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Further developments in the comparative
prime-number theory IlI
by
8. KNAPOWSKT (Poznan) and P. TuriN (Budapest)

1. As well-known, Chebyshev (see Chebyshev [1]) asserted without
a proof that (p standing for primes)
(1.1) L G

nrten 5
i.e. “there are more primes = 3 (4) than = (4) in Abel’s sense”. This
is undecided until now; but as well-known (see Hardy-Littlewood [1],
Landau [1], [2]) it is equivalent to the fact that (with & = o-1-4t)

y (wl)n—l ‘ 0 1

L @Gnoay T 77 g

=]

The same could have been proved for the sum

: =112} 06 0 . o= B}

(1.2) 2(4)" logp-e ¥
n>2

and analogously for

(1.3) E logp-e¢?m— V' logp-e 7,

p=1(3) 1153)

By these are essentially all moduli % with ®(k) = 2 settled. As to the next

difficult question ¢ (k) = 4, the simplest is the case & = 8. It turned out

(see Knapowski-Turdn [1]) that for the functions

(1.4) S logp-e~PP*— 2 logp-e~?®

P=1(8) D=18)

we have an analogous situation as before; but as a new Pphenomenon,

we proved that for 0 < 6 < ¢, for each L # 1, among 3, 5, 7 we have

(1.5)

g1 1080} log5(1/3)

max { S‘ logp-e~#F— Togs(1/9)

6" <z<s~1 pIhm)

1
> logp-e") > ¢
vl 7 Vs
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and hence also

(1.8) 1 1 Log{1/8)logy(1/5)

min | Y logp-e " D) logp: e < —T;S—e Tromiif
s~ Bgas—! p= zl(e) p=ly(8)
These results would suggest for the general % that if I, resp. I, are
quadratic residue resp. non-residue modk (ie. i and I, are of opposite
quadratic character) then for

A — D[z

2 logp-e
p=la(k)

(1.7) D logp-e

p=1y(k)
we have a situation, analogous to that of (1.1) or (1.3) or (1.4), whergas
if 7, and 1, have the same quadratic character mod#k, then for the function
(1.7) we have a situation analogous to (1.5) and (1.6). B‘y 0?3]1}31: words
if §; and 1, have opposite quadratic character mod’% then ‘flefmlt}ve pre-
ponderance in Abel’s sense” holds if and only if the gene]{ahzed Riemann-
conjecture holds for all L(s, y)-functions mod%, whereas in the_ case when
1, and I, are of the same quadratic character, there is no definitive pre-
ponderance even in Abel’s sense. A closer analysis however revealed (see
Knapowski-Turdn [2]) that owing to the “small” zeros of the .Z;—f}lnc-
tions a proof of any of these assertions for large k’s would be .dlff.lcult
in particular the first. In the same paper we made the observation that
if we replace the Abel-means

Z logp-e P — E logp-e~ 2
p=1(k) p=15(k)
by
‘.El LY _}10g22
N logp-e T ylogp~e ros
d . =
pI(k) PET(R)
or with the notation
I n =1 (k),
(1.8) g, b, L)y=1—1 for n=UL(k),
l otherwise
by ng"‘”
(1.9)

Fy(z, Uy b) (E_itzek(fp: Iy ly)e
P

with suitable r = 7(z), the situation changes to a certain extent. In par-
ticular it is so for “good” k-values, i.e. those for which there is an
E = E(k) such that

(1.10) [] Zsyz) #0
fOI‘ zmod &
>3, M<B®X) (O<E® <D
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{Haselgrove-condition). For such k-values (whose number is probably

infinite) we showed at least that for I, = 1 and I, = quadratic non-residue
modZ%, the relation

(1.11) lm Fy(r,1,L) = —co
L4000
for all a;(k) <r = »(x) <logz holds i and only if the generalized Rie-

mann-conjecture holds for %.
2. In the present note we shall deal with the cage

(2.1) L, =1,

I, = 1 = quadratic residue modZ%.
For this case we shall prove in correspondance with (1.5) and (1.6) the
TEEOREM I. For “good” 's in the case (2.1) and for

i -
(2.2) T >max(e, e, (@07 /EwS)

there exist x,, x, in the interval

(2.3) (Tem0osTP | gllonmy1)
such that for suitable
(2.4) (21og I)*® < »; < (21og T)*3 4 (21og T

the inequalities
_.1_1 2P —_

D en(p, 1, Dlogp-e 1 7 > YTgmeoslT,

(2.5) P

JRERPLY 3 ;
ep, L, Dlogp-e 2 = < Y/ Tpersor

'c

hold.
This is a special case of

TEEOREM II. In the case (2.1) for “good” Ks if g, =
of an L(s, x')-function modk with

B =1,

Bo+iy, i8 a zero

Yo >0, Z’(l) #1,

there exist for
15 6
T > max (e, e, 2™ E®S g0y
Zy, Tp-numbers in the interval
— 5/6 11/1
(Tg~0osTl®  qyllogm) )

such that the inequalities (2.5) hold with VT replaced by TP,

However we shall confine ourselves to the proof of Theorem I;
that of Theorem II follows mutatis mutandis.
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As in paper IT of this series we can conclude directly as to the dis-
crepancy of primes =1 (k) and =1 (k) if I is a quadratic residue modk.
So we assert the

TuroreM III. For “good” k’s in the case (
there are U,-numbers with

1) for T°s satisfying (2.2)

_10g8/77 617
Te e < U, < U, < T,

resp.
T =T < T, < U, < T2
so that
Z ex(p, 1, 1) > Ve iosl'r
Usp<Us
and

&g (_p , 1,0 < — ]/Ee—c'logﬁ/(’gv .

Ugn<Uy

Sinee the proof runs exactly like that in our paper IT, we omit the
details.

3. For the proof we shall need some lemmata.

Lemnia I, Let for a positive m and n < N the 2s with

(3.1) I=ll>lm> 2kl =. =l == e

are such that with a 0 < x < =/2
(3.2)

¢ < lares| <m  (f=1,...,0);

furhier, let h resp. h, be defined by

4N
3.3 2| >
(3.3) fenl mENGTA
resp. by
| 2N
(3.4) 2n,| < fenl — m s if there is such an by,
hi=mn  otherwise

and finally

(3.5) BY min Re (Zy b,i,).

hj<hy =1
Then there are integer v, and v, with
(3.6)

m L vy, vy < MEN (347 /%)

iom®
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)2.\'( | 123 ' )m FN(3+7/0)
(%)) 2

B ( :\‘ )1\‘ ‘2]‘; )m-.\'(:sfnjz)
2N +1 \24(m =N (3= fz)) (>2_ ’

The proof of this lemma one can find in Knapowski-Turdn [3] as
Theorem 4.1.

Leyva I If ayy ayeuny By, fas

119

such that

¥
R bzt >
¢ y & 2N +1 (34(;,,,.:_3'(3

and

—
< —

Re Z b=

=1

. are real wiih

la,) = U (> 0),
further

A>1/C

21—}—](1,]” <T <o,

then every real interval of length A contains a &-value such that for all v-in-
dices the inequality

and with a« y > 1

1 1

LAY > e
{@ithl > 55 1L ja)

holds ({zx} denoting the distance of = from the next integer).

For the proof of this lemma, see Knapowski-Turdn [7].

Leania ITT. For any given k modulus there exists a broken line W in
the vertical strip %u <o <71,5—, symmetrical to the real axis, consisting
aliernately of wvertical resp. horizontal segments, each horizontal strip of
width 1 containing at most one of the horizontal segments and on which for
all x’s modk the inequalii‘ies

< e klogk (24 1)),

IL'

T < ey klog’k (24 1t))

nj<
5. )]
(28, 7) s
I
hold. . .
The proof of this lemma is contained mutatis mutandis in the book

of the second of us (see Turédn [1]).

4. Now we can turn to the proof of our theorem. If { (with (I, k) = 1)
is a quadratic residue mod %, then the solutions of 2* = 1 (%) form obviously
a coset according to the subgroup formed by the solutions of 2 = 1 (k)
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in the multiplicative group of reduced residue-classes modk. Let the so-
lutions of #* =1 (k) resp. o* =1 (k) be

(4£.1) Gy Gyyeney @y T€SD.  fuy fayeney Pus
Then ) 1
(4.2) ‘ﬁﬂ;ia)%“’nguz; logp _l_ﬂ; logr |+ )
7 logp N logp
-2 +§paw) A0
= oep 2 Zx £ (28, 2)+1als)
T ' L

p=

where generally f,(s) stand for functions regular for ¢ > 0,34 and satis-

fying here the inequality
(4.3)

¢ ¢, ¢, ¢, and later ¢, ...
(4.2) gives the identity

B

el <e

denoting positive numerical constants.

1 v r
Lo+ (k);;’(x(av 1) 25, 2)

= dils,) = > aulp, 1,

D

0,34. Now with a T in (2.2) let

for o >

(4.5) DY (2logTys.

5. Next we congider all ¢ = o,--4, zeros of all L(s, %) functions
modk satisfying

(5.1) It <2vVD
. C1t
and apply Lemma II with y = 10’ U= ——L’(k) to the numbers
__ t A
“T Mg
1 2 1 2
B, = g, m(¢) and 3o Tm(e)-

iom®
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Then one can choose evidently (%)

V = e, klogk
and thus Lemma IT assures the existence of a b, in
D 10=
5.2 3L+« ——= <l <
©2) =3 ) BE) S
50 that for all g’s in (5.1)
(1t 1 o e; 1
5= 2 0 5 ) 2 T, Fiogw
and
(1 4, b L g:} - e 1
2= 4 ° 227 16) 7 T+ "™ Floghk’
ie.
Cs . 3(e®+2bge)
—_— < <7
(I 17,7 klog k jare( N<w=
and
1 5
C (@ 14+Dg0)
e < Jaro(e? <
AT B logh < 12 <=
Since from (2.2) and (4.5) we have
(5.8) & < (logTYR < D,
we get the inequalities
1 9
Cg (&% +2bge)
e X |are(et <=,
1+ 51 leg*D !
(5.4) (1412 g
+b
Cs < Jare (ez(e 14+ oe))] <=

(118, 0g* D
for all ¢’s in (5.1).

6. Fixing b, that way, let  be an integer to be determined later so
that

(6.1) D*

and consider the integral

<r < D'+D%F

2e+0g?

1 4
i =5 [
@

(6.2) @y (s, 1)ds.

(1) Here we used the fact that the number of zeros of any L(s, x) in the halLstriI;
A<t<i+]l, o> 0 is at most ezlogk(2+ JA]).
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Using the integral-formula (see e.g. Knapowski-Turdan [2])

1 Tis1bg)2-1s
& ds

27h 5 Vrr

[&)

we get from (4.4) and (6.2)

—-;(mgz—%’)z 1
Zmp,l,l)e +o

= =
ot
]/7?7” " (030)

b

AN
e

r ]
s+bg)*
et

Fuls)ds.

I(r) =

Using (4.3) we get for the absolute-value of this last integral —shifting
it to the vertical line ¢ = 0,34 —the upper bound

6 [ Ogros-cy T 0,397
— f € dv < ¢€ y
2

—0o

ie. owing to (4.5), (5.2) and (6.1)

EYE

82 gbou 34

SR
53
=9

.
(6.4) < ¢, e 5

—€
Var

if only ¢ in (2.2) is sufficiently large. On the other hand, inserting in (6.2)
the left-side for @,(s, 1) and shifting the line of integration to W we get

- 1 - ' letbg)?
6.5) Iir) = myZ(l—,g(l))z AT

o(x)

IG)ZZ(X av)'— V‘ ( +b°) + % feg(u-bo)?(p

n(z) am)

(8, 1) ds,

‘where X' resp. Z” means that the respective summation must be extended
only to those ¢’s for which o resp. ¢/2 is right from W. For the absolute
value of the last integral in (6.5) Lemma ITI gives the upper bound

bl Hogr ~ r 2
e k? f Iogzk(Z—i—[ti)e‘*{( v - }dt < ekt log’ ke oo sl
which in turn is owing to (2.2), (5.2) and (6.1)

Tlla()

TC?'

(6.6) , < T

hm@
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(6.5), (6.6), (6.4) and (6.3) give, taking real parts the inequality

\ (lﬂgpv rj?}e

ex(p, 1, 1)logp-e -

— 1—x(1  agyee
‘lm'Rev{S‘* A Z 94(‘1" '

(k) =

Zv/a)—

7. Now we estimate (trivially) the contribution of o’s satisfying

P
((7.4) %;‘
7

a

< ¢y,

1y

|
!
) !

"

(7.1) it >2VD.

Using the footnote on p. 121 this contribution is absolutely

r T 45 {1l r 112
Z(1+20g) T2 I3 +8y) -
~q 1 AN ) oy | Ata 0 12 ..
(7.2) <<ey [e 2, e logkn—+e¢ ;ﬂ e Ioglm]
732V D1 n=a'D-1
ro=
SV D—Dy
3
< ep,€° < €5

Let ¢ be the domain right from W satisfying |t} < 2V D and

f"x 2o} det

[

1 o

- | e+ 0ge) ger
(7.3) max e | = e
o(x}inG

2(1)=1

Hence from (6.7), (7.2) and (7.3) we get the inequality

i Y 7;1»(11131:—1:9)2
(7.4) (Zsk(p,l,lﬂogp-e' .

»

SfeP £ 2lgo— PL(D'-—..QII)O)}
v (@“1 )

( +
% ¢ n[/)s('
# - - 1j0° 2
C N\ z(e) = (B) 3ly reo-Retef=2do) ) | 25
R o ].” "’ (8 ) < 6‘13T .
~ — 2 (k) ot |

8. Until now the integer » was subjected only to the restriction (6.1);
now we shall determine it using our lemmata. Let us denote the expression

Re{Z}
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in (7.4) by Z(r); we shall try to use Lemma I with
1, a 1 2
(a7 +20ge)— ;7 Re(e]+2bgey)
(8.1) geo T
resp.
1/0® 1 5
(8.2) il ool —gmecdion
as z-vectors, calling them 2’s of first (resp. of second) category. Corres-
pond ingly we shall choose as b;-coefficients the numbers

1—7(1)
(83) p(k)
resp.
(8.4) 1 () —2(B)

2p(k)

and call them b’s of first resp. of second category. First we have to
verify
(8.5) max |z = 1.

i

For the #’s of first category this is evident from the definition of g,.
To verify it also for the 2;’s of second category we remark first that owing
to a theorem of Siegel (see Siegel [1]) there is a ¢, such that each L(s, y)
has a zero in the domain

(8.6) c=%, |t <oy
this holds especially for the L-functions belonging to yx’s with y(I) # 1.
Denoting by ¢, = 09+, any of such zeros we have (M in (7.3))

1
(e +26020)

1.2 .2
—{oh—124-2b,
8.7) M ¢ | = T

1 2
S 6;(170*"14)
= .

In order to show that for the 2’s of second category even the sharper
inequality

(8.8) il < e*

holds, it suffices owing to (8.2) to show

1 o2 i?

e 1

63( ry +b°"9) < 62("0‘634)-2
or a fortiori

(8.9) 3+ boo, < by—oc},—8.

iom®
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But owing to the classical theorem we have

C15

1 cla}
logk(2-+ it,])’ k)

G, << Max {1 —
ie. in G, using also (2.2),

€15 C15 ]

Ci5
S N 1
logk(2+2¥ D)’ |

- logD;

G, < max {1-—

hence if ¢ in (2.2) is sufficiently large, using (5.2) we get

by < G D

(g —— = —— > 01
%iogD © 2 logD — o

ie.

1 1 b -
Z—!—bo% §—4—+b0—c,ﬁ@<bn—-c;4—b

and (8.9) — whence (8.8) and (8.5) — holds indeed.

9. The number of terms in Z(r) is owing to the footnote on p. 121

def

9.1) < ey (k)Y DloghkD < VDlog* D = ¥.
What will play the role of »? From (5.4) and |f,] < 2D we could
choose as =

—4——7— > e, D73FlogD.
{1+ (2¥ D)% o’ D

Hence

{9.2) . %= D37,
For m we choose

{9.3) m = D*.
As to h, we choose

{9.4) ho=1;

then (3.3) is obviously satisfied if ¢ in (2.2) is sufficiently large. As to 23,
we shall choose it 8o that no b; of second category should contribute to B.
This choice is fulfilled if 2, is the absolutely greatest among the z’s of
second category. Then we have owing to (8.8)

S 2y Dlog* D oN
e epre1 b W
ol S e < Ao m+ NGl
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ie. (3.4) is fulfilled too. Now in B we have only s with nonnegative
real part, i.e.

« . 1—7() _ 8 8
(9.5) B>1mnRe—¢—(—k)—>F>m.
With the above choices the interval (m ,m+NB+n /%)) is certainly
contained in the interval (6.1), i.e. » can be chosen according to Lemma I.
Henee 7 —v, and », can be determined so that

(9.6) (21og TYP < vy, 9 < (2log T)P 4 (210g TP
and
l/ﬁlogs D WDl g
Z(”1)>( 3 Ti/107 o3 ) ER
24 (D*+44D"""og® D) log® D
(1) D24+4p1 /01003
__;L__,i (_1_) -~ emD2 - e«(zlogsz/s
3VDlog'D \2
and analogously
(9.8) Z () < —e(2losT¥

10. To complete the proof we have to give a lower bound to

12
(07 +2bgoy)

(10.1) M; = Ve ld [, j=1,2.
Owing to the maximal-definition of o, and that of g, we get for j=1,2
L. 1 3(&%‘)—2%00)
M; = 2*Vrlog®T | [

and the second factor, using (9.6), (8.6), (5.2), (4.5) and (2.2),

9

o8 2 ‘14 1,1
Sty ——ta Lyl
64 2 & C’-l I3
c'l
14 5 1.5 107
— g leg2p 22 1) _ .
2 o (e — a6
>e et BE) . y/peertioszyle,

hence
Ay > Ty,
Putting in (7.4) for j =1, 2

bet by
2

2

= loga;,

the proof is finished. (2.3) presents no difficulties.

| &)
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