @, #,, @3, determined as rational functions of P;, P,, Q;, @, which
make ff =f;=f;f=0. Thus V* contains a rationally parametrized
threefold S.

If any point of § were a nonsingular point of V* the lemma would

be proved; so we may suppose that all points of S are singular points ‘
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of 7*. Then to each point @ of § there is a nonzero triple (2;, 4,, 4;) such
that }'A;ff and all its derivatives vanish at . The mapping @ = (4,, 4,, 4,)
maps § into the i-plane. Consequently since ¢ = 49, there is a point
in the i-plane which is the image of at least g points of §. These points
cannot be on a straight line, for otherwise V* would have s nonsingular
point by Lemma 16. Hence there are three linearly independent points
@, b, ¢ of V* with coordinates in %* and a linear combination f=uft

. o g -
such that all the partial derivatives a—‘f vanish at each of @, b, and e¢.

4

But in that event we are back in case (II) and so may apply Lemma 19.

This concludes the proof of Lemma 20.

Lemwms 21. In case (IV), V* kas a nonsingular poind.

Proof. In this case we may suppose €, €, €3, ¢, are on V* and ff
is free of @, and z; while f} is free of #, and z,. We may also suppose f¥
contains the terms @,4,, z,z,, @2, and 324, since otherwise we would

have five points on ¥* and one of the other cases would apply. Thus
we have

= ay By + & Mo~z My+- gy,
fi= By @3~ my My 23 M+ g,
fi = a®®y+ bay @y + oo my - A3 Ty + ST, + 10y 25+

+ 2 N+ 2 Nyt 23 Ny+ 2, Ny g5

We may assume that neither « nor g is 0. For suppose a = 0 then f3(0,
Byy @33 @45 0,...,0) = 0 is a planar eonic on V* and hence, by Lemma 17, V*
has a nonsingular point. On replacing x,, #,, 2, @, by =, —pM;, 2, —al,,
@y —BM,, 2,—al, respectively we see that we can assume that the M, are
identically 0. On multiplying the #; by suitable units and on making a uni-
modular change of basis for the linear system A we obtain

1 = @@t g,
fi = m 25+ g,
fi= Ty B+ By By By by + By g+ B, N1 B N o+ 2, N+ 2, N+ g5,

where the N, and g, are forms in a5, ..., @,. By Lemma 12 and its Corol-
lary, g, and g, are nonproportional irreducible forms over k*. Two cases
arise. :

If rank (g;, g.) >3, we can make one of g; and g, vanish without
making the other vanish. Suppose we have solved g, = 0 with g. 5~ 0.
We then choose x; so that ws(@j—N,2,—g,) 5= 0. We then seb 2, =0,
#; = —@,/z; and choose z, to make f; = 0. The resulting point is a fifth
point on V¥, contrary to hypothesis.
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If rank (gy,¢s) = 2, since o > 7, we may solve g; =g, = 0 with
some of @, ..., @, not zero. We then set 3 =z, = 0 and choose ,, =,
so that fi = 0. The resulting point is a fifth point on V*, contrary to the
hypothesis. This completes the proof of the Lemma and hence the proof
of the Theorem.
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Errata to the paper “On the distribution of the *free
integers in residue classes”
(Acta Arithmetica 8 (1963), pp. 283-293)
by
E. CorEN and RicEARD L. ROBINSON (Tennessee)
In the line following (2.2) on p. 285, replace @; by @; in the last

line on p. 288 replace @,(k) by ®y(h); in the first and third sentences
of Theorem 3, replace the comma preceding ‘“‘that is” by a semicolon.
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