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ACTA ARITHMETICA
XT (1965)

On the reducibility of polynomials
and in particular of trinomials
by

A. ScHINZEL (Warszawa)

§ 1. In the course of this paper reducibility means reducibility over
the rational field @ unless stated to the contrary. Constants are consid-
ered neither reducible nor irreducible. A factorization of a polynomial
into a product of a constant and of coprime powers of irreducible polyno-
mials i3 called its standard form. For a given polynomial f(z), Kf(x)
denotes the factor of f(x) of the greatest possible degree, whose no root
is 0 or a root of unity and whose leading coefficient is equal to the lead-

ing coefficient of f(x). Clearly
flz)
K =
f (@) @), mdw(gld(ma__l)d) s

where d i3 the degree of f(x). The paper has emerged from the efforts to
solve the following problem formulated in [4]:

Do there ewist integers a, b = 0 such that for infinitely many rational r
one can find integers m, n satisfying

) mfn =r,
(i) K(a"+ aa™+b) 4s reducible?
The negative answer to this problem follows at once from Theorem 3

below; however, more general results are obtained. To state them I use
the following notation:

I B, ..

I k
., %) is a rational function of the form Zm ” xi,
=0 J=

where a; # 0, a;; are integers and the systems <ajq, ..., a;x> are all
different for ¢ < I, then

E —«mmu”
s o) = D@y, .oy ) [ [ o

F=1

JD (2, ...

It is clear that J@(zy, ..., 2;) is a polynomial and that the operation J
as well as K is distributive with respect to multiplication. I prove
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THEOREM 1. For every drreducible polynomial F(z) not dividing
@’ —x (6 > 1) and every positive integer n there exisis an integer v satisfying
the following conditions:
(i) 0 < » < CO(F);
(ii) n = »u, u integer;
(iii) of F(z") = P (x)Fa(z)... F,(x) is a standard form of F(z"), then

F@") = Fy(@")Fy (")... Ty (a")

is a standard form of F(x").
C(F) is an effectively computable constant independent of .
THEOREM 2. For every drreducible polynomial F(y,z) satisfying
JF(y,2) = +JF(y™ ', 2 ") and for every pair of positive integers n, m
there exists an integral non-singular matriz

I:"’l :ul]
Vo M
satisfying the following conditions:
N 0<n<OF), 0 < <O(F) (i=1,2);
(fi) n = »utrnv, m = put v, u,v inegers > 0;
(idi) 4f
JEF (Y1272, y"122) = const F, (2%, &) LRy (2", 2")2. .. F, (", 2”)%
is a standard form of JF (y'ie%, y"1e"2), then either
KEF (", 2™) = const KF, (", a")1KF, (2", a°)2... KF, (2", a°)°
is a standard form of KF (z",2™) or
max.{n, m} < Oy(F)(n, m).
Cy(F) and Cy(F) are effectively compuiadble constants independent
of n, m.
For every polynomial F(x) to which Theorem 1 applies the number
of irreducible factors of ¥ (z") remains bounded as # tends to infinity.

On the other hand, if F'(x) is any cyclotomic polynomial X, (x) and (n, k)
=1, then
P(a') = Xp(@") = [ [ Xpala);
am

thus the number of irreducible factors of F(z") can be a.rbitraa:ily lzz.rge.
Therefore, the condition in Theorem 1 that F(x) does not divide 2’—a
is necessary. On the other hand, it seems that the condition in Theorem 2:
JE(y,2) # =JF(y', 27"), is too strong and could be replaced by the
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condition that F(y,z) does not divide yad (y° 1’
61, &, not both zero. Moreover,
plausible.

CoNJECTURE. Let F(y,,
does not divide y,...y,J (
all zero.

For every system of positive integers ny, ..., n, there exists an integral
non-singular matrizs il A<ig<k, 1<) k) satisfying the Jollowing
conditions:

@D O0<w; <C(F) 1<i<k, 1<j<h)

—1) for any integers
the following conjecture seems to me

-y Yr) be an drreducible polynomial which
YRR . gk —1) for amy integers Oy, ..., 8, not

£)5
3
(i) n; =j2’v1-,,~u]- (I << k), u; integers =0 (1 <Jj<E);
=1
(iii). ¢f

JF (Hyny “-’ﬂy;""’”') = CONSEF1(Yy, oy %) By (s .., ya)r

k k E

s o standard form of JF([]ys, Ty, o T yied), then either
i=1 i=1 i=1

KEF (2™, ..., 2™) = CODSEEF, (2, ..., a¥%)1. K, (2, vouy BT

is a standard form of KF(z™, w2 or

G+t aphy, = 0,

where a; are integers not all zero and log] S C(F) 1 <i < k).

Co(F) and C,(F) are constants independent of n,, caey Rl

The method of proof in Theorem 1 permits us to obtain an ana-
logous result for reducibility in an arbitrary algebraic number field. The
method of proof in Theorem 2 is valid only for totally real number fields
and their quadratic extensions (in the latter case the condition JF (v, 2)
# +£JF(y™, 277) should be replaced by JE(y,2) # +JF(y~ % 27Y). I do

not know, however, any algebraic number field in which the Conjecture
could be disproved.

The following theorem can easily be inferred from Theorermns 1 and 2.

TunorREM 3. For any given mon-zero integers a, b, ¢ there exist two
effectively computable constants A (a, b, ¢) and B (a, b, ¢) such that if n > m
>0 and K(az"--ba™4-c) is reducible, then

(i) n/(n, m) < A(a, b, o),

(ii) there exists integers v and p such that mip = nlv is integral, 0 < pu
<v < Bla,b,c) and if

IC (a2’ +- b+ 0) = const F (x)... For(z)
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i8 a stendard form of K (ax’-+ba*+-c), then
K (aa™4- ba™ +¢) = const F{1(z"")... Fir (2"
is a standard form of K (ax"+ bz™+c).
In order to complete the investigation of trinomials I algo prove
THEOREM 4. If a, b, ¢ are integers #0, 0 <m < n, d = (m,n),
m = dm,, n = dn;, &, n denote +1, then
ax™ -+ ba" 4 ¢
K (ag™ 4 ba™+ ¢)
mﬂd—l« 61111(8w1771711)wd+17 Zf ¢ =
if ¢ = ea+nd,
if ¢ = eat+nb, (—&)™ = (—n)", ans+bmy # 0,

et = nb, m—+m; = 0(mod3), & = »"1

(27— (—e)™en)?, (—e)™ = (—n)™, ane-t+bmy =0,
lmdﬁ (—*6)7"'167],

1  otherwise.

Theorems 3 and 4 generalize the results of papers [1], [3] and [2],
in which the case [a| = |¢| = 1 has been considered. The results of those
papers could be expressed in the present language in the form 4 (1, +1,
+1) =0, A1, +2, +1) = B(1, £2, £1) = 7, AQ, &p, 1) <47
(p prime > 2), respectively. The ideas of papers [1] and [2] are fundamental
for the proof of Theorem 2. The Conjecture formulated above would
give a result similar to Theorem 3 but concerning (k-1)-nomials.

As a second application of Theorem 2 I prove

TmeoREM 5. Let f(®) 5= 41 be a polynomial such that f(0) = 0. There
exist two constants Dy(f) and Dy(f) 0 such that if n > Dy(f) and.
(n, Dy(f)) = 1, then K (2"+f(w)) is irreducible.

It seems natural to ask whether the imeducibi]ity of K(w“+ J(@)
cannot be replaced in Theorem 5 by the irreducibility of -+ f(z) provided
f{1) = —1. The example

Jolz) =

shows that it is impossible. In fact, fi(1) # —1 and &"-4f,(x) has for
every n a factor in common with 4™ —1. I do not know whether a gimilar
phenomenon can oceur for polynomials with integral coefficients.

— (3%° 4 82° + 62" 4 92° + 8+ 34° -+ 6x--5)

§2. Lemma 1. Let Q be an algebraic number field, and o an element
of 2 whick is not 0 or a root of unity.

There ewist only finitely many integers e such that a = wp®, where w is
a 100t of unity, f<Q. The greatest of them, e(a, Q), satisfies the following
relations:

(1) ela, Q) < (exp2N*)log(NH (w),
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where N dis the degree of Q and H( (a) is the height of the irreducible
primitive polynomial of a,
@) e(d", Q) =ne(a, Q) (n=1,2,..).

Proof. We note first that if y<Q is an algebraic integer and »®

(t=1,...,n) are all its conjugates, then
1 o
(3) — max |y < H(y) < (1+ max [y9)¥.
N 1IN ISIN

This obvious inequality implies the following one:

(4) max |9} > expexp(—

1IN

2%,

which holds for all integers f¢2 which are not 0 or roots of unity. Indeed,
assuming the contrary we would clearly have ¥ >1 and for all
I < exp2N?

max |(F)] < expl.

1IN

Hence, by (3) applied to y = g%,

H(B) < Q+expl)’ (1 <k < exp2NY).

Now there are no more integers of degree << N and height < H -
than N (2H+1)V; thus there are no more integers of degree <N and
height << (1+exp1)Y than
(¥ >1).

N2 +expl)¥+1)¥ < 3¥(1 +exp1)™ < exp2N?

It follows that among the numbers f° (1 <% < exp2N?) at least
two are equal, whence B is & root of unity. The contradiction obtained
proves (4).

Now we show that the equality

(") a = wf’,
where w is & root of unity, f¢2, ¢ =1, implies
(6) e < (exp2N°)log(NH (a)).

This will prove the existence of ¢(a, 2) and inequality (1).
Let « be a zero of a primitive irreducible polynomial

m
(2% S

where m | NV, a; rational integers, a, >0, H(z) = max |a;.
’ oiscm
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If @y = 1, « is an integer, and by (5), f is also an integer which is
neither 0 nor a root of unity. It follows from (5) that §

log(max |a]) = elog(max \ﬁ’)
1IN 1S N

and hence by (3) applied to y = ¢ and by (4)

log (NH (a)) > eexp(—2N%),
which gives (6).

If ay > 1, a0 is an integer but « is not. Therefore, there exists a prime
ideal p such that p* | ap, P"flaga and p < 2. Let P' || a,f. Tt follows from (5)
that (A—p) = (A—v)e, and since A—pu > 0 we get 2—» >0 and ¢ < A—p
< 1. On the other hand, (normp)* | a, hence

2 <o) <H(a)N.
This gives

e<Ag log H (a) << (exp2N*)log(NH (a)},

log2
i. e. again (6).

In order to prove (2) we put e(a, Q) = ¢, e(a",
and assume

(1) a=wf

=f, (n,f)=4
= W, '}’17
where w;, w, are roots of unity, f,yeQ. Clearly o" = wjf", whence
[ = ne.

On the other hand, there exist integers p, ¢ such that pn—gqf = d
and it follows from (7) that

(a(aqy—p)f/d)d — ad+qu—z7f — a:'m('w a—n)) — w27

thus a(a’y~?)f/d is a root of unity, say w,. We get

a = wy(a~ %P1
and, by the definition of ¢, ¢ >
pletes the proof.

Levma 2. Let Q be an algebraic number field and a an element of Q
which is not 0 or a root of unity. For every positive integer n we put

v = (e, Q,n) = (n, 2D e(a, 2)1).
If g(=) is a monic polynomial drreducible over Q and g(®) | 2" —a, then
g(x) = G(&™"), where G(x) is a polynomial over Q.

Proof. We proceed by induction with respect to e(a, Q). If e(a, 2)
=1, then neither a = %, p >1 nor a = —48% feQ; thus, in view of
a theorem of Capelli (for the proof and references see [5], p. 288-294),

fld = f/n = e. This gives f = ne and com-

iom®
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#"—a is irreducible in @ and g(z) = 2" — a. The lemma holds with G(x)
= &— o, Assume that the lemma is true for all Q' and o' with e(da’, Q)
<m (m>1) and let e(a, Q) =m, g(z) 4" —a.

If o"—a is irreducible, then the lemma is trivially true with G(x)
= o’ —a. If it is reducible, then by the theorem of Capelli

(A) a = %, where p|n, p prime > 1, fef2,
or

(B) a = —4p* where 4 |n, feQ.

We consider these cases successively, using the following mnotation:
{; 18 a primitive ¢th root of wunity, @, = Q(f,), d, is the degree
of Qg over @, Ny o is the norm of elements of 2, or polynomials over
Q, relative to £.

(A) We have here

»—1

(.7;"/1’*,3) ” (1‘71/1)_ E;/j’)
r=1

If g(x)| 2" —p our inductive assumption applies dirvectly, since
by (A) and Lemma 1

(8) g(@) | " —p" =

9) m = e(a, Q) = pe(f, Q) > e(B, Q).
Putting », = »(f, 2, #/p) we have

Yo i (”/ﬁp7 27"’—2(7”_' 1) !)7 g(a") = Gl) (mnlpv()),

Go(x)e 2[x] and it is sufficient to take G (@) = G4 (a"™0).
If g(2)f ™" — B, let h(x) be a monic factor of g( ) irreducible over 2,.
By (8)

p-1

h(@) 1 g@) | [[ @7 =28
r=1
thus for some positive » < p
(10) hiz) | &P — B

Let W (@) = h(x), ..., i (x) be all the conjugates of h(w) relative
to Q. It follows from (10) that

(;,,(")( x), B (i )’p 5(’)’ Cg)r)

thus 2(x) (i =1,2,...,d,) are relatively prime in pairs.
Since A (z) | g(x), it follows that

= Vo, (h(a)).

1<i<j<dy);

(11) g(@)
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On the other hand, we have e({pf, 2,) = e; < m. Indeed, if
ipf = wy®, w a roobt of unity, yef,,
then

a =g =" and o = N_,gym(w“) (I\Tﬂi,,/n(?))mj .
It follows by Lemma 1 that
dym = e(a®, Q) > pe,
and, since d, <p—1, ¢ < m.
Applying the inductive assumption to (10) and putting

vy = 9(LpB, 2y, 1[p),
we geb

(12) | (nfp, 2" m—1)l), (@) = H({@"™), H@)e2,lx].

Since p | m by (9), we have »,p | (n, 2" 'm!) = » and it is sufficient
to put

G(@) = Noyjo(H (&7'1)).
Indeed, by (11) and (12)
(@) = Noo(H (2"7) = G(a"").
(B)y We have here
g(@) | @'+ 4p" = n ("8 — (e +nZe) ).

=1

Let k(z) be a monic factor of ¢(x) irreducible over £2,. There is a pair
of infegers ¢, #n such that ey = +1,

(13) h(@) | & — (e+nls) B.
It follows, like (11) from (10), that
(14) 9(@) = Noyjo(h(2)).
On the other hand, e((s+ 1) B, 524) = ¢, < M. Indeed, if

(e+7C)f = wy®, w a root of unity, ye,,

then
a= —4f* =w"* and o= N;,4,;,(w“‘) (NQ‘L/Q(QI))W.
It follows by Lemma 1 that
dym = e(a®, Q) > de,

and since d, <2, ¢, < m.

On the reducibility of polynomials 9

Applying the inductive assumption to (13) and putting

vy = v(e+nlyy 24, nj4)
we get

(15)  w|(nf4, 2" m—1)Y), R(w) = H(a"*2), H(@)eQ,[x].

By Lemma 1 and (B) m = e(a, £2) = 2¢(2f°, 2). Thus 2 |m and
by (15) 4w, | (n, 2" 'm!) = ». Now put

6(0) = Vool (0",
By (14) and (15)

9(@) = NoyolH (2)""%) = G(2""),

which completes the inductive proof.

Proof of Theorem 1. Put C(F) = exp{(2N°+loglogNH)x
x(expzN*’)logNH), where N is the degree of F' and H its height. Let a,
be the leading coefficient of ¥, a any of its zeros and £ = @(c). For any
given n, we put v=(n,2"% ¢(a, 2)!). Clearly » < e(a, 2y
and by Lemma 1, » < C(F). Besides, w = n/v i3 an integer; thus parts
(i) and (ii) of Theorem 1 are proved. In order to prove (iii) assume that

(16) F(@) = F(z)...F.(x)

is a standard form of F(#") (since F(z) is irreducible, there are no mul-
tiple factors). Clearly F;(z*) (1 < j < r) are relatively prime in pairs and
it remains to show that they are all irreducible. Let f;(x) be a monie irre-
ducible factor of F;(z¥). Clearly

17 fitx) | F(z").
We now use the following Lemma of Capelli (cf. [5], pp. 288-290): if

1
(18) o' —a=][]g@)

i=1
is a decomposition of #”— « into monic factors irreducible over @ (a) = 2
and Ngjq denotes the norm relative to @, then

1

a [ [ ¥oolgie)

1=1

(19) Fa") =

is the decomposition of F(2") into monic factors irreducible over Q.
It follows from (17) and (19) that for some ¢ <

(20) fi(@) = Nojg:(x).
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On the other hand, it follows from (18) and Lemma 2 that
(21) g:(2) = Gy(a"),
where G;(x) is a polynomial over £.
By (20), (21) and the choice of f;(x)
(22) file) =
thus

-N-Q/QG'I:(Z.’“) | Fy(2");
Nojq Gi(m) | Fy(2).
Since F;(x) is irreducible,
F;(x) = const Ny o Gi(2);
thus by (22)
F;(a") = constf;(x)

and by the choice of f;(x), Fy(2") is irreducible. This completes the proof.
COROLLARY T0 THEOREM 1. For every polynomial F(x) and every
positive integer m there exists an integer v sabisfying the following conditions:

0 <y <O(T);

"=y, u — an integer;

if KF(2") = const F, (x)1F,(z)®

F.(2) is o standard form of KF(x'),
then
KF(2") = const Py (2 3F, (a2 .. F, (4*)

is a standard form of KF(z").
Proof. Let KF(x)= const Dy (x)D2(x)..
form of KF(x).

Since each polynomial &;(z) (1 < < p) satisfies the conditions
of Theorem 1, there exists for each ¢ < ¢ a positive integer »; satistying
the following conditions:

0 <o < C(Dy)y mo== wyuy, uy —
i Gu(a") = By (2)Pia(a). .

.Dp(z) be a standard

an integer;
@i (x) is a standard form of @;(w"),

then
Dy(#") = By 1 (@) Dy (1) By, (4
is a standard form of &;(z™).
‘We put
v=[v, . 0],  O(F) = (maxC(Py))!.
1=i<e

Conditiong (23) and (24) are clearly satisfied. Since »; |» we have
% |%; and the irreducibility of @;;(z"i) implies the irreducibility of

On the reducibility of polynomials 11

‘@1‘,1( P A <E <o, <5 <),

Since polynomials &;; are relatively
prime in pairs, 11: follows thal,

e 7

= constnIJ] Dy ; (@MY

iy a standard form of KF(x") and

KF (x

[

KF(z") = const f ] ” D, 5 (a"0)%
i=1 7=1

is a standard form of KF(z"). This completes the proof.

§3. LEMMA 3. For any two relatively prime polynomials G (y,z),
H(y,z) there exist two constants By(G, H) = By =1 and B,(G, H) such
that if m, m are posittve inlegers, then
JG(m')'L’ mﬂ'b)
G ( wn’ mm) ’

JH (mN" w‘l}l) |
o )

(’D(“ ym)B,
KH(z", «

—1)%o,

(26) (K@ (", &™), KH (5", 4™) =1

unless max{n, m} < B, (&, H)(n, m).

Proof. Let R(z) be the resultant of polynomials G(y, 2) and H (y, )
with respect to y and S(y) their resultant with respect to =z, and
D = max{degree R, degree S}.

Let €™, e”“@ .., &% Dbe all the roots of unity which are
zeros of R and g1, 0, ..., 05 their respective multiplicities, and similarly
let €¥™1, ¢®™2 . ¢*™ be all the roots of unity which are zeros of §
and oy, 6y, ..., 0; their respective multiplicities. Let d be the least
common denominator of 1,7y, ..., 7k, &1, ..., $;. We put

B, = By(G, H) = dmax{l, max g;, maxo;},

B,(¢, H) = DU (R)C
ik 1<il

"(8),

where O’ is a constant from the Corollary to Theorem 1. Clearly

JE(2) B B, J8(y) Bo_.1)%0
e |0 ey | 6D
whence
JR( m) < m])o 1).[:’0 JS (m 1‘) ( "B()__ 1)]}0;
KR (x 7"’) K8 (a")
( JR (mm)_ Js(m") ) l (m(ﬂ.,m)lfo_ 1)];‘0.
I(R(wm)’ KS (2"
Since
(27) (G(wny «™), H(«", "‘Y’m)) i (R(mm)’ S(wﬂ));
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(25) follows. In order to prove (26), assume that f(2) is an frreducible
polynomial such that

fle) | (EG (2", &™), KH (a", ™).
By (27)

flz) | KR(x™) and f(z)] ES(=").

Now by the Corollary to Theorem 1 there exist a u =5 C'(R) and
a polynomial F|(z) such that

(28) flz) = Fy(@™*)  and  Fy(z) | KR(x").

Similarly there exist a » < ¢'(S) and a polynomial F,(r) such that
(29) flx) = Fo (™) and Fy(x)| KS(@').

Let d,, d, be the degrees of I, and F, respectively. It follows from
(28) and (29) that
, 4y <Du, dy<<Dy.
Hence max{n, m}/(n, m) < Duy < DC'(R)C'(8) = B,(G, H), which com-
pletes the proof.

LevMA 4. Let F; (0 <4 <1) be an increasing sequence of integers.
Let by —Fkiyy ooy bip—lip (P = 0) be all the numbers besides ky— &y which
appear only once in the double sequence k;—T; (0 <4 <<j<1). Suppose
that for each pair p, q, where 1 <p < q¢<P

(30) On,q(ki—Fo) + Cp g (ks — Tor, ) + g (kg — Ky )) = 0,
where Cyq, Cpg, Cpg are integers mot all zero. Let ¢ =1 if P <2 and
’ .. . -
¢ = max max{|opgl, |0pal, Cpgl} if P > 2. Then there emist inlegers s,
1<w<e<P |

ty wyy Ay (0 <€ << 1) such that
7%*760 == 8%i+tl1; (0 <1:
bal < (3¢, |4l < (Bef (0
Proof. By the assumption, for each pair (i, j), where 0 < ¢ < j <1
and e, 5> #+ <0, Z); <’£1’j1>7 ey <7.'P7j1’> .there exists a pa‘ir <.’]i,77 7)“L',7'>
# (i,j> such that
Ty —Toy = khi,j'“ k,,”.
Let us consider the system of linear homogeneous equations
zy =0,
(31) Ty— &y = iz’h;,j_mgi,,«y <’Ly.7> # (0, Z>; <i17j1>7 [ERS] '<7;l’7j.!’>’
€1+ cz,l,q(mii,“mii,)"‘oil?/,q(miq_miq) =0, 1<p<g<P.

iom®
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f=1[0,%—"ky..., ;—kJ] is a solution of this system. Suppose that
there are two other linearly independent solutions, @ = [aq, ay, ..., @]
and b = [by, by, ..., b;]. Performing linear transformations on the system
%, a, b we shall denote by a®, B the successive images of a and b, and
by af?, b’ the components of a, b respectively.

Put
[ by
@ =a——t—f, B =0,

Ty~ ey i~ Ko

i’ = the least ¢ such that a; = mina; or maxa;,
o<l o
j = the greatest ¢ such that a; = min a;-+ maxa;— a; (the opposite
o<il | o<l

extremumi).
Clearly j' > 4. Since a’ 3 0 and e = 0, it follows from the defini-
tion of j' that aj = 0.
Put B
b =00,
a;

i = the least 4 such that by = minb; or maxb;,
o7 o<kl
j' = the greatest ¢ such that b; = mind;’ +maxb;’ —bj..

o<i<l o<l

Clearly j” >4". o’ and b” are solutions of the system (31) and sat-

isfy the following conditions:

(32) a4 #0= a,

(33) all af are in the interval <ai,ap>, @; #ay for i< i, a; # aj
for i < ¢ and for ¢ >j.

(34) b £ 0 =1by =1,

(35) all b’ are in the interval (bi, bj>, b # by, for i <4, by # by
for ¢ <4 and for ¢ >j".

Now, (32) and (33) imply that <i',j"> is for some p <P identical
with (i, j,>. Indeed, by (32), <i',j'> # 0,1y, whence we would have
in the opposite case
where <g, by = <gi gy hog> # <8550

’ ’ ’ ’
Gy — Ay = Op— Qg

It follows from (33) that aj, = aj,, a; = aj,, whence g >4, b < i
On the other hand,
Ty— ke = Tou— g

and since k; are increasing, g = ¢/, h = j/, which gives a contradiction.
Similarly, (34) and (35) imply that (i",§"> is <ig; jo», Where 1 <¢ < P.
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Moreover, by (34) &', §'> # <&",4">. Thus p # ¢ and without loss
of generality we may assume p < ¢. Putting for brevity ¢, = ¢ and
6pg = ¢, we get from (30), (32) and (34)

(36) 6 qlli— ko) ¢ (kyp— ki) + ¢ (B —Ey) = 0,
(37) ¢ (aj— ap) ¢ (aj.—ai) = 0,
(38) ¢ (b —by)+¢” (b —bi) = 0.

Sinee k; > ko, it follows from (36) that ¢’ % 0 or ¢ 0. Now in view
of (33) and (37) |¢”| = |¢|, and in view of (35) and (38) |¢'| = |¢'|. Hence
¢ = e’ #0. If ¢ = —c’, (35) and (38) imply that bj == b/, which
contradicts (34). If ¢ = ¢”, (33) and (37) imply that aj = aj, i >4
Similarly (35) and (38) imply that bj = bj., ¢ >14". The contradiction
obtained proves that system (31) has at most two linearly independent
solutions. Therefore, the rank of the matrix M of gystem (31) is at least
I—1. If this rank is I, solving the system by means of Cramer’s formulae
we get ’

@ =z,D:/D (0 <i<1, u fixed),

where D and D, are determinants of degree ! and, as can easily be seen
from the form of matrix M, the sum of absolute values of integers stand-
ing in any line of D; does not exceed 5¢. Hence |Dy| < (5¢) and a fortiori
1 Dil (Do, ..., Dy) < (Be)"
Since
(b~ Too) D

D = ki“ko

(0<i<,

(Byu—T%}(Dy, ..., Dy)[D is an integer and the lemma holds with
8 = (ky—ko)(Dyy ..., D)/D, t=0,
#=Dy/(Dyy ..., D), A=0 (0<K<igl).
If the rank of M is I—1, we get similarly
#; = (@,Di+nD)[D (0 <i<I,pu,» fixed),
where D, D; and D; are determinants of degree 1—1,
(39) 1D} < (8™, DY < (B}t (0 <P <.

Integral vectors [z,,#,] such that all numbers («,D;+D;)/D
(0 <4 <1) are integers form a module, say M. Clearly [0, |D|]<M and
[|D], 01¢9M. Let & be the least positive integer such that for some 7,
[&, 7] <M and let 7, be the least positive integer such that [0, 7y] M.
Clearly [£,, m] and [0, 9,] form a basis for D and without logt of generality
we may assume 0 <9, << 7,. On the other hand, 4, < |D| and ¢, < |D|.

iom®
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Since k; ave integers, [k,—k,, k,— k]eON; thus there arve integers s, ¢
such that k,—%ky = &8, k,—ky = 38+ mat.
Putting »; = (£, Di+nD{)/D, % = n.D{ |D, we get for i <1

7171;—7\?0 = %is—i—z,;i
and by (39)

&
ol < 0+ < 2 5oy < ey,
I \]_]’)| 1D < (o)t

This completes the proof.

Remark. For a given finite linear set, denote by o the number
of rationally independent distances and by g, the number of rationally
independent distances which appear only once. It follows from the lemma
that if g, < 2, then ¢ < 2. It can easily.be found from remark 1 at the end
of paper [2] that if g, = 1 then ¢ = 1. The equality ¢ = g, suggests itself,.
but I am unable to prove it.

DrriNirioN. For a given integral matrix 4, h(4) will denote the
maximum of absolute values of the elements of 4.

LemMA 5. Let T be any given integral mairiz 2X 2. For arbitrary pos-
itive integers d, m, m there exisis an integral matriz

M = ["'1 I»‘l]
Va Mo

satisfying the conditions:

(40) 0<w < (@, o0<m<(@d)) (¢=1,2),
(41) 1) >0,
(42) [n, m] = [u,v]M, w, v integers >0,

and with the following property. If
(43) n,m]I'=[s,t]4,

where s, t are integers, A is an integral matriz,

(44) 4] =0  and h(d4) <d,
then
(45) MI'=TA and [s,t] = [u,]T,

where T is an integral matriz and

(46) R(T) < 4((2d*) V(D).
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Proof. Let S be the set of all integral matrices 4 satisfying (43) and
(44). Integral vectors [z, y] such that for all 4¢8 and suitable integers
Suy tyy [, Y]] = [84,14]4 form a module, say M. By (44) 24" > |4|
+ 0, whence |4| divides (2d%)!.

It follows that [(2d%)!, 01¢OM and [0, (24°)!]1<M. Let & be the least
positive integer such that, for some #;, [£, 7,]1¢N and let 4, be the least
positive integer such that [0, 5,]e9M. Clearly [&, ] and [0, %] form
2 basis for M and we may assume without loss of generality that 0, < 9,

< 71,. Hence
47) 0< & <2, 0y <y < (2.
Let ’
mo_ A1
7 b |bs | B,
be the expansion of " into a continued fraction, where 0, are integers

s

>1 (1<p<r);if p,=01tr=0. Put
Ao = 07
Bm-l = prp—'-Bz?—l

By =1;
(0 <p < ).

4d_,=-1, B_;=0;
Apyy = bpdy—Ap s,
It follows that the sequences 4,, B, are increasing and for p < r
(48) ApBp1—Byd, =1,
(49) 04, <y, O0<B,<n,,
(50) Ap(Bp < Ay[By = 1 [7.

Since m, n are > 0, we have

Let ¢ be the least non-negative integer which can be substitued for r

in the last inequality. Assuming A_,/B_; = —oo we have therefore
(51) Agmy <h ™ & A
By, 2 N9 B,

Let us put

M= [7’1 #1] - [Bq Bym—Aqm,
Vs U By

= RSN
—Aga]L0 7 By 1& Byam—Ag s

iom®
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Tnequalities (47), (49) and (50) imply (40). By (48)

& om
0 7,

Moreover, the vectors [», u], [7s, #,] form a basis for M. Since [, m]eIMN,
there are integers u, v satisfying (42). We have

}MI*:' = & > 0.

[w,v] =[n, mI M = 1 [n, m] [Bg"”h_Aq‘l?h _BWI+A”772]
1 &7 —B, 1 & By&
=——[B, i (nmy—mé&)— A, 19, A s —By(nn, — mé&;)].

&7

It follows from (51) that # 3> 0, » > 0. In order to prove the
last statement of the lemma suppose that for some integral matrix 4
(43) and (44) hold. Thus 4<S and since [, uileM (i = 1, 2) there are
integers oy, 7; such that [, u 11" = [0y, 7:]4 (i =1, 2). Putting

(52) ="
Oy Ta
we get
MI'=TA.
On the other hand, (42) and (43) imply
(83) [u, V]JMI = [s,t]4.

Since |4 = 0 by (44), we get (45) from (52) and (53). Finally, by (52),
(40) and (44)

"I = R(MTA™Y < 4R R R(A) < 4d((2d))*r(I).
This completes the proof.

Lenmma 6. Let f(x) be an irreducible polynomial not dividing o —w
(8 >1), a, p integers, a >0 or §> 0. For arbitrary positive integers n, m
such that an+-fm > 0 there ewists an integral matric

W = ["’1 Hl]
Y2 Mo

satisfying the conditions

(54) 0<% <C{f,0,8), 0<m<OCf,a,p) (i=1,2),
(85) [M] >0,

(56) [n,m] = [u,v]M, u,v integers >0,

(57) avi+fu; =20 (1=1,2),

Acta Arithmetica XI.1

X
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if  fly™itigethey = fi(y, 2).. f(y,8) ds a standard form  of

) If of < 0, we may assume without loss of generality ¢ > 0, 8 < 0.
Sy rrPugathiy  then

We put in Lemma 5:

f(ma11+ﬁ1n) =f1 (.’Bu, m’u)”.fr(wu’ mﬂ) , [ ) s } I ’ an—[_ﬂm I
= y & =e¢, wW=—-—— m=mn
is a standard form of f(a™ ™). -8 —8 ”
O(f, a, B) is an effectively computable constant, independent of n and m. (the “dash” is added to avoid & confusion in motation). Tn virtue of that
Proof. By Theorem 1, there exists a positive integer » < O(f) such lemma there exists an integral matrix
that on- pm = ww, w integer and having the following property: if o
» 4 , A Y1
(58) @) = fi(@)...fr(@) =
is a standard form of f(«"), then such that
(59) F@™My = fi(@®).. fr(a”) (62) 0<m < (21, 0<u<(2)) (=1,2),
is a standard form of f(z***™). (63) ' >0,
Now we distinguish two cases, af >0 and af < 0. (64) [(an-t fm)fv, m] = [w, 12,  u,o integers = 0.

If ¢f >0 we put in Lemma 5:

a a
I'= ,  d=0().
[,8 /3] N

We apply the last statement of Lemma 5 with

[s, 1] = [w, w], A=[“ 0].

0
Let . *
[wl ,ul] In virtue of that statement there exists an integral matrix 7' such that
M =
be an integral matrix whose existence for n, m is asserted in that lemma. v, wl||—8 —8 0 af

It follows from (40) that

. \ whence « | »wi—fu; (i =1,2). We pub
60)  o<m<(CO), o<m<EN) G=1,2;

2 L vi = (wi—fui)fa, w=u; (I=1,2).
thus (54) is satisfied with C(f, a, §) = (2(02(]”)!)) and, in view of a > 0, o ‘ ~
B >0, (57) holds. Formulae (55) and (56) follow from (41) and (42). (62) implies (57) and the inequality

A 5o
‘We apply the last statement of Lemma 5 with 0<r < ((Qaﬂ)!)g(C'(f)—l—}fil), 0 <m< (@A (G =1,2;

v 0 .
[s, 2] =[w,w], 4= [ ] thus (54) is satistled with CO(f, a, 8) = ((20®)1)*(C(f)+ |6). Formulae
0 7, (b5) and (56) follow from (53) and (64); besides we have (61).
In virtue of that statement there exists an integral matrix 7' such that In order to prove the last property of the matrix 3 postulated in
the lemma, we put
0
R P e (65) Tily, 2) = Flys sy 1 < <o),
v m||B B 0 v
whence By (86) f;(z", 2") = fj(z*), whence by (59), fj(@", 2") is irreducible. We

(61) v av+Buy (5 =1,2). show that f;(y,2) i3 not reducible.
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Denote by & the degree of fi(z) and suppose that
(66) f;(yaz) = g(y,2)h(y, 2),

where g is of degree y, in y, y, in 2; 7 is of degree y; in 4, y» in z and y;+y,
>0, 1,4+ 72 > 0. By (65) we have

Slam+Bu) v = vt (E=1,2).
On the other hand,

fi(@") = g, &) h(@", &).
The degree of f;(z) equals
8(an+ Bm) v = u(avy+ fu) [r+ 00 (am+ fus) [v = w(yi+12) + (2t 1)

The degree of g(z", a”)h(2", 4”) can be equal 0 uyy+ Uyt ove+ Vpe
only if the degree of g(z", w”’) equa,ls uy,+ vy, and the degree of h (", «”)
equals ulervxq Since fj(#”) is irreducible we get wy,4-vy, =0 or
wy+vg, = 0, whence u =0 a.nd yags =0 or v =20 and y,7 =0 or
w = o == 0. The last case is impossible by (56), and in view of symmetry
it is enough to consider % = 0, y, = 0. Thus ¢(y, 0) = ¢(y, #) is not con-
stant and, since f;(0) s 0, it follows from (65) and (66) that avy+ fus = 0.
This gives an-+ ﬁan:u avy+ Bua) 4 v (avy++ fus) = 0. The contradietion
obtained proves that no f;(y, #) (1 <j <) is reducible. Since fily,2) are
also not constant, and by (58)

f(yavl—i-ﬁﬂlzm’g-'rﬁ,ltz) — f{ (y7 2).. _f;‘,(:l/’ 2),

it follows that the polynomials f; (¥, #) (L <j < ') and fi(y,#) (1 <j <),
after a suitable permutation, differ only by constant factors. Since the
polynomials fj (2, «°) = f;(@*) (1 <j <r') ave irreducible and coprime,
the same applies to f;(a*,a”) (1 <j <r), which completes the proof.

§ 4. Proof of Theorem 2. It is clear that if @(») is & polynomial,
then, P (z) = KJ P (x). We take this equality tm a definition of K (),

where @ () is a rational function of the form Z ™t (a; integers).

Now let
I
F(y,») = Z ai?/aizﬁiy
izo

where a; are integers 5= 0 and the pairs {a;, fi> (0 <@ <I) ave all dif-
ferent (it is clearly sufficient to prove the theorem for polynomials with
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integral coefficients). Let p be the rank of the matrix

-al—al, Uy~ (g one alwao]
Bi—Bo Bo—Po - Bi—Bo)

We consider separately two cases, 9 =1 and g = 2.

Case o = 1. In this case there exist integers a, § and y; (0 <4 <I)
such that ¢ >0 or >0 and

g—ay = ay;, fi—fo=Pri (0<I<I).

Put
I
fla) = ]i a;r't.
1=0
Clearly
(67) JE(y,2) = If(y°F)

Since F(y,2) is irreducible and is different from ay, az, both f(x)
I

and Jf(z™") = J Y a,@7" are irreducible. If we had for some d>1,
i=0

flx) | 2’ — 2, this would imply f(z) = +Jf(z""), whence JEF(y,=2)
= +JF(y™, 2%, against the assumption. Thus both f(z) and Jf(xt
satisfy the conditions of Lemma 6 and constants CO(f, o, f), CJf(=™),
«, ) are well defined. We put

Cy(F) = max{lal, IBl};  Ci(F) = max{C(f, a, §), C(If (™), @, B)}-

If an+ pm = 0, we have max{n, m} < Co(F)(n, my.
If an+ pm < 0, we can replace in (67) f by Jf(« -1, a by —a, Y —8,
which will not affect the inequality

(68) C(fya, p) < O (F).

We may therefore assume without loss of generality that an--p3m >0
and (68) holds. Let

be an integral matrix, whose existence for n, m is asserted in Lemma 6.
Sinee by (37) and (67)

TRy, yhes) = Fly i),
KF(:(:" , $111) — f(ma)l-{—ﬂ)IL) ,

Theorem 2 follows in this case (g = 1) from Lemma 6 and (68).
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Case p = 2. We may assume without loss of generality that

|
a—dy AUy

£ 0
Biefo Babo]

Let £ be any irrational number. Clearly the numbers (u;— ay)+4-&(f,— )
and (a,— a) +£(f.— Bo) are incommensurable; thus there arve incommen-
surable distances in the set of points ¢;+£&B; (0 <4 < I). By remark 1
at the end of paper [2] (cf. also the remark after Lemma 4) there are in
this set two incommensurable distances which appear only once in the
double sequence «— a;+E&(f;—B:) (0 <i<<j<I). This means that
there exist 4 non-negative integers 4, 4", 5, 5" such that {up— ay, fr— fi>
and  {aj.— apsy fj— B> appear only once in the double sequence
laj—ay, Bi— B> (0 <4 <j<I) and

Ct,w — a:;u — Qg | ;& 0
Br—By Bp—PBi|
We put in Lemma 5
(17-,—- ayr aju—— 24703
(69) I = [ ] d = 2(10N*)*
By—Bie Br—Bue]’ ’

I
where N = max max{a;, 8}, 4 = 3 ai.
oiT {0
Let

v
M= | 1
Y2 e
be an integral non-singular matrix, whose existence for », m is asserted
in that lemma. Thus we have by (40) and (42)

(70) 0 <w (810NN, 0 <y <((B8-10™N*))* (i =1,2),
(71) [n,m] = [u,v]M, wu, v integers = 0.

We see that assertions (i) and (ii) of Theorem 2 are satisfied with
Oy (F) = ((8-10™n*)1),

Moreover, by (70) and (71)

(72) max {n, m} < 20, (F)max{u,v}, (n,m)> (4, 0).

Let

(78) JE (y122, y'12") = const Iy (y, 2)"1F(y, 2)2%. .y (y, 2)°
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be a standard form of JF(y'12'2, y*12*?). In order to prove (iii) we have
to show that either

EF (", #") = const KF, (z", o)\ EFo (0", a')2.. . KF (2" )

is a standard form of EF(z", ™) or max{n,m} < Cy(F)(n,m), where
Co(F) is & constant independent of n, m. In view of (70) it is sufficient
to prove the same with C,(F) replaced by Cy(F, ), a constant depending
only on ¥ and M.

In order to define (o (F, M) we notice that by the assumption
(JPy,2), Py, 2") =1 and by Lemma 3 there exist two constants,
By = BO(JF(?/; 2),JF Yy, z—l)) >1and By = Bl(JF(y’z)a JE @y, zﬁl))s
such that

nom Len L —m
and

(78) (EF (2", &™), KF (@ ", 2™ ™)) =1

unless

max {n, m} < By (n, m).
Since for an arbitrary polynomial f(x)
(76) Jf (@) Ef (@) = Jf (@) |Ef(a7),
we get from (74)

JF(‘I;'L1 mm)‘ () By __ 1 Boo
TP, o) (@ yooo.

(77) KEF(x",

Let 8; (1 <j <r) be the set of all the polynomials not divisible by
1
F;(y,2) which are of the form J > e;y”iz, where c; are integers # 0,
1 i=0
>ei = A and

i=0

max {|ay], |7} <16-10¥N*T0(F) (0 <i<]).

Clearly the sets §; (1<j <) are finite and effectively computable.
Moreover, for each H e§; there exists by Lemma 3 a constant B, (F;, H)
such that

(78) (EF; (2", 2"), KH (", 7)) =1

unless
max {u, v} < B, (Fy, H)(u, ).
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Finally for each pair <¢,j>, where 1 <4 < j <# there exists by
Lemma 3 a constant B;(F;, F,) such that
(79) (EF (o, 2"), KFy(a", &")) = 1
unless
max{u, v} < By (Fy, Fy)(u, ).
We put
Co(F, M) = max {8NC}(F)B},, By, 20, (F) X
X max max B, (Fy, H), 20, (F) max B, (I, F))}.

I<f<r HeSy R N Pt

T for any pair <7, > where 1 <4< j <r, (KF;(a", «°), EF (2", o)) -1
we have by (72) and (79)

max {n, m}/(n, m) < 2C,(F)B,(F;, F;) < Cy(¥F, M).

It remains to prove that if any polynomial KF;(a", o) (1 <j < )
is not irreducible, then max{n, m} < C\(F, M)(n, m).

We shall do that in two steps assuming first that KF,(z*, °) is eon-
stant and secondly that it is reducible (the treatment of F, (", 2”) insteacd
of Fy(a", 2"} does not affect generality and simplifies a little the notation).

1. Assume that KF(z" ¢") is constant. Let

k
(80) Pily,2) = Dbyl (b # 0, <y, &5 all different)
j=0
and let g, be the rank of the matrix
YVi— VYo oo VE—Vo
—8 ... 8—6,|
It follows from (70) and (73) that

vi < N(p+mn) <2NC(T),

0<y <
(81)
0 <& < N(uat) < 2N0(F)

0<Lj<h)

and o; =1 or 2. If p; =1, we have
(82) By, 2) = Jf(y"),

where f is a polynomial in one variable, y, & are integers (cf, p. 21
and by (81)

(83) 0 < max{ly[, [6]} <2NC,(F).
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EF,(z", 2°) = const implies Kf(#x""+%) = const; thus yu-+dv =0 or
Ef(z) = const. In the first case, by (83)

(84) max {u, v} <2NC(F)(u, v);
in the second case by (76) Jf(x) = +Jf(a™') and by (82)

JfW?) = Fi(y,2) = +JF (y~,27").
The last equality implies by (73)

TFW) | (TR @22, yias), TR (y =12, g~ 1)),

By a substitution y = #2072, 2 = 4715 we get
(85)  JfpeTITEY [ (JE (1, £30, TR, gan).
However (JF(y,2), JF(y™", ")) =1, and thus

(JF(nUI!’ gy, JF (10, C‘Uf')) =1

and (83) implies
Jf (g2 OmE Ty = gongt.

Since by (82) Jf(x) 5= const, we get

Yia— 0y =0,
—yva+ 0y = 0.
Since
[oH ,
f ={] 0,
= ”|

the last system of equations gives y = 6 = 0, against (83). The contra-
diction obtained proves (84).
If o, = 2 we may assume without loss of generality that

M=% 72— %o
8y— B8y Oy— By |

# 0.

On the other hand, by (73)

JFl (mu, ‘Dl) ! JR (mn, i1,;771‘)
KF,(z", o) | P (@, a")

and since KF, (2", 2) = const, we get from (77)

JFl (w'u’ w'u) I (w(n,m)l?ﬂo _ 1)1300 .
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It follows by (80) that either
(86) wy;+vd; = uy;+vo;  for
or

87) | (y
81

9=1 or 2 and some j < k

( — o)+ 0(8i— &) < Biig(n, m)
(81) and (86) imply

(88) max{u, v} <2NC,(F)(u,v),
(81) and (87) imply

(89) max {u, v} < 4NC, (F)Bjy(n, m).

In view of (72) it follows from (84), (38) and (89) that

max{n, m} < C(F, M)(n,m).

2. Agsume that KF, (2", «") is reducible. Let f(z) be its irreducible
primitive factor. Since by (71) and (73) KF, (2", 2") | I'(«", «™). we have

(90) F(a", a™) = f(w)g(2),

where ¢(z) is a polynomial with integral coefficients. It follows from (75)
that

(EF (" "), EF(z ", &™) =1 unless max{n, m} < By(n,m),
whence by (90)
(91) f(@) = const (KT (a", a"), K[f(@)g(a™)])
or
(92) max {n, m} < By (n, m).
In order to calculate the right-hand side of (91) we put
{93) flz)g thw T (¢; integers £ 0, ky < ky < ... < k)

and consider two expressions for F(a", ™) F (z™", 2™ ™):

I
F(JO wm)F( »—'n’ 2z m) _ _}jal_l Z a0 B - (n,uilmﬁz)

=0

(94)
] Irl

(@) g™ )1 (27 g (2)]

((*,1

If for any pair <%, j>:

{95) i %) and  na+mp;— (haHmp;) =
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we get n(a;— a;)+m(f;— f;) = 0, whence

(96) max {n, m} < N(n,m).
Similarly, if for any pair ¢, §>
(OT) 6,55 # <L 5D and  namfy— (nag+mpy)

= na;.+mpPy— (nag+mpy)

or
(98) 4, 5> 5 ", 5" and nay+mp;— (ney-+ mBs)
= Naj+ Mfs— (nag.+ mPy.),

we get by the choice of <i', 4>, <”,§"> (p.22) a linear homogeneous

equation on m and n with non-zero coefficients absolutely < 2N, whence
(99) max{n, m} < 2N (n, m).

If no pair (4, j) satisfies (95), (97) or (98), it follows from (94) that

1. I
(100) Ze%:Z(ﬁ:A,
T=0 =0

(101)  the numbers na;+ mp; — (nay+mp;) and na] o P — (Nt~ Mmpy.)
appear among the differences k;—%; (0 <i <1, 0 <j <),

(102)  each number %;—%; which appears only once in the double se-
quence k;—k; (0 <i<j <) has a value ny-+md, where |y
<V, |8 <.

Let kj —k;, kj,—kiyy o5 kjp—k;, (P 2 0) be all the numbers men-

tioned in (102) besides k;—k,.

IEP>=2 1<p<qg<P, it follows from
ki—ky = yon+ 6ym,
ky,— ki, = ypn+ opm,

k;,— qu = y,n+ 6,m,

Yo 0o
epg = Tank of 1y, 61,

Ye O
that
Ena(r—Fo)+ ¢4 (R ™ lp)+crq( g Kig) = 0,
where
[Vﬂ 0| |72 Sq) |70 50|J 0y =2
Yo O ’ Yo 50’ Vo 5p§ i

[71/7 — %o 0] if
[6177 ’*60a 0] if

opg =1 and y, # 0,

(o0 C‘;J,r_li (";v,q] =
l opg =1 and &, # 0.
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Clearly

0 < max{|eyl, 1€pal 5 lepdl} < 2V (1<p<g<Ph).

Therefore, the assumptions of Lemma 4 are satisfied with ¢ < 2N* and
we get from that lemma

(103) 0<i<,

where s, 1, %, & (0 <i<1) are integers, |« < (LONZY, |2, < (10N
Since by (93) and (100) I << A, we have

(104) bl < (LON*)E, |4l < (10N%)*
Now by (101), (103) and (104)
nay+mpy — (nayp+mpy) = «'s+ 1,
R+ MBjr— (Nt +-mpyr) = #'s+ 1"t
where »', A, ', X’ are integers and
(106)
0 < max{|«|, |¥|} < 2(10N%*,

(# =2 =0 or " = 2" =0 would imply (96)).
We put
%l ”l!
4 = 2 72 B
It follows from (69), (105) and (106) that

(107) [n,m]" = [s,t]4 and R(4)< 2(L0N*! =d.
We distinguish two cases, |4] = 0 and |4] # 0.

If |4] =0, let
AT = &om
& M

Tey— ko = s+ 14,

(0 <i<1).

(105)

0 < max{|x’[, X[} < 2AON*)".

(by the choice of I', I'™' exists). It follows from (106) that

(108) 0 < max {|&l, bnl} < 20(A)BT) < 410N,

On the other hand, since & #n,—mé& = 0, we get from (107) &m—
—mn =0, and thus by (108)

(109) max {n, m}/(n, m) < 4104 N> < Oy (F).

If {4] # 0, we can apply to (107) the last staternent of Lemma b.
In virtue of that statement there exists an integral matrix 7' such that

(110) [s,t] = [u,v]T
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and .
(111) B(T) < 8-104N*+1((8- 10 N*)1J* = 8-104 N0y (F).
Put
X O;
(112) || =" (o<i<y,
)-i T3
1
(113) H(y,z) =J ) eyia.
{=0

We have by (103) and (110)
ki—ky = w0401

thus by (93), (113) and (91)

(0 <i <)

1
E(f@)g@™) = K Y a7 = KH (", o),
1=0

(114) f(z) = const(KF, (", "), KH (£, a")).

If we had F,|H, it would imply KF,(z", ") | KH(z", z¥), whence
KF, (& o°) | f(@), against the choice of f(x). Thus (¥, H) = 1. On the
other hand, by (104), (111) and (112)

max {|oy], [wl} <16-10% N+ (F) (0 <i<D);

thus by (100), (113) and the choice of S, (p. 23), HeS,. It follows by (78)
that

(EF, (o, "), K H (2", o) =1
or

(115) max {u, v}/(u, v) < By(Fy, H) < maxB,(F,, H).

HeS,

A comparison with (114) shows that (115) holds. In view of (72) it follows
from (92), (96), (99), (109) and (115) that

max {n, m} < Co(F, M)(n, m).
The proof is complete.

§5. Proof of Theorem 3. Put in Theorem 2 F(y,?) = ay-+bz+tc.
Since ¢ 5 0 we have JF(y,2) s =JF(y~*,27); thus the assumptions of
the theorem are satisfied and the constant Cy(ay-+d2--0) exigts. Put

A(a,b,¢) = Cylay-+ba+o),

Bla,b,e¢) = A(a, b, c) max O (ax*+ b2’ + ),
(@,B)eS,a>p

(116)

where O is a constant from the Corollary to Theorem 1 and § consists
of all pairs of relatively prime positive integers < A(a, b, ¢).
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Now, assume that n, m are positive integers, n > m and K (az" 4 ba™ -
+¢) is reducible. Let ) ]
v
=™ &
Y H

be an integral non-singular matrix whose exigtence for ¥, n, m is asserted
in Theorem 2.

Without loss of generality we may assume that |M| > 0. It follows
from part (iii) of Theorem 2 that if K(axz"4-bz™-+¢) is reducible then
either J (ay'12"2+ by"12"24-¢) is reducible or

(117) nl(n,m) < Co(F) = A(a, b, ¢).
We prove that the former eventuality is impossible. Suppose that

(118) J (0122 + by 12" o) = Gy (y, 2)G2 (9, 2),

where (;, @, are polynomials. By a substitution y = 9*2{™", 2 = 5~1g"t
we get

I (@ ML 0) = TG (520", ™ LTy (272, ).
However,
J(uq7lﬂll+bclﬂ[|+c) — an""“-{—bC]M‘—{—a — W)WI-I—D(C)

ig irreducible by the theorem of Capelli applied to the binomial alg| 4D (&)
in the function field @ (¢); in fact, D () is not a power of any clement
of @(¢) with exponent > 1. It follows that

JG ("7, 7MY = const, i=1 or 2,

whence by a substitution y = ¥"12", ¢ = Yz

JG(XM ZM) = const, =1 or 2.

Since [M} # 0 and by (118) G4(0, 0) = 0, we get G;(y,2) = const (¢ == 1
or 2). This shows that J(ay'1e24-by“"2--¢) is irreduwecible and con-
sequently (117) holds. Part (i) of Theorem 3 is thus proved.

In order to prove part (ii) we notice that by the Corollary to Theorem 1
there exists an integer § satisfying the following conditions:

(119) 0 < 8 < Cl(awn./()Lﬂlz.)+bwm/(n,m) __I_ «);
if

(n,m) == du, u integer;
K(Q(End/(""m) + bwﬂm/(n,1n)+ O) — COIIStFl (m)(:lF2 (LI?)({E. .. -FV (m)ﬂr
is a standard form of K (ag"®/®™ .y pgum o) then

K(aw"—]— bwm__,_ G) — OOnStFI (m’u)elﬁyg (m*u)(’g. . 1(1," (w‘lb)ﬂr

On the reducibility of polynomials 31

is a standard form of K(az"+ba™+¢). We put v = nd/(n,m),

u = md[(n,m).
Clearly n/v = m[u is integral. Further by (117) and the definition
of 8: (nf(n,m), m/(n, m)><S, and thus by (116) and (119)

v<A(a,b,c)d < B(a,b,c).

This completes the proof.

§ 6. Proof of Theorem 4. Put (az”+ba™ +¢)/K(ax"+bx™ +¢) = g(z)..
Clearly ¢(z) | ax"-bx™-¢ and g(z) ! ex™+ba" ™+ a, whence
(120)  g(x) | (2" + a)(az”+ bx™ + ¢)— ba™ (ex™ + bz ™"+ a)
a6t — b

ac

2n

=a0($ -

m"‘+1),

ax™ (Cﬂ'}n—l— b —'m._!_a)
b2+c;z__ a?
be

g(x) | (c&™ - b) (ax” -+ ba™ -+ €) —

= be (wim+ P 1).

If g(z) # 1, it follows that

LN

2 1 1'{(2+a2+62_b2
o+ o+l £ K| ”

co—]—l),

b2+02-a/2
be

2

Pl —a?
v+ be

z+1 #K(m”‘—x— x+1).

On the other hand, the only monic reciprocal quadratic polynomials.
which have roots of unity as zeros are #*+1, &*4-x+1, #*+2z+1. It
follows that a®+¢*—b* = erac, b+ —a* = nsbe, where |e| = |n| =1;
r=10,10r 2; s =0,1 or 2. Hence

2a°— 2b* = erac—nsbe;
4a®—4b* == (era)*— (nsh)*,

2¢* = erac-+nsbe,
2¢ = gra-+nsh;

and
a*(4— (er)?) = b*(4— (ns)").

The last equality implies (e7)* = (5s)’, and thus » =3 Since ¢ s 0, it is.
impossible that s =r = 0; thus two cases remain:
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In the first case, by (120)
g(@) | @+ e+ 1,
and since all zeros of 2™+ ez 1 are roots of unity
g(z) = (a2"+ba"™ + ¢, 2"+ ez’ +1).
On the other hand, by (121)
(@™ +ea" +1) 0™ = y(aa" 4 ba"+ ¢)+- ¢ (@™ " — en) (@ + ¢)
and since (50271+em”+1,m’L+ g) =1, it follows that
9(@) = (" +ba™+ 0, "+ ea"+ 1) = (@ ea” + 1, 2™ — o).
In the second case, by (120)
g(@) | £+ 2" 41 = (a"+ ),
and since all zeros of 4™+ ¢ are roots of unity,
g(@) = (az"+ba™+ ¢, (2" +e)).
On the other hand, by (122)
ag”+ba" 4+ ¢ = a2+ &)+ b(@"+ 1),
and every multiple factor of ax"--bx" ¢ divides
ot +bma™ = na(x"+ &)+ mb (4™ -+ ) — (ane + bmn) .
It follows that in the second case
(@" e, o™y it
gley =1 " :
(@ +e,a™4n) if
In order to complete the proof it remains to calculate

(wEn_(_ 6’93”—|—1, mm»]m_an)

ans+bmy = 0,
ane-+bmy 0.

and  (a"-e, @™ -7).

This is easily done by factorization in cyclotomie fields (c¢f. [1], p. 69).

§7. Proof of Theorem 5. Put in Theorem 2 Fy, ) = y--f(2).
Since f(2) # +1 and f(0) # 0, JF(y,¢) # +£JF(y™", 2 '), and thus the
assumptions of the theorem are satisfied and the constants Cyly -+ f(z)),
O, (y+7(2) exist. We put

Dq(f) = max (0,(y+1(2), O (y+7(2))}

D, (f) = the greatest common divisor of multiplicities of all the zeros

of f(z).

iom®
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By Theorem 2 for every n there exists an integral matrix
Y1
Y2 fhe
satisfying the following conditions

(123)

0<n<Cly+f), 0<m<Cy+f®) G=1,2),
(124) no=vut+v0, 1= umutuv, u,v integers = 0;
(125) if K (#"+f(x)) is reducible, then either J (e +fyie2)) s

reduecible or
n =max(n,1)[(n,1) < Co(y+(2)) < Dy(f).

It follows from (123) and (124) that g =0, v =1 or gu =1,
4sv = 0. In view of symmetry it is enough to consider the first possibility.
We then have py, =v =1 and 4 =0 or u, = 0. If u = 0, then
(126)

If u, =0, then

n =7 01(y+f(z)) < Do(f).

I+ 1) = 312+ £(2).

By the theorem of Capelli applied to the binomial " 27"%f(z)
in the function field Q(z), ¥"%22+f(2) is reducible only if —=z""2f(2)
= g(2)" and p|#» or 2 "%f(z) = 4g(2)* and 4 | »;, where g(z) is a rational
function and p is a prime. Since f(0) = 0, it follows that for some prime p

21 Di(f),
By (124), this implies
(127)

plm and  p.

(n, Di(f) = 1.

Therefore, if K(z"+f(x)) is reducible, at least one of the inequalities
(125), (126) and (127) is satisfied. This completes the proof.

Note added in proof. 1. H. Zassenhaus and the writer have proved
(¢f. Michigan Math. Journ. 12 (1965)) the following improvement of inequality
(4): max |p0)] > 14 2-N—4 Hence inequality (1) ean be improved as follows:

1T

ela, Q) < (2V+44+ Dlog(NH (a)).

2. E. G. Straus has proved the equality p = pgg conjectured on p. 15. His
general proof (to appear in the next issue of Acta Arith.) specialized to the case
oo = 2 would lead also to a simpler proof of Lemma 4 than that given in the present
paper.
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Primes, polynomials and almost primes
by
R.J. Miecm (Trbana, Il.)

A set of almost primes is @ set of integers each of which contains
no more than a fixed number of prime factors. An integral valued poly-
nomial F(n) which is of degree & and which has % irreducible factors,
for example, will generate a sequence of almost primes, the bound being
approximately (9%2/5--klogk), [3]. I propose to show that the sequence
{F(p)}, where p is a prime, contains an infinite subsequence of almost
primes. To be specifie, I shall prove:

THEOREM. Let F(n) be an integral valued polynomial. Let K be any
integer and let ¢ be any integer which is relatively prime to K. Then there is
a constant A which depends on the polynomial F{n) such that there are an
infinite number of primes p congruent to ¢ modulo K for whick F{p) has
at most A prime factors, multiple prime faclors being counted multiply.

The constant A4 of the conclusion of the theorem is not readily com-
putable.

Several comments regarding assumptions and notational devices
are in order. First of all, we shall assume without loss of generality that
F(n) has a non-zero constant term, for if n” is the highest power of n
dividing P(n) we can apply our theorem to the polynomial F(n)/n* and
replace 4 by 4L to get the same general result. Secondly, we shall
suppose that F(n) has %k distinet irreducible factors. Finally, the letter
p will always denote a prime.

The Theorem will be proved by & main-term versus remainder-term
type of argument. We shall actually prove that there is an integer H
which is a multiple of K and & positive constant B which depends on the
polynomial F(n) and the integers H and ¢ such that there are

Bz(logz)™**+0(z(logz)~*7

primes p congruent to ¢ modulo H which do not exceed » for which F(p)
has at most .4 prime factors. We shall use Brun’s method [1] to obtain
the main term and then use of result of Renyi’s [5] on the distribution
of the zeros of the L-series to evaluate the error term. This paper is accord-
ingly divided into three sections: the main term is developed in the first,
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