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ist ein erzeugendes Element der Automorphismengruppe von f. HEs igt

_ [Hu—bv) —ov
4= av -}(u»&—bv))’

wenn & = %—(u{-m@) die Grundeinheit (positiver Norm) des Ringes
[1,.;.(1+]/E)] bzw. [1, %ﬁl] ist. Daraus ergibt sich (unter Benutzung
der Reduktionsbedingungen)

w(d) = 3w +2(0*— 20" — 26°) %) < §&".
Folglich ist die Periodenkinge nach Satz 3
(32) 1 < glogds® ~ 0.691og§e”.

Ubrigens ist die Periodenlinge ! von der Klasse der Norm unab-
hiingig und daher ihr Produkt mit der Klassenzahl gleich der Anzahl
der reduzierten Formen.
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§ 1. Let « be a real irrational number and denote by {a} = ¢—[a] the
fractional part of « and 80 0 < {a} < 1. Some forty years ago, Hecke
diseussed the behaviour of the funetion

o0
() g(@) = D {na}a™
fn=1
on its circle of convergence |z| = 1. He showed that this is a line of es-
sential singularities of g(x).

Similar questions have been discussed by Salem ([1]), M. Newman ([2])
and myself ([3], [4])-

In a very recent paper ([5]), Wolfgang Schwarz discusses, inter
alia, a similar question for the function

@) ha) = D'p({na})a",

where p(y) is a function of y.
The proof is based on Hecke’s method and uses the theory of uniform
distribution. Some of his results are included in my subsequent ([6])
THEOREM. Let

3) f@) = Y ol{on+pha", ol <1,
N=0
where ‘o is irrational and B is real, and (y) is continuous for 0 <y < 1.

Then f(x) is a rational function of % if and only if (y) is a finite Fourier
L
7T

series ¢(y) = a, "™, and so
av) r

r=—0
2rmio *

(4) f@) = > ——m
r=_L1—— we

L
a, 6"

* This work was supported in part by the National Science Foundation, Wash-
ington, D. C,, U.8.A,
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If f(z) is not & rational function of w, then f(x) cannot be continued outside
of the unit circle.

The series (4) makes obvious the singularities of f(«). We shall now
find an expansion for f(x) in (3) of the form

(8)

re

0 N
where here and throughout this paper, 3’ means im ' and 3" means the
-~ Noroo ~N
omission of n = 0. The series (3) arises formally from (5) by expanding
each of its terms in ascending powers of @, and rearranging the double
series. Some instances were given in a former paper ([4]). We need two
results from this paper. ‘

LemwaA 1. Let

1 .
® - S
Ne= —00

where « s o real irrational number and Dllay| converges. Then the series
for F(z) converges if [v] <1, and as 6™ .+ 1—0 by radial approach,
where k& 98 an integer,
ay 1
@ F@) = gy +0 (1‘:057*)
If n =0 is excluded in (6), then as & +1—0, F(a) = o(1/(1—a)).
It seems very difficult to deal with the case when Dla, converges condi-
tionally. We have now, however,
Lewma 2. Lot @, = e(2nnif)n where f is real and o is @ real wrrational
number and an-f is not an integer for amy integer m. Write

o0
! €

21 (L= peininy
N 0

2nrifi

The?'b the series for H(x) comverges if || <1, and as we®™ > 10 by
radial approach, where % 48 a mon zero integer,

1
~|—0 ( 1 mezknin )'

If k=0, the first term om the right must be omstied.

The power series in @ for both F(x) and H () are given by expanding
eao-h joerm In powers of #, and rearranging the terms of the double series.
This is easily justified for ¥ (2} since the double series iy absolutely. con-

1 62kiciﬂ

_]}T ' 1— mezlcn'iu

(9) Hz) =

iom®
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vergent. The justification for H(x) is more difficult and required Little-
wood’s-Tauberian theorem, ag explained in the paper [4]. This led to

H(a)j2mi = Y (3—{on+ )",

n=0

(10)

if an+ f is not an integer for any integer » > 0. If an-f is an integer
for n =1, the term in (10) with & must be omitted.

In my paper [6], I showed that the behaviour of the power series
for F(z) and H(x), as indicated by (7), (9), could be found more simply.
If, however, we are given F(z) defined by (6) where }'a, is conditionally
convergent, it is not an easy matter to determine if (6) is convergent or
if (4) holds.

We now find the meromorphic expansion for

f@) = > pl{natpy)a",

n=0

1)

where o, 8 are real numbers, « is irrational and an-p is not an integer
for any integer n > 0. We suppose that ¢(y) is defined and continuous
for 0 <y <1 (one sided continuity at y = 0, 1) and has for 0 <y <1,
a Fourier expansion,

py) = D ae™,

r=w—00

(12)
where

1
a = [oly) 6™ ay.
[

Results follow on making assumptions about the convergence of the
series Y dty,.
Suppose first that 3 |a,| converges. Then from (12) since {na-+ B} #0,

p({natp}) = Z‘o a4, @D

P oz 00

13)
Then (11) becomes

(14) Z Z‘ a pArminatp

n=0 r=—o00
Consideration of the absolutely convergent double series

oo
2 @ SAmina+h) %",

©
S =
=0 P 0

"
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on summing first for n, gives

2if

€
fla) = Z T

T=—00

(15)

It is not easy to find results when } a, is conditionally convergent.

This, however, we can do when

[4]
(16) Ay = 7 +br (1’ 7 0)7
where ¢ is independent of » and J}'|b,| converges. This will be the case if
o) — 2w
dy*
¥ =0,1), or more generally if ¢'(y) is integrable. From (10), integration
by parts, when r s 0, gives

is continuous for 0 <y <1 (one sided continuity at

an

_ ¢(1)—p(0) _ 97'{1)—99"(0) . q;"(y)gﬂmiu
' iy (2mir)? +of @i W

This comes under (16) with 2mic = @(1)—@(0). Then (14) becomes

oo

_ (1) —(0) ol ) 0o o
f(w) - T 2( — ” ) {n”+ 2( Z brom'n:i(nu.}.ﬂ)) mn.

=0 PF=-—c0 n=0

Pz - 00
From Lemma 2, we have since b, = 0(1/r2),

_ o) —p(0) [
24 ( E

P p——S

62Miﬁ 7 . 00,1 b, 627‘niﬂ
7 (1 ) eimiu)

(18)

@

§ 2. A new generalization is to the function defined for @] <1 by

(19) floy = Y xl{an+y}, {n+6))at,

s

7

il
=3

Whgre x(y,2)is a fun.ction of two variables y,2; and d, ﬂ are irrational.
)7;,> gre I:eaii anfl pelther an+-¥ nor fnd-6.is an-integer for any int;egel"
A A es1 ts s1m1-lar to the. theorem hold for f(x) as shown in my paper
[6]. .melomorphlc expansion for (19) can be found when h

a Fourier expansion - s 2) has

00 0

2y, 2) = 2 Z 0pg GXHOVH82)

P00 Smacog

hn..@
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for 0 <y < 1, 0 <<z =<1 For simplicity, we consider only the case when
2y, ) = () p(e), and we have for 0 <y < 1, 0 <2 <1, the Fourier
expansions

(20)° 'p(f’/) = Z a,.Gzr"W, p(e) = Z bsdzsniz'
o0 .

e
It Z!a,.l, Z!b,,[ both converge, then consideration of an obvious
absolutely convergent triple series shows that

(2] o
X v bs 021tt(yr.|~ a8)
J () = U
7 Het e 00

he case when d,, b, converge conditionally is rather difficult.
Txpansions can be found when,

A . B
(22) Ay :','r'“l'a'w by ="8“+bs7

where A and B are constants and Slapl, 3Ibs| comverge.
Then from (19), (20), (22),

flo) = Z( S Ors)wny

el 78500

where r = 0 and § == 0 are omitted in the gummation and

(23)

(24)

The series for f(z) splits into four obvious series, say Si, ;S’z', Sy, 8.
The question now arises, can we invert the order of summation for n
in (23), e.g., is

g >, ezwi(yr.}-ds)
20) = 2w

T,8m -0
The justification of the change in the order of summation does nob
seom. easy for general a, f. We can do this if

Statflen-tyl, Do lignel,

where |[k| is the positive difference between % and its nearest inbeger,
both converge for |z| < 1. This is so if the constants o, §, ¥, 0 are such
that for constants A =1, u =1,

llan+ll >0~ Ifn+ ol > 7
and so for all integers, n >0 and m,

lan+y—m| >, [fntd—ml >0
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We show by Liouville’s method that this is so if «, #, ¥, ¢ ave algebraic
numbers.

Suppose that it is not true that |an+y—m| > n~* for all large in-
tegers n. Then for an infinity of n, |an-+y—m| < n~% Denote by o,
a’y .y, v, ... the conjugates of a, y respectively. Then

nlC”H—y—ml > T,

where the product is extended over all the conjugates of «, y, and & is
a rational number independent of n, m, provided that y is linearly in-
dependent of a, 1 over the rational integers. Now
len4yp'—m| = |landy—m-+ (' —a)nf <n 4|0’ — aln < W'n,
say.
Since |an+y—m|[[la'n+y' —m'| > &,
lan4y—m| > &/[T(k'n) >n~",
say. Hence we have a contradiction if 1 > ».
For the justification of (25), we write
R ’
26
w3

r8=—N

ezmi(rﬂ-as) ’ aﬂﬂi(yrfy.ds)_"gni“(‘u.»‘_ 1)

o0 N

; ; S ———
Lowad
Ne=0

d s

8 (1 — et —
8= N

It is known, and as can be easily proved by partial summation, that if 2
is not an integer,

N :
1 1 v, oAl 1
F= = 27 o)

From this, the right-hand side of (26) becomes

%1 1 1

n=0

1
-0 (-~ ~~~~~~~~~ )) a”.
Nlpn-- 4|
Henee if a, f, v, § are algebraic numbers, the series 'a”[lan--y| ete.
converge. Then the limit of (27) when N —» oo is given by omitting the O
terms and go
(28)

, 271 (1 88) 00

v . &t " ~ . 1 . | |

”é__/ rs (1‘m62ﬁ(ar+.f38~)—)— = (2ni)? 2 7= {om+ y}) (_2_ — {pn (5}) "
B o0 X X Py
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Take next

~© o0 ,
AS’Z \' ‘1’ éi (127:1"(:17"}-/Ia)'nr)-zni(yr-kds) i
(29) T2 25
N} TR 0Q

The same type of argument applios as for §;. Write

o0
h(?’b) = 2 b;(}‘m‘f(w,ﬁ.[,a)g‘

P oewr
Since '|b| convergoes,

N
h(n) == Z Dl PR L o (1),
g N

where the error term is independent of n and tends to zero ag N —- oo
Then

-] 4]
1 b 02ni(ar+/la)n-|-2ni(vr-i-aa) e
—Us

»
Nl 1,8z N

UL Y Nwm—o)e.
= E ('é" e {(l')b “l" ?’} "l"o (.NH(“?/ X 7“))( (%) 0 )

N}

Since h{n) = o(1) uniformly in n, the Ymit as IV —- oo is given by omitting

the error terms. Hence

(30 14 = 3 (ont 00"
Py
Similarly if g(n) ﬁrﬂgwa;gﬂﬂi(m*wi"
(1) 8/B = f (h—{Bn+oN g™
Finally, it is clear that )
(32) 8, = %g(n)h(m’)m’”.
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1
On a problem of Sierpinski
(Extract from a letter to W. Sierpifski)

by
P. BrpOs (Budapest)

Denote by u, the least integer so that every integer > u, is the sum
of exactly s integers >1 which are pairwise relatively prime. Sierpin-
ski ([3]) proved that u, = 6, ug = 17 and u; = 30 and he asks for a de-
termination or estimation of u,. Denote by fi(s) the smallest integer so
that every 1> fi(s) is the sum of s distinet primes; f,(s) is the smallest
integer so that every I > fiy(s) iy the sum of ¢ distinet primes or squares
of primes where a prime and its square are not both used and fi(s) is
the least integer so that every I > f3(s) is the sum of s distinet integers > 1
which are pairwise relatively prime. By definition f;(s) = u,. Clearly

fs(8) <fals) <fuls)-

Lebt p, = 2, p; = 3, ... be the sequence of consecutive primes. Pub

8 841
Ay = Sp, B =D
qe=1 =2

THEOREM. f,(s) < B(s)+0 where O is an absolute constant independent
of s.

First we prove two lemmas.

Lmvwa 1. Let ) be a sufficiently large absolute constant. Then
(1) Fu(8) < A(8)+aslogs.

We ghall firgt prove
(2) fu(s) < A(s)+aislogsloglogs
and then we will outline the proof of (1).

Denote by 7,(N) the number of representations of N a8 the sum of %
0dd primes. It easily follows from the well-known theorem of Hardy-Little-
wood-Vinogradoff ([2], p. 198), that

(3) r3() > e, N [(log N)*.
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