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Then,

< log(/V2)+ o {
w

1
(4.1) Q 1+-——} for o >logl0.
2w

For o >V2 (>1log10) this function is deereasing, and for w = V2
it i§ < i This proves Theorem 2.
It remains to prove Theorem 1 for 1 < u < ¢'°. Obviously, for u < ¢,

=

Theorem 1 is a consequence of Theorem 2. For « > ¢' however, the cox-
responding o being > 6.4, (4.1) gives for u < ¢

4
Q<14 <l4—0:.
logu
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An improvement of Selberg’s sieve method I
by

W.B. JURAT and H.-BE. Ricumrr (Syracuse, New York)

The sieve method is concerned with counting in a finite set M of
positive integers those elements which are not divisible by any prime
p < z or rather with. estimating the number A (M;z) of these elements
from above and from below. If z is sufficiently large compared with the
largest element in 3 the numbers counted in A (If; 2) will haive a restricted
number of prime divisors, and it is this fact that makes estimates of 4 (M5 2)
interesting. The estimates, however, depend essentially upon only the
number of elements in M, say |M|.

For relatively small values of # the classical sieve of Eratosthenes-
Legendre is quite satisfactory (§1). However, the interest lies in larger
values of z which were first treated successfully by Viggo Brun.
Later, Buchstab was able to give improved estimates, starting from
initial estimates, by using identities of Meissel’s type (of. (2.2)). For
an upper estimate the sieve method was formulated generally and
this estimate minimized by A. Selberg. He also gave a lower estimate
which can be derived from his upper estimate by using Buchstab’s method
(¢f. Ankeny-Onishi [1]). In applications a combinatorial argument of
Kuhn led to further improvements. In a series of papers Y. Wang very
successfully combined all methods mentioned above.

We propose in this paper a method (based on Theorems 1 and 4)
which leads to a new two-sided estimate (Theorem 5) by employing only
the simplest upper estimate of Selberg for 2* > | M| (cf. Corollary to Theo-
rem 2) and extensions of the classical estimate (Theorem 3).

The new estimate improves Selberg’s upper and lower estimate for
#* < | M|, and cannot be further improved upon by Buchstab’s method.
In particular, the new lower estimate is positive already for 2t < | M|
(with arbitrary ¢ > 0 and large 2), which decides a question left open
by A. Selberg ([15], p.292). Furthermore, our estimate is completely
uniform for all sets of a certain regular behaviour (condition Hy(M)).
This condition restricts, however, our present presentation to what might
be called the linear sieve. Exceptional primes are allowed which we com-
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bine to a product k. Thereby, we may apply our results to numbers in
a short interval belonging to a residue class mod% and having at most »
prime factors (Theorems 6, 7, and 8). Here, we make use of Kuhn’s method.
Thus, in particular, we obtain the following theorems.

TeBOREM 9. For ¢ > 0 and o > @,(s) there ewist at least two integers u

in the imterval
1,

a5+
-0 <N Lo

having at most two prime factors.
TrmorEM 10. For e >0, k >k, (e), and (k,1) =1, there ewists an inleger

"
E‘FB

n=lImodk, 1<n<k!

having at most two prime factors.

These problems respectively, were first discussed by Viggo Brun ([6])
and W. Fluch ([8]). The best exponents, previously found are (Y. Wang
[18]) and I (8. Uchiyama [16]).

1. The sieve of Eratosthenes. Throughout the paper let z denote
a real number > 2, k a positive integer, and(*)

Pr(z) = ”p, By (2) =n(1——%).

g n<z
otk vtk

Generalizing the terminology of the introduction we set
A (M5 2) = [{neM; n == 0modpVp|Py(2)},

and, we denote by My, for any positive integer d, the set of all integers m
such that mdeM. (The discussion of the more general number [{nel;
% 5 a;modpVp|Py(2)}| with arbitrary integers ap can be reduced to
the case a, = 0 by a suitable translation of M in view of the Chinese
Remainder Theorem.) Let y denote a real number > 1. For given M and %
we shall impose upon y (> 1) the eondition

(M)

<1, VY(d,k) =1.

lMdl«%

Clearly, the existence of y presupposes a certain regular distribution
of the numbers in M.

Under this assumption Legendre’s formula or the sieve of Erato-
sthenes in the form of

M52 = 3 Mu@= 3 p@ 31
neM q It}]l‘r(lz) aPy(z) meMg

() An empty product shall be one, similarly an empty sum shall he zero.

hn..@
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can be applied in a well-known manner to obtain

it =y 5 Y o) = yRya)+0(2).

(1.1)
APLE)

This estimate is satisfactory for sufficiently small values of 2, ant.i i_ndicate.s
the nature of the leading term in A;(M;e). The O-constant in (1.1) is

independent of M, k, #z and y. )
Throughout the paper O-estimates ghall be understood as uniform

with respect to all admissible paramebers. The corresponding positive
absolute O-constants shall be called ¢, ¢s, ... ete.

2. A basic identity. ~
TasorREM 1. Let 2 <2z, <2 < l/y and set

Y .
== ]=1 2, ...
Dre--D5 T

Yi

Then, for all positive integers t,

(21) Ay 2) =AM )+ D) (-1

I<isr-1

'A'k(l'fﬂl..mi H zl) +
21 <Pi<... <PI<B
D <VUjp5tkd=1,.. 5

Z Ap( My, 5,3 2+

2 <Pp<...<P1<B
Dy<VUjpjlI=1, st

+(=1)

Alc(Mpl...pﬁPi)-
21<P;<...<P<8
pj<Vyjpjtkd=1,....=1
VY<pi<¥;pitk
This holds independently of condition H(M).
Proof. The proof depends upon the identity

Ay(M;2) = | M= D) Ay(Mp; D),
<z
Ptk

(2.2)

which is essentially due to Buchstab ([7], D. 1241, see also Meissel [11]).
There is a similar identity

(2.3) Rufe) =1~ 3 2®),
T

which will be used later (ef. de Bruijn [3], p. 807, Ankeny-Onishi [1],
p. B4).
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We now proceed by induction with respect to . Applying (2.2) for
both 2 and 2; we get by subtraction

(@4 M= de(Mim)— D' A(Mpip)— S A,
2 <<t H<P<
p<Vyp,ptk Vili<p<vip,ptl

ie. (2.1) for r = 1.

Suppose (2.1) had been proved for 7. Then, in the fivst sum of (2.4)
we apply (2.1) taking M,, y/p, p for I 1 ¥ #, respectively, We also replace
gfh by 24,1 and » by p, which changes y,/p into ., and y [p becomes y, .

us,

D AMyp) = N A, e+

A<P< <p1<?
2<VUP,0tk Dy<VI,0 1%
i 7
+ (-1 2 (M, g5 20) +
I<i<r—1 <P <. <D<
i<Vt I=1,., 41

-
+(-1) Z Alc(Mzal..,p,..l_li Prpa)+
ISPyt 1< <P <
DI<VUpDpR =1,k L

i
+ ) (=1 P A M, o115 Pi4a)-
I<igr BISP41<... <P <B
Di<Vupjthd=1,...,i
VI ISP 1<V 1Py 1 1T

Using this in (2.4) we obtain (2.1) for r41.
For later use we collect some estimates for Ry () starting with the
well-known result, of Mertens )

e’ -1
Rie) =" oL
H®) = Togz 0(log%) ’

where y denotes Euler’s constant. This implies

B(w) logz logz
(2.5 — e ST 082 g
) Bi(2)  logw (log”w o pEw(22).
LeMMA 2.1, For 2 > w =2
(2.6) R_’E(iﬂ_) = 0(_ﬁ_10gz)
(%) logw)’
1
(2.7) =
Tty — 0087

(2.8) R (w)  logz 0 logzloglog 8%
Iog%{)%)'
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Proof. In view of
By(w) By (w) ( 1)
b

1—=

(2.9) 7

W< g
Dk
(2.5) implies (2.6). Taking w = 2, (2.7) follows from (2.6). Because of (2.6)

a proof of (2.8) is required only in case that
(2.10) loglog3k < $logw
holds true. Let »(k) denote the number of different prime factors of k. Then

(k)
1> ”{1—1)2(1—;10—) >1- 28,

w
wLP<H
DIk

Hence, by »(k) = O(logk) and (2.10)

3)-ro0 2

wLP<E
vik

This combined with (2.9) and (2.5) yields (2.8).
3. Selberg’s upper estimate. For positive real = we define

Sk(w)z) = 2 ;%"15, ¥z, 2) = 2 1, T(m,2) = Z :'17;"7

I<ngz gz ignge
MPp(2) D)<z pim)<e

where p(n) denotes the greatest prime divisor of n, p(1) =1.

Lemua 3.1.
d
5.1) S0 > sa(5e), o ame,
3.2) ()80, 2) > By()8i (o, 2,
.9 $1(0,2) > T(@, 2).

Proof. We have

(3.4) By (w, 2) =

Ud 1<n<z

1 1 1
2 5w 2 0 2 g
i

n|P(2) 1Py (2) Im<y
("ﬂ;;‘ ® m|Pp(2)
(m,l£l=1
(mg)=1
1 i
= 3 sl
4d ¢

UPy(5)
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It d|P,(2) it follows
1 @ d @
- ozl = — 8=
Slc(a"yz)?ilqu)(t)skd(dvz) od) kd(d7z)
which proves (3.1).
On the other hand we derive from (3.4)

- Rq(?)
Suo,9) < Salw,9) [ | (1+———) Sale, ) 5 5

pid
Pz

Let ¢(n) denote the largest squarefree divisor of n. Then,

= SO Ao 925 5 L g

<<y )sw 1<m<¢
DR)<2 p(7n)<z nmy<s

THEOREM 2. If y satisfies Hy(M), we have

YR, (2)

(3.5) A58 < o @)

+¥2(§,2)
for arbitrary values of & >1.

This is Selberg’s well-known upper estimate in a form convenient
for our purposes. Note that the % occurs in Rj(2) only, and that for T
and ¥ one can obtain asymptotic expansions.

Proof. Let £ > 1. For positive integers d we define
ha = (@)L Sal€12,2)
@(d) Su(é,2)
Because of & >1 we have Si(&,2) > 1, and
(3.6) Aa=0 for d>E&.

If #|P, = Py(z), 1 <1t < & then

Az pltm) Sy (Eftm, 2)
3.7 L it it Rl
3.7) %: F] & plm)  Bi(é,2)
dmOmods (m)=1
— M plm) 21
P(1)Sk(&, 2) "2,,; @(m) 1<§tm¢(")
(m,)=1 P ptnl#)
_ u(t) 1 _ k(@)
@(1)Sk(£, )1<m<$ﬂ¢( ),%:'u(m) T p(D8k(&,2)

v Ppy(2)
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By (3.1)
(5.8) M <g@, i ap,.
Now, since 1, =1

A(M;2) < 2(2) 2’141}”"2 2 1,

nelM neM
d]P v—l 2 7=0mod [d},do]

where [d,, d,] denotes the least common multiple of d; and d,. Here,
by H, (M),

_y
D l=tragt PO+, <1

nelq) a,)

Hence, by (3.6), (3.8) and (3.7)

A4(M;2) <y Z ‘j d‘fz P+ Z‘ Vha, ]

A
lsdvse zld»z 1<dy<5
=12
/‘[d 2 2 ,!/
<y E ¢(t)( E ~) +( E 2(d)\) < +PYE 7).
h 2 E a b ¢ 8i(£52) (&)
1Py, a=bmEas 1<ake,

Using herein (3.2) and (3.3) we obtain (3.5).
The simplest case of Theorem 2 takes the following form.

COROLLARY. If y satisfies H,(M) we have

2¢"logz logzlog10g3y}
3.9 A (M;2) <yR
(3.9) HM;52) <y k(z){ Togy o o2y ’
provided that z> 1@.
Proof. Taking
g=—Y _ >

1+logly
Theorem 2 can be applied. Since z > &,

1 e
T = D LS E

l<ngé

by an inequality of Rosser and Schoenfeld ([12], p. 71..
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Hence, from (3.5) estimating ¥(é, ) from above trivially by & and
using (2.5) and (2.7) we obtain
'R (£) & } {20"10gz logzloglogSy}
Ak(M:z‘KyRk(Z){- %0 + TEn(?) By (2) Togy o Togly |
4, Extensions of the classical estimate.
TeEOREM 3. If y satisfies H; (M), we have

logy

@1) Ay (M;2) SyBL{L+0( ™)  for 1< logz < logy,
and

ogy

1
(4.2) Ax(M;e) =yRk(z){1+0 (—1—(@7)} for logz < Moglog,.’iy"

A similar estimate which is not sufficient for our purpose is due to
Barban ([2]).

Proof. Using (2.7) we see from (1.1) that Theorem 3 holds true if 2
is bounded, so that we may assume

? >,

where 2, denotes a suitable absolute constant. Then, from A. I. Vinogra-
dov’s result ([17]) we infer

g logz
(4.3) Y(w, 2) = O(ze 1°“"‘)
From the identity
EP @, 2 dw
T(@, 2) = ’+j P, 2) 2,
since
(4.4) HmT (2, 2) = o
oveo "24_1 n1 “1/p I{I(z)
p(n)<s
it follows

~ dw
=1f P(w,) oy

Since T'(w,2) is non-decreaging in @ and go, by (4.4), is < 1/R;(2)

we find

o logw d _plogx

1 ~ dw w
Ezz) —T(w,z)ng Yw,s)— = 0(f ¢ log® _;0_) 0 (logze Tow )

W. B, Jurkat and H. B, Richert m
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in view of (4.3). Taking

) B I st VR St
_ (Ve
F g 1/; -
we observe S ‘
Lo
T(E; z) = 2 "-7
1<n<51/4n
and therefore ' :
B A ‘ _log?
< 140(e loz=),
R@TE s ST )

Now, from Theorem 2 we obtain by (4.3) and (2.7) the first part of Theo-
rem 3.
Next, since 2 >z, the upper estimate of (4.2) follows from (4.1).
Therefore, it is sufficient to prove the correspondmg estimate from below.
By (2.2) and (2.3) - ~ie

A5 2) — YR () = A )= 9Bl — 3 {AuMp,m—A R

2g<p<s
btk

Notice that the condition Hj(M) for y mphes Hy(M,) for y[p, ptk,
since (M,)z = M,q. Hence, using (1.1) at ¢ = 2, and (4.1) we have

R _ log(¥jn} _logy
4059~ yEe(e) > 0=y 3] L g ) > 0(1)+-0(ge ).
| zpep<e ) o
Dtk
Because of (2.7) now the proof of (4.2) has been completed.

5. Basic functions aiid approximate identities. Let(2) -
1
(5.1) o =2, ew=1, 0<u<2,

(52) (o@) =ou—1), @—1)u)=—gu—1), w>2.

Both functions have been investigated by several authors. De’ Bruijn
(4], [5]) proved(®) :

(5.3) o(u) = e"+0(6;;‘); o(u) = 0'(6"6, | uw>=1,
(BA) . o e(w)>0,  w>0.

(*) At the point 4 = 2 the right-hand derivative has to be taken.
(3) For.our convenience ws-hawve shifted the argument of g(u) by 1.

Acta Arithmetica X1.2 15
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With these functions we set

F(u) = {o(u)+o(u)ju}, >0,

flu) = o) —e(w)u}, >0
By (5.1) and (5.2) we have
(8.8) F(uw) = 2¢u, flu)y=0, 0<u<2
(56)  (WP@) =flu—1), (4fw) =TFu—-1), w2,
and hence

}f(t—l)dt = ul (u)—vF(v),
(5.1) . |
[R@—1)dt = uf (w)—of(v), 2<0<u.

v

Taking » = 2, because of (5.5) we obtain

u
uP(u) = 2F(2)+ ff(t—~1)dt =2, 2<u<S3,
2

and hence
(5:8)
Thus,

F(u) = 2¢'u, 0<u<3.

(8:9)  uf(w) = 2f(2)+ [ F(t—1)dt = 2elog(u—1), 2 <u<4.

Also, by (5.3)

(5.10) Flu) =14+0(e%), fu) =1+0("), w21,

and, by (5.4),

2¢”
(8.11) Fu)—fu) =) >0, u>0.

If F'(u) = 0 were possible, take the smallest value w, of this kind.
Then, because of (5.8),

(6.12) Fug) =0, >3, F(u)<0 .for 0<u<u.

iom®
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However, by (5.6) and (5.11) with suitable numbers %, and wu, satisfying
Ug—1 < Uy < Ug, Uy—1 < Uy < Uy, We derive

0 = weB" (wy) = flug—1)—F () < f(tg—1)—f () = —F (1)
Slu)—F(u;—1) < Fuy)—F(u—1)  F'(u,)
Uy Uy a Uy

H

which contradicts (5.12). Hence F'(w) < 0 for » > 0, and therefore with
(5.6) and (5.11) again

uf (4) = F(u—1)~f(u) > Fu—1)—F(u) >0, u>2.
Combining these results with (5.10) we get

(5.13) F(u) is monotonically decreasing towards 1,

f(u) is monotonically increasing towards 1.
The following notation will be convenient

F(u)y, if
fw), if

» = 0mod?2,

(6.14) gu(u) = | u> 0.

v = 1lmod?2,

LevMMA 5.1. For 2 <2 <2 < 1/37 and both values of v we have

lo
Rk<z)gv(10§i’)
3 logy O RBi(p)  (log(y/p)\ | [Eu(e)logeloglog3k
_Rk(zl)gv(logz;)h 1 logp + log*z :

B <P<s
otk

Proof. By (2.3) and (2.8), if 2, <w <%,

1 By(p)  RBu(e))  By(w)
5.15 w) = = —
(5.18)  o(w) Ri(s) &, P Bo(z)  ERyle)
St
-1 1 ) 0 (logzloglog3k)
- ng(l‘)gzl  logw log’e, )
We get
log(y /w)
) = g (L), s <<
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Because of w < f the argument of g,,, is > 1. Therefore, using (5.13),
q(u)) is monotonie, uniformly bounded and continuons in 4 Sw <z

Hence, by (5.16) and (5.7),

1 Ri(p) ° (log(y/p)
B2 Goei W .
k(z)zl@d P
ik
k3
= o(2)g(z)— | o(w)dg(w)
2
2
logz 10gz10g10g37o) f ( 1 1 )
= 0 logz | {—— — ——)dg(w)
(log1 ) @)+ ( log*z g 4 loge, logw 9
5
" g(w) dw (10gz10g10g370)
= e 0 S
10ng log*w w log*z
1
logy
logz)
logz ogzloglogSlc)
= r— t—1)dt-+-0 | ——Z—=—-]
logyf Frpa( )ai+ (l 10g2z1
logy

logz

logz{logy (Iogy)

logy - (logy)} O(logzloglogSk)
logy Ylogs 7" \logz,

10gz logz h log*z

Using (2.8) our lemma follows.
With a similar proof we get

LeMMA B.2. For 2 <2, <2 <y we have
log(y/p) Togy 1 1oelog 3k
R—-k(p)e logr ' Ry (5)6 1"”6 (1+ 2"”‘"““"‘*‘“0gy ng g“l‘):
P log*z
P <M
Dtk
where m = min(z, ¥**).
k : . log (ujw)

Proof. Using (5.15) as before and setting g (w) = logw  which also
is monotonie, continuous, but bounded by g(m) in 2, Q w < m, we obtain
(5.16)

logy
1 Ry(p) -'8Um  1og, MM logzloglogSk -
i S50 g,
w(e), 44 logy ) 0g’2,
Ptk logm
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Noting that
1 1
logz l*lggvm <e 1352'
logy i
we find that the left-hand side of (5.16) is
1 !
<6 IZ§’Z’ (1+ logylogilogBk
log*z,

THEOREM 4. Lot 2 <2, <z <Vy and set

Y
pl...pf’

Then, for all positive integers v and both values of v, we have

Y= jg=1,2,..

. (logy
R, —=J
e Gng)
X B (2 logy;
zl)g,(logy)+ 2, (-1) _il_).g (h)gy)
g2 1<ir-1 P <p1<g Py D; oz
) Dy<VUppitRI=1,...,
Nz lo,
+(~1)" 2 k(fpr) Govr (Iogy,)+
I s ] D1 Pr 2P,
Dy<VUp R =1,
¢ By (p; logy; B, (2)log%z1ogloe 3%
+,y(—1) /V % (P ).”""H(mgy.)w( (%) f) zg g )
1isr Z<pi<.. <p1<~ pl...pl Y g -

2 <VV; 054k, =1,
;/171<17,,<11.,,73ﬁk

This helds independently of condition H,(M), and the O-consbant
is meant to be independent of r.

Proof. Apart from the remainder term the proof of Theorem 4 fol-
lows the same lines as in the proof of Theorem 1. Here, we start from Lem-
ma 5.1, taking »+1, y/p, p for », ¥, 2, respectively. Regarding the O-term
we see by induction that it becomes (with the same O-constant as in
Lemma 5.1)

(loglogSk

By (pi)logp;)
Tog'z, ) {Rk(z)logz + ———} .

100 Di

I<i<r—1 21<p; <. <Py <2
Using now (2.6) and Mertens’ formula

2 1 E£+O(J_),

(5.17)
#55a? logz1 logz,
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we obtain for the remainder the estimate

¥ 2 Loz 3k
0 Ry (2)logzloglog 3k 2 1_( Z }_))z O(J_.‘B_‘k_(z)lolgo zal;)g og )
—_— .
( log*z o<ir-1 o zlgpap g%

6. The main theorem.
THEOREM B. If y satisfies Hy (M) and y > 2, we hawve

. 1oglog3k)

logy 3k
loge| ' (logy)™)’

Ay(M; 2) < yRy(2) (F (1ogz

logy loglog 3k
;> v 1] = gy

This result should be compared with Selberg’s in which the functions
corresponding to F(u) and f(u) were found to be

o —1 o0
Py(u) = (1—6—” [ e(t)dt) L fw=1—1 [[Be-1]a,
w241 w1
for « > 1 resp. % > 2, see Ankeny and Onishi ([11). It is possible to show *
that
for

Fo(u) > F(u) w > 2,

and, therefore, .
folw) < f(w) for w>2.

Note that our f(u) is positive exactly for u > 2.

Proof. If 1/5 < # <y, then by (5.8) and (3.9) our Theorem is true-
Also, if (logy)"™/loglog3k is bounded by some absolute constant because
of (4.1), (1.1) and (5.13) the Theorem holds. Therefore, we may suppose
that

zgl@—,
and

(6.1) logy = ¢;(loglog3%k)™,

where ¢, is gome sufficiently large constant, in particular that y is greater
than a sufficiently large absolute constant.

We shall now apply Theorem 1 and Theorem 4 with
(6.2) # = exp{(logy)"%}

(4) With a more detailed calculation for 3 < u < 4.

hn..@
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and r satisfying
3 (logy)™

6.3 <= .
(©-2) 4 loglog3y

3/10 r
1 (logy) <(3) <

3 Tloglogdy ~\2

If 2 < 2, our Theorem has already been proved because of (4.2) and
(5.13), hence the conditions of Theorems 1 and 4 may supposed to be
fulfilled. We now form

1
(—1y {Ak(M; &)~ yRu(2)g, (%’g)}

which has to be estimated from above by

loglog 3k
(logy)*™*

according to definition (5.14). Having multiplied in Theorem 4 by ¥
and in both Theorems by (—1)" we form the difference and will estimate
each of the terms occurring on the right-hand side.

For the first term and the first sum on the right we apply (4.2).
In the proof of Theorem 3 we already stated that y; = y/p,...p; satisfies
Hy(My,  p,)- In (4.2) take 2z, for 2 and use the corresponding M’s and y’s.
Then, because of (5.10), for the first term we get the remainder

0 (?/Rk(z)

1
OyR —).
(2]
The application to the sum presupposes

logy;
1ogz1<-—& for i=1,...,7—1,

(64) 2loglog 3y;

and contributes, since y; > p; = %,

1
o3 3 omer it
N P DY T logz;
1 1 1
=O(?/Rk(zx)—— E 7-( E .—))
logz, l<t<r—1” ‘1<p<‘p

That condition (6.4) is satisfied can be seen as follows, From p; < l/fy-,
for j =1,...,1 we first derive, for j = 1, p, < y'®, and hence

(6.5) gy >yt
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holds true for j = 1. If (6.5) had already been proved for j, 1's<j < i—1,
then p;y; < Vyyy implies Py < y}’a, and  hence

. i Lo : 741 -
Ypar = L. LR YCL
C Piq1
For a proof of (6.4); therefore, the inequality ‘
(2/3)"10 ‘
logz; <—/—)—-—":’r—g =1,..4,'r—1,
210g10g3y :

suffices. It is even enough to check the case ¢ = r—1. Here, by (6.3),
we find

. Slogy -
~ 4loglog3y (3 2y =

(2/3) "logy _

> (lo 7/10
2loglog3y > (logy)"

= logz,.
Next, take the last sum. Here, we ha.ve to deal with terms of the form

.k6.6)“

il logy;
RS IRUAPaRE XAy 3

lo

gy’) =0, and
logp.
henee (6.6) ‘can be estimated from above by zero. If »-1 is even, then by

where I/Z<p,-<y¢ If »+4+4 iy odd, by (8.5) g,ﬂ(

(3.9), taking y; and p, for y and #, respectlvely, and by (5.5), (2.6) we get-

the upper estimate

~ loglo
of 3  Ru(ploga f =)
I<I<r <<, <0)<8 pl P og'z .
logzlo log 1 1\*
| -0(yRk( e P —))
= g 1<¢<r'1" ¢1<p<zp

We still have the error term of Theorem 4, which is
log*zloglog 3%
0{yBute “ETEER)

e 08"2,

So far, the remainder terms arising from all but the second sums in
our identities have boven .

B 1 Rue) 1 1
OlyRy(2 . LI -
W .‘))‘Rk(z)v TR AR ;K,p}+
- Zl .
logzloglogy 1 log*zloglog 3k
log'z ‘?Xp{ ‘2 2_3} * log’e, )
N e

hn..@
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Using (2.6) and (5.17) we see that they are

1 log'y  log’yloglogy  log’yloglog3k
O(yRk(z)){ 3 3 e J gs }:
logz; logs log°z, log®2,
and hence, by (6.2),
) 1og10gy-—l—10glog3k
olymn ).

i.e. of sufficiently small- order.

Tt remains to deal with the second sum. Let its factor (—1)'*" be
chosen to be -+1 such that (4.1) can be applied (the r-interval in (6.3)
always contains both an even and an odd number). Then this O-term
becomes, because of (5.10), apart from an O-constant

Ru(p) ~iogss
Rl % logpr
(6.7) y il L
B <Pp<... <D <5 D1 Pr
Pi<VUpjtld=1,....0
The sum over p, is
Ry(p,) _log(yr—1/pr) . "
Uf - Te osr My = mm(pr-l’ :‘/rl_l)'
21<Pp< r
1 p:fkm"

For this sum we get, using Lemma 5.2, the estimate

logUp—1 P (

_ loglog 3%
U, < RBi{pr_y)e o1 6, 0= 3 foge )

* (logy)® |

Introducing this in (6.7) we see that apart from the factor 6 we get the
same sum with »—1 instead of » as an upper estimate. Thus, we can re-
peat this procedure, using p, = 2, ¥, = ¥ in the last step. Then we geb
in total

logy; logyr ml
" (pr) L\l 1""”'<yRk(z)e Tlogz gr
7<p, <...<P1<8 rl"'p
pj<VU PRI =1,....F
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Now, it finally remains to show that this error term also is of suf-
ficiently small order. However,

1
L —
"= O(aogy)"“)

follows from (6.3), since by (6.1) 6 can be brought sufficiently close to ¢/3.

7. Applications. The most interesting and effective application of
the linear sieve is to a set consisting of numbers in a short interval be-
longing to an arithmetic progression. In this case we define instead of
A(M;2) the following special function.

Let % and 1 be positive integers, (k,1) =1, 1 <I<k Let o, b, #
be real numbers

k<h<ow, 222

Then we are interested in
Bia(@, b, 2) = |{p—h < n < z;n =lmodk, n 7 OmodpVp < 2}

(ef. N. I. Klimov [9]). This number is not changed by adding the condition
pt%, since no number == Imodk can be divigible by a prime divisor of k,
because of (k,1) = 1. Therefore, By(x,h,2) = A(M;2), where

M ={g—h <n<z;n=lmodk}.
It (d, k) =1, with a suitable Iz, we get

x L z—h ;
7 e — g
[M""z[ I ]_[ dk ]

and hence y = h/k satisfies H;(M).
Therefore, by Theorem 5

loglog3k . Byu(w, kh, h'¥) loglog3k
7.1 - il 20gl0g ok
(11)  flw)—e (ogh)y™® = hR (R S F(u)+o (log k)7 ’
u}l,‘2“<h<—;%
and by (3.9), using (5.5),
Ba(m, kb, B loglog 3k @

The upper estimate in (7.1) improves Klimov’s result ([9]).
Let o be a non-negative integer and

e2h2l>222.

hn..@
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In order to count numbers with smaller prime faetors, we follow P. Kuhn

([10], §3) in defining *

(13) i@ b, 8,2) = fo—h <n <o;

n = Imodk, n 5= 0modpVp < 2, n == Omodp*Ve <p < ¢, 2 1< a}l,
o

K = {z—Fkh <n <o; n=1Imodk, s<p<t

n == 0modpVp < 2, n 5= 0modp®Vz < p < ¢}

The lower estimate was technically perfected by Y. Wang (cf. [18]),
and is given here in a form due to W. Haneke (oral communication).
With suitable numbers L,, (k,1,) =1, 1 <1, <%,

O, b, ¢, 2) = K| |fnek; D' 1>

Din
1_;a~{1—1 Z 1

e<p<t
p|n

= Bk,l(w: kh’ z)_‘ 2

sLp<f B—kha<n<®

n=0mod 2<p<t
n=lmod
h 1 Q z _h
> Biala, khy2)— Y (—2 +1) - N By, (-, ke, z)
St \P o+l 5 r2?
otk
Setting
r=mr e = Y,
we obtain by (7.1) and (7.2)
Oy, khy, B, B) loglog3%k A Y
@0 = 2 0T g™ T R G
1 O 1 log(h/p) 10g10g37a} " o
- bl ] Pt~ 44 ool l<u<e, 2°<h S —
atl p{F (” Togh ) o) Qogmym[ TS %

pllv<p<pliv

where cg(u, v), ... are positive constants depending on u and v only.
We have (cf. (5.17)) :

1 vlogw v
== > hl]v.
) P log( logh ) +0(10gh)’ *

(18)  tlw)=
pliv<D<w

* Added in proof: In Acta Arithmetica 10(1965), pp. 387-397, B. V. Levin
has investigated the counting function for a more general set M. However, compa-
red with our applications he obtains slightly weaker results (cf. Teorema 1, p. 392
with (7.14), e.g.).


Pem


236 W. B..Jurkat and H. E.-Richert

Setting -
log (hfw)
glw)=F (@ Tlogh

we get by (7.5) and (5.13)

1 log(h[p)\ _
Pl logh -
hl]v<p<hl/u P g

)7 hl/’u < w < h”u,

1
-ﬁg(p)

pllw

[ zwagio)

nlfv

plio<p<pl/u

1wy
{log +0(10gh)}g(h )
vlogw

=log— .q(h”“>+0(1 hg(h""‘)) flog( h)dg(w)

nljv

Py i
glw)  dw v (_2)
f logw w +0(loghF e

wliv

Hence, it follows from (7.4), (2.7) and (7.5)

pifu

loglog3k
=f(v)— a+1f ( ) Cr(u,y )(1ogh)””‘ ’

l<u<v, 2°<h<afk.

Ofala, khy B, W)
HE (1)

(7.6)

2 be an integer and

(r—}—l—a +ﬁ)7

w v

THEEOREM 6. Let r >

4, = gup

w0

where the sup is taken over all real numbers u, v such that

dt
—=)—>0,
( ) :
and over all nmon-negative iniegers. a.
Then, for every ¢ > 0, there is & number z, = @o(7,

(1.7) 1< w <

. (1.8) flo)—

a+1

) depending on

1
1————s
and ¢ only such that for @ > ay, & >k there ewist at least two integers
n satisfying ‘
-1

(7.9) o—ka™ <n <o

iom®
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(7.10) n=lmodk, Qnr)<7r

L(n) denotes the total number (with multiplicities) of prime divisors of n.
Proof. For information we remark that according to (7.7)

r+l—a +2 < r-+1
%

1
w T3 <r+

whereas by taking v =% =244, 0 <6 <1, and by (5.9)

A = (r+1)/(2+ 9),
thus proving

(r+1)2 <4, <r+1.

We may suppose & to be sufficiently small and z,(r, £) large enough.
Choosing % = u(r, ¢), v = v(r, &), @ = a(r, &) satistying (7.7), (7.8) and
1 r+1—a a

(7.11) A< to

and putting
B o= ml//l,.+z’

we find that the conditions of (7.6) are fulfilled, and therefore
Chilm, KRy B, %) > 2, i.e. there are at least two numbers » satisfying
both (7.9) and (7.10). Let b denote the number of prime divisors of » being
< BM™, then we have becaunse of u <o and b < a (cf. (7.3))
&, om)-a b om-b
pr < B T <n<z= hl/A,+s

L(n) <atu %)<1+1

(1 [Ate
by (7.11).
The most important spem&l cases of Theorem 6 are obtamed by choos-

ing k=1 resp. = = kU4 "”f"

THEOREM 7. Let r > 2. Then, for ¢ > 0 and ¢ v >
at least two integers m.-in the. interval

> wy(r, €) there exist

r—gihtt o L

having at most r prime factors.

The best previous results in this direction were given by P. Kuhn
([10]) and particularly by Y. Wang (1181, [19]). Aecording to the later
evaluation of A, our exponent is better for every r.


Pem


238 W. B. Jurkat and H. E. Richert

TugorEM 8. Let » > 2. Then, for ¢ >0 and k& > To(r, €) there exists
an integer
14
no=lmodk, 1<n<k ¥

having at most r prime factors.
For applications it remains to determine A, numerically. Define for
9 > 4 and integral ¢ >0

1o v—3
3 v g3

?

'u)dt 26"

w = w,(v) = 1+ exp {* ;e—y ((a+ 1)f(v)~I(v))},
and assume that

(7.12) we(v) < (<0).

v—3

Then, by (5.8),
v

2 Y4
(a+ 1)~ [ (v— ;)% = (a4 D (0) T () + 2 Tog(w—1) = 0.

Thus, for sufficiently small ¢ > 0, putting % = w+ ¢ with » and « chosen
ag above, the conditions (7.7) and (7.8) are satisfied. Hence, making
¢—>0, we obtain

r+1—a a

W, () v
provided that v >4 and (7.12) hold. For suitable choices of » and a we
obtain numerical approximations to 4,.

As r -» co we choose

(7.13) Ay >

b

v=1logr, a=[2logv],

and note that in view of (5.10)

f0) =140(1), I(v) = logo+o(logo),

1
1<) w(o) <146’ <14+=-< :
v v—3

and hence
A, > r—cgloglogr.

Thus, 4, is asymptotically equal to » as r — oco.

iem®
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For all integers r > 2 we may put v = 6. By numerical caleulations (%)

one obtains
f(6) > 0.999895, I(6) < 1.133056,

and, by using three places only,

. 21 24
w6 <o wa(6) <%
Hence, (7.13) implies both
34r4-17 23r— 15
. A > — > >
(7.14) , 5 & 51 r>9),

thus superseding all previous results for relatively small values of 7.
(For larger values of r we choose a larger also.)

. : . 25 ‘
Taking r =2 in (7.14) gives 4, >ﬂ’ thus proving Theorems 9

and 10 given in the introduction.
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ACTA ARITHMETICA
XI (1965)

Sur un théoréme de Rényi
par

H. DerLANGE (Paris)

1. Introduction. Désignons par (n) le nombre des diviseurs premiers
de lentier positif » et par £(n) le nombre total des facteurs dans la dé-
composition de‘n en facteurs premiers. Autrement dit, soient w et Q2 les
fonctions de l'entier positif # définies de la fagon suivante:

w(l) = Q1) =0

et, si n = pilp2...p%%, ou Py, Py,...,Pr Sont des nombres premiers
distinets et a;, agy ..., a; des entiers >0,

w(n) =%k et L(n)=a+a+t...4a.

11 est clair que 1’on a toujours Q(n) = w(n), 'égalité ayant lieu pour
les entiers “quadratfrei”.

Rényi a montré ([4]) que, pour chaque entier g > 0, I’ensemble
des » pour lesquels on a Q(n)— w(n) = g posséde une densité dy, la suite
des nombres d, étant détermineé par le fait que, pour [2| < 2,

S [T-2)fe 2 - 511522,

ot p parcourt la suite des nombres premiers(!).

Pour ¢ = 0, on retrouve le fait bien connu que I'ensemble des entiers
positif “quadratfrei” posséde une densité égale & 6/m2

En ce qui concerne leg entiers “quadratfrei”, Landau a montré ([3])
que le théoréme des nombres premiers, sous la forme o(z) ~ zfloga,
entraine le résultat suivant:

8i @ (@) est le nombre de ces entiers au plus égaux & &, on a pour z
infini:

Q@) = otole].

() Tout au long de cet article, dans toute somme ou tout produit portant
sur une expression ol figure p, il est entendu que p parcourt la suite des nombres
premiers.
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