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1. In [1] and [2] it has been proved that a transformation defined
by a nonlinear polynomial in one variable acting in a finitely generated
extension of rationals cannot have infinite invariant sets. Now we consider
the case of several variables and prove the following

TemorEM. Let K be an algebraic number field. Let T (%, ..., LS P
Fy(®y, ..., ty) be nonlinear polynomials with coefficients in K such that
their leading forms have mo nontrivial common zero in Z%, where Z is the
field of complew numbers. Then the tramsformation T':

(@, «eny Bx) = (Fr(Bry oevs Tn)y ooy Env(@ry )
has mo infinite invariant sets in K~

A special case (N = 2, and all F; are forms of a degree at least 3) of
that theorem has been proved in [3].

One can ask whether all assumptions are essential. It is trivial
that for every system of N forms Qu(Byy eeey By) g oeey O (@1y o0y TN)
over K which have a nontrivial common zero (and thus have an infinite
number of them) one can find polynomials Fy, ..., Fy having G4, ..., Gy
as their leading forms and such that the transformation defined by them
has an infinite invariant set in a suitable extension of XK. Indeed, the poly-
nomials F; = G;+a; (i =1,...., N) and the set {(@yy vy an): Gilay, -
ey @y) = 0,4 =1, ..., N}are suitable.

However, if one is concerned with forms only, it seems that the
conditions can be relaxed. It has been proved in [4] that if N =2and K
is a quadratic extension of rationals with a negative discriminant, then
the theorem remains true for pairs of forms Fy(z, ¥), Fy(z, y) which have
a common factor F,(z,y) such that F,/F, and F,/F, have no nontrivial
zero in common if we impose some restriction on the degree of Fy. The
method is based on the fact that the norm in such & field is positive-de-
finite, but it seems that the result will hold for arbitrary fields.

* During the preparation of this paper the authbor held a British Couneil
Scholarship at the University College, London.
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The second possible weakening of our assumptions i8 to replace the
condition “F; are polynomials” by the condition “F, are rational funec-
tions”. In this direction only the case of rational funetions in one variable
over the rationals has been settled, and it has been proved that only homo-
graphies (aw+b)/(cx-+d) can have infinite invariant sets (see [5]), butitis ve-
ry probable that the same result will hold for other algebraic number fields.

Another open question is whether one can replace the condition “@&;
have no nontrivial eommon zero in ZV” by the condition “@; have no
nontrivial common zero in KV”.

Finally, consider polynomials Fy(@,...,®y) (4 = 1,..., N) over K
such that the transformation defined by them has an infinite invariant
set in IV, where I is an algebraic extension of K. T it true that it must
have an infinite invariant set in J™?

The original proof of the theorem was based on another choice of
function f(z) occurring in Lemma 5, and was valid only for polynomials
of sufficiently great degrees, satisfying some additional restrictions.
The author is grateful to Dr. J. W. 8. Cassels for his observation that the
replacement of our function f(») by another simplifies the proof of Lemma b5,
which is then valid in full generality.

9. The proof of the theorem is based on the following
Levma 1. (See [1], Lemma 1). Let T be a transformation of o set X

?nto itself. Suppose there exist funciions f(x), g(w) defined on X, with values
in the set of natural numbers, subject to the following conditions:

(i) For every natural ¢ the equation f(x)+ g(®) = ¢ has only o finite
number of solutions,
(i) There exists a constant C such that f(x) = C implies f(Tx) > f(x),
(iil) To every constant M there corresponds a constant B (M) such that
f@) < M and g(z) = B(M) imply g(Tx) > g(x).
Then the set X must be finite.
LemMMa 2. Suppose the theorem 4s true in the case where all polynomials
By, ..., 2y) are homogeneous. Then it is true in the general case also.
‘ Proof. Suppose that the polynomials (e, ..., ay) (4 =1,2,..., N)
satisfy the assumptions of our theorem. We can write them in the form

0

Fi(@yy ooy oy) = 2 @ (@, ..ay)  ((=1,..., N),
) 7=0
where G{” are forms of degree j, and n; is the degree of ;.
Let us now introduce the auxiliary forms
ng
Hi(@y, oo tysn) = D o@D (@, .y ay)  (G=1,..., N),
7=0

HN-H(ml) teey mN-H) = 6012\]_”.

hn..@
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¢ for some complex @y, ..., Gyq1y Hi(@ry ooy Oypr) = 0fori=1,...
..., N41, then ay,, =0 and @ay, ..., ay) =0 for i =1,..., N,
which implies a; . = ay = 0. Consequently the transformation 71’
defined by the forms H; has no infinite invariant sets in K+ If & set
¥ < EY is invariant under the transformation T defined by the F's
then the set ¥ = {(#1, - s Yxr 1)z (F1y -0y yy)eX} is invariant under T,
hence it is finite and the finiteness of X follows.

LEMMA 3. If Wiy, ..., o5) (¢ =1,...,N) are forms over K with
no montrivial common zero in Z", then there exist forms V@, ...y y)
with cocfficients integral in K, nonnegalive exponents oy, ..., o and con-
stants C; #= O integral in K such that

N
DV, oy @) Wity ooy ) = Csif? (i=1,..,5).
j=1

The lemma is an easy consequence of a special case of Hilbert’s
Nullstellensatz (ef. [6], vol. IL, p. 5).

LEvmA 4. Suppose aj, ..., ay are integers in K and by, ..., by are
natural numbers. Then there exists a constant A depending on @y, ..., &y,
biy ..., by only and such that if M is a rational integer which for some 2y, ...
vo., 2y dntegral in K divides @2 (i =1,..., N) but no rational integral
£ +1 divisor of M divides oll the numbers 2i, ..., &N, then | M| < A.

Proof. Suppose M has the following factorization into primes:

M =4+ [t] p%i. Let P, = {p: p divides M, p does not divide 2}, and let

M; = ﬁl pﬁi. Observe now that 3, divides akz"k, but no rational integral

#= +1 g.iifiksor of My, divides z;. By Lemma 2 of [1]it follows that M, < 4,

with some constant A; and, sinee obviously || <IIN_[1 M, the lemma
o

follows.

3. Henceforth we assume that the transformation considered is
defined by forms. We can do this in view of Lemma 2. Let us fix an in-
tegral basis i, ..., @y, of K. Then every element & of K~ has a unique
representation in the form
&= (p(ll)wl_\"- .. +P§330Jm p(l‘vjf’)! +... +pg) Wa )

q ? ’ q k)
P%Y), ¢ are rational integers, g is positive and

(1)

where p{, ...,

(2) @, .. P8, 0 =1.

Tt follows that the functions f(&) = g, g(&) = max {|p{)|} are well-de-
i,

fined. Obviously they satisfy the condition (i) of Lemma 1.


Pem


166 W. Narkiewics

Let Fy(wy, ..., @y) (¢ =1, ..., N) be nonlinear forms over K without
a nontrivial common zero in Z¥, and let 7' be the transformation defined
by them in K. Let D be the least positive rational integer such that the
forms F¥ = DF, have coefficients integral in K.

LA 5. There exists o constant O depending on the forms Ty, ..., Fy
and the fidld K and such that f(&) = C dmplics f(T'€) > 1(8).

Proof. If £ has the form (1), then

(3) T(f) = {Iﬂf(Ph very PN)/-DQn17 ceny ‘F}‘V('PH cery -vf>N)/-[)(lquN}
= (BT (Pyy .y Py) DGR, ooy NI (Pyy o, P) DT,

where n; i the degree of F; (4 =1,...,N), B = max(n,...,ny) and
P; = p{w;+...+ .

Tt follows that f(T£) > ¢ /u, where x i the greatest natural divisor
of ¢® that divides the numbers ¢® ™Ff(Py, ..., Py) for all i =1,..., N
Tf 7 = min (ny, ..., ), then g must divide ¢&"FF(Py, ..., Py) (6 =1, ...
..., N); hence if v is the greatest natural divisor of g® that divides the
numbers Ff(P,, ..., Py) for all ¢ =1,..., N, then u = ¢" .

‘We shall prove that » < 1, and that will be sufficient for the proof
of our lemma, since then u < ¢® " and so f(T&) 5 ¢® 3= ¢* = f(£)%;
hence the inequality f(T&) <f(£) can hold only for f(£) <z 1.

From Lemma 3 follows the existence of forms V§? with coofficients
integral in X, nonnegative rational integers o, ..., ay and constants 0,
integral in K such that

N
(4) Z V(@ ooy m) T (@1, .oy By) = Opaft  (§ =1, ..., N).
F=1
By p1‘1tting #; = P; we infer that » must divide C;P§ for ¢ = 1,..., N.
I'.E ] ef}rta;.m natu%;al divisor of » divides all the numbers P, ..., Py, then,
since it divides ¢~, it must be equal to 1 by (2). Now it follows from Lem-
ma 4 that » <1, and so the lemma iz proved.

. (Igimrmu 6. For every fiwed M it follows from f(&) < M that g(T§)
g(&y.

. Proof. Suppose that for a sequence {&) in K~ we have f(&) <z M
an ' )

(5) tim 9 L)

We cfg)x freely assume, choosing if necessary & subsequence, that
g(?k) = ]z_ajo [for £ =1,2, ... with 4, j, independent of % and that there
exist limitig

»iH
lim ﬁﬂ = 9.
Te—00 p$ (‘0 :
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(Here p§i) are actually funetions of %, but for simplicity we shall not in-
dicate this explicitly).

Let of,...,0f) (» =1,...,m) be conjugates of w,..., Om. For
arbitrary complex ) (i =1, ..., N;j=1,..., m) the following identities
hold:

6 FHE0P 4. A+ 0l oy 0+l
m
= > oP, ..., B el
} =1
where @ are forms of degree n; in mN variables, with rational integral
coefficients, independent of the choice of ».
From (3) follows

¢(T&) > max |80 (p, ..., pE)-
7,

Now (b) implies
P, o) _
YT

and a fortiors
@gt)(p(ll)y ---:275;11\7))
() =03
E»co (PF)"™
hence
PP, ..., o) =0
fori=1,...,N;j=1,...,m
Now by (6) we get A
TV +. . Rl - M@ 4.+ 90wl = 0
for i =1,...,N, v=1,...,m, and it follows that
19?) (n)(l”)—l—...+29$2w$,",_) =0
for i =1,...,N, v=1,...,m, and in particular
) 4.+ Hidel) = 0
for v =1,..., M.

y
Since Of9 =1 5= 0 it follows that

0
Det o fs-1 = 05
which is clearly impossible. The contradiction obtained proves the lemma.
Since 7 > 1, it follows that the inequality g(T€) < g(§) under the
assumption f(£) < M implies gl <1,
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It we now have a set X such that 1'(X) = X, we can, in view of the
Lemmas 5 and 6, apply Lemma 1 to get the finitenesy of X. The theorem
is thus proved.
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Grenzkreisgruppen und kettenbruchartige Algorithmen
von

M. ErcurEr (Basel)

§ 1. Einleitung. Eine reelle Zahl p 148t sich auf mannigfache Weise
in einen Kettenbruch

(1) 0 = mp+1/myt... 1 miy + o7t

mit ganzen rationalen m,; entwickeln. U. a. gibt es genau einen regel-
mdéfigen Kettenbruch mit

(2) 0 < gg—my < 1.

Will man speziell einen gekiirzten Bruch o = afc in einen Kettenbruch
entwickeln, so kann man auch wie folgt verfahren. Man bestimmt ganze
rationale b, d so, daBl ad—be =1 ist und stellt die Matrix

o b
a=(ca)
ein Element der elliptischen Modulgruppe I, durch die beiden Erzeugenden

r=foip 7=

in der Weise

(3) A = TJTJ ... T

dar. Dann ist

. a  (Ro—1/n+...+(=1)}|ny fir  my #£0,
) ¢ |mg—1jng...k(—=1)"2n, i omp = 0.

Die Kettenbriiche (1) und (4) stimmen tiberein, wenn
(5) - (—1)'n,

ist. Durch (5) ist die Darstellung (3) von A eindeutig festgelegt.
Sei 7 ein Fundamentalbereich von I". Dann ist unter der Voraussetzung
(3) und n, < 0

F, TY(F), ..., T(F), TJ(F),..., A(F)

=y Mgy ey (“1)1_1”1—1 >0, =0
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