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On orthogonal mappings and their dimensions
by

D. Zaremba-Szczepkowicz (Wroclaw)

If fi: XY, and f,: XY, are mappings, the diagonal of f. and f,
is understood to mean the mapping

hAfe XY, XY,

defined by (f; Afo) (@) = (fi(2), fo(®)) for 2 e X. As usual, the dimension
dimf of a mapping f: XY is given by the formula

" dimf = sup dimf () ,
yey

where dim X denotes the ordinary covering dimension of a space X.
We shall say that the mappings f; and f, of a space X are orthogonal,
written as f, L f,, if

dim(f; Afy) = 0;

and this is, of course, equivalent to the condition that the set fi'(#:) ~
~ f2'(ys) i8 empty or 0-dimensional for every ;e ¥i (¢ =1,2). Thus,
for instance, the projections of a square onto its sides are orthogonal
mappings. Similarly, the projections of an arbitrary Cartesian product
onto the axes are orthogonal mappings. If dimf, =0, then f,{f, for
any f,. .

The concept of orthogonality, as proposed above, will be shown
in the present note to have some connections with other aspects of di-
mension theory. In particular, by means of orthogonal mappings we
can estimate the so-called strong dimension, introduced by Katétov and
Smirnov for mappings of metric spaces (not necessarily separable). There
is also a relation between the existence of certain orthogonal mappings
and the problem recently raised by Sersnev (see 3.2 below).

All spaces considered throughout are assumed to be metric. The
distance between points @, and a, is denoted by o(w,, #z). The diameter
of a set A is denoted by &(4).

1. Preliminaries on closed mappings. Recall that a mapping
f: XY is said to be closed if § maps closed subsets of X onto closed
subsets of ¥.
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1.1. The diagonal f; Af, is o closed mapping provided that f, and f,
are closed mappings.

This readily follows from the definition of the diagonal and from
the fact that the metric spaces satisfy the first axiom of countability.

1.2. Let f: X=X be a closed mapping. If yeY and U 4s an open
neighbourhood of fHy) in X, then there emists an open neighbourhood V
of y in Y such that f{(V)CU.

The spaces X and Y in 1.2 could even be non-metrizable. This is
a simple consequence of well-known theorems concerning the quotient
topology (see [2], p. 95 and 97).

1.3. Let f;: XY, and fyx XY, be closed mappings. If yie¥;
and U is an open neighbourhood of fi Yyy) ~ fa M) in X, then there emist
open neighbourhoods Vi of yi in ¥; (i =1,2; respectively) such that
V) A2 (V) CT.

Proof. Since we have

@) (L & f) (VX Vo) = (Vo) A f2 (V)

for arbitrary subsets Vi of ¥; (1 =
and 1.2.

1.4. (the Hurewicz inequality) If f: XY s a closed mapping,
then

1, 2), it is sufficient to apply 1.1

dim X < dim Y+ dimf .

Proof. By the Stone theorem on paracompactness of metric spaces
(see [2], p.160), a generalization of the original Hurewicz inequality,
due to Morita (see [4], p. 161), gives

dimX <Ind Y+ dimf,

where Ind Y denotes the “big” inductive dimension, defined by means
of neighbourhoods for closed subsets. But we have IndY = dim ¥,
according to the Katétov theorem (see [1], p. 361 and 362).

15. If f: XY is a closed mapping, dimf =0 and BC Y, then
dimfYB) < dimB .
Proof. Clearly, the partial mapping
f=Hf"(B): 1 (B)~B

is closed and dimf < dimf=0. S0 1.4 yields the desired inequality.
1.8. If f: XX is a closed mapping, p: Y—~Z and dime = 0, then

dimf = dimef.
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Proof. The inequality dimf < dimgf trivially holds, the dimension
being o monotone function for metrizable spaces. Let z ¢ Z and consider
the mapping

= e He):

which is closed and has dimension dimf” < dim{. It follows from 1.4 that

(N H2) e~ (2) ,

dim (pf) " }(z) < dime™Nz)+-dimf”’ < dim§ y
because dime(z) < dimg = 0.
Remark. The hypothesis that the mapping f is closed cannot be
omitted in 1.6. A suitable counter-example arises if we take f =p and

a constant mapping ¢ on the Cantor set in the example which is given
at the beginning of the next section.

2. Properties of orthogonal mappings. We start with an
old example of a space.

2.1. (the Knaster-Kuratowski example) There exist a subset K
of the plane and o mapping p: K— O of K onto the Cantor set G such that
dimK =1 and dimp = 0.

Indeed, let K be a set obtained from the Knaster-Kuratowski bi-
connected set (see [3], p. 241) by removing the vertex (}, ). Then of
course K is 1-dimensional and the projection p of K from the point (%, 1)
onto the Cantor set on the x-axis has point-inverses homeomorphic
either to rationals or to irrationals of an interval. Hence dimp = 0.

Now put py(z) =1 for e K, and p, = p. Then the mappings p,
and p. of K are orthogonal, and the sets B; = {1} and B, = are
0-dimensional, but their inverses have the 1-dimensional intersection
prYB,) A pi'(B:) = K. Here only one mapping, namely p,, is closed.
This is in contrast to what follows.

2.2. If fi: XY, and f,: XY, are orthogonal closed mappings,
BiCY; and AimB; =0 (i =1, 2), then

Am(fTH(By)  f(By) < 0.

Proof. Let f=f; Af, and B = B, xXB,. Since the diagonal f is
a closed mapping by 1.1, and dimf =0, we have

dim(f74(By) A f2X(By)) = dimf(B) < dimB < dimB,+ dimB, =0,

according to (1) and 1.5.

2.3. If { and g are orthogonal mappings of a space X, g is closed, v is
o mapping of the space ¢(X), and dimy = 0, then f and yg are also ortho-
gonal mappings.
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Proof. Let y ef(X) and # e yg(X). The intersection

) X' =1y) ~ ()7 (2)

being a closed subset of X, the partial mapping ¢’ = g|X’ is closed.
On the other hand, we have

dimg’ < dimglf'(y) <dim(f Ag) =0,
according to the orthogonality 71 g. Therefore 1.4 implies that

dimX' < dimg'(X"),
and the inequality

dim(f Apg) < dimy
follows, since

X' = (A (y,2) and  g(X')Cyl(yg) (2)) = p7(z),

according to (1) and (2). By dimy =0, we get fwlg.
2.4. If f and g are orthogonal mappings of a space X and g is closed,
then
dimf < dimg(X).

Proof. Let y < f(X) and ¢ = g|f *(y). Then ¢" is a closed mapping
and dimg” <dim(f Ag) = 0. Consequently, 1.4 gives

dimf™(y) <dimg”(f™(y)) < dimg(X) .

Remarks. The hypothesis that the mapping ¢ is closed cannot be
omitted in 2.3. In fact, taking as f a constant mapping on K in the
Knaster-Kuratowski example (see 2.1), as ¢ the projection p, and as v
a constant mapping on C, we obtain f| g, but 7| wg does not hold. The
same mappings are good suitable for showing that g must be closed
in 2.4. The inequality from 2.4 will be strengthened in the next section
(see 3.1) under the assumption that the mappings f and ¢ are both closed
and that the image f(X) is compact.

3. Orthogonality and strong dimension. In view of the
Knaster-Kuratowski example, the effort made to generalize the Hurewicz
inequality for non-closed mappings has led to the Katétov-Smirnov
modification of the dimension of a mapping (). ‘A mapping f: XY
is said to be strongly 0-dimensional, written Dim f= 0, if for each number
¢> 0 there exists a number »> 0 such that the inverse image f '(B)

.(1) There i-s a difference between Katétov's terminology [1] and that used by
Russian topologists (see [5], p. 208). Katdtov has called his mappings uniformly 0-di-
mensional. We adopt here the terminology from Sersnev’s work [5].
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of any set BCY with the diameter 6(B) < 5 can be represented as
the union

F4(B) =£LEJTGz

of a collection {Gi}ier of mutually disjoint open subsets @ of f'(B)
with diameters ¢(G:) < & for t e T (see [1], p. 353). The strong dimension
Dimj of the mapping f is now defined to mean the minimum integer
=0,1,2,.. (ar infinity if % does not exist) such that the space X
is the union
X=XvX v..uX

of k+1 sets with f strongly 0-dimensional on each of them, that is
Dimf|X; =0

for 1=0,1,..., k. The mapping f is called strongly =-dimensional, if
Dimf = n (see [5], p. 209).

Strongly 0-dimensional mappings are 0-dimensional (see [1], p. 360),
but the projection p in the Knaster-Kuratowski example shows that
a 0-dimensional mapping need not be strongly 0-dimensional. In general,
we have the inequality

dimf < Dimf

(see [5], p. 214). Observe that even homeomorphisms need not be strongly
0-dimensional mappings. Indeed, taking the homeomorphism % of the
real line, defined by h(x) = arctanz, we get Dimh = 1.
3.1. TuROREM. If f and g are orthogonal closed mappings of a space X
and f(X) i8 compact, then
Dimf < dimg(X) .

Proof. Let dimg(X) = k < oco. Since the space g(X) is metrizable,
there exists a decomposition
g X)y=2ZyvZyu .. Z
such that dimZ; =0 for ¢ =0,1,..,% (see [1], p. 361 and 362). Evi-
dently, it iy enough to prove that

Dimflg~(Zy) = 0

for i=0,1,..,%k We are going to do so, assuming that the index
t=20,1,..,% is established for the rest of this proof.
By dimZ; = 0, there exists for each number » =1,2, .. an open

covering {W7}ep, of the space Z; such that

(3) S(W!) < 1fn
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for teTy and Wi n
For any set BCf(X)

Wi =@ for ¢,1" e Tn, t' #1". Put 7 = jlg™(Zy).
and any number n =1, 2, ... we have

2 = U (B~ g (W),

-1 41
FHB) =1B)ny i9}
where all sets g~ (W;) are open in ¢~ (%4), and therefore all terms in the
union are mutually disjoint open subsets of FYB). It is thus sufficient
to prove that for each number &> 0 there exmts a positive integer m,
satisfying the condition: if 6(B) < 1/n, and ¢ ¢ Tn,, then the set

4=f"

can be represented as the union of mutually disjoint open subsets G,
of A with diameters 6(G:) <.

Suppose, on the contrary, that there exists a number g > 0 such
that for each number # =1, 2, ... there exist a set B, C f(X) and an
index t, e T such that

( —W’ILD)

(4) 8(B) < 1/n
and the set
(5) An =f(Ba) n g7 (Wh)

cannot split into mutually disjoint sets @, open in An and satlsfymg
the inequality 6(G;) < &.

The last statement implies that the set g~*(W¢) cannot be contained
in the inverse image f (F) of any finite subset F of f(X). Indeed, since
Wt C Z; and dimZ; = 0, we have dim A, <0, according to (5) and 2.2.
It follows that there exists an infinite sequence ¥y, ¥, ... of different
points of f(X) such that the sets f '(y.) and g (W) intersect for

n=1,2,.. Choose a point
] (Yn) o gHWE)
for » =1, 2, ... and notice that the sequence &, w,,... must contain

a convergent subsequence, since the sequence ¥,,%,,... contains one,

by the compactness of f(X), and f is a closed mapping. Hence we can

assume that the whole sequence ®;, m,, ... converges to a point @ e X.
For the same reason, the sequence By, B,,.. has a subsequence

of sets containing points which converge to a point y e f(X), and we
can assume that

(6) {y} = Lim B,,
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by virtue of (4). Putting z = g(#) we see that the points g(,) e Wi con-
verge to 2, and (3) gives

(7 {2} = Lim W7 .

n—>o00
Since f_1g, there exists an open covering {U.}cr of the set ) A
~ ¢ 4(2), consisting of its mutually disjoint open subsets U, with oU;) <
< |3 for 7eT. Let u e U,. There exists a number 1, such that

0<ly<sg and A <o(u,)

for any = ef ) ng_l(z)‘\Ur. The sets

UU{m zeX, o(u, ®) < 4)[3}

are open in X, mutually disjoint, and §(U¥) < ¢ for v e T. Moreover,
their union

U= Uf
Tel
is a neighbourhood of f7}() ~ g™'(2) in X. Hence, according to 1.3, there
exist open neighbourhoods V, W of y, 2 in f(X), g(X), respectively, such

that 7H(V) ~ ¢ (W) C U. By (6) and (7), we can find an index » satisfying

B,CV and WpCW,

whence 4, C U, by (5). Thus the set 4, splits into the sets G; = 4, ~ U?,
which contradicts our supposition concerning A,.

Remark. It has been stated in the paragraph preceding 3.1 that
there are mappings f: X —Y for which two notions of dimension do not
coincide, i.e..for which dimf< Dimf. Combining the mappings from
those examples, namely p or h, with constant mappings, one can easily
verify that each hypothesis in 3.1 is necessary. However, in all known
examples of this kind either the mapping f is not closed or the image
f(X) is not compact. By a, theorem of Sersnev (see [5], p. 215), the con-
ditions dimf = 0 and Dimf = 0 are equivalent provided that f is closed
and f(X) is compact. Sersnev’s problem whether

dimf = Dimf
for closed f, and compact f(X), still remains unsolved. But, in view of

Theorem 3.1, the following problem is suggested.

3.2. ProBLEM. Does there exist, for every closed mapping f of & space X
onto & compact space f(X), a closed mapping g of X such that f and g are
orthogonal and

dimf = dimg(X)?
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An affirmative solution of 3.2 would imply, by 3.1, an affirmative
solution of Sersnev’s problem. It is not known if the reverse implication
Tolds, ie. if these two problems are equivalent.

Note that Problem 3.2 can be rewritten, without using the notion
of orthogonal mappings, as follows: do there exist, for every closed
mapping 7 of X onto compact f(X), a space Y and a closed mapping
@ X—f(X)XY such that

dimf = dimY, dimg=20,
and the diagram

X —l—fx)
FHExY T
is commutative, # being the Cartesian projection.

Remarks. (I) Problem 3.2 reduces to a question concerning the
finitely dimensional cubes I" or the Hilbert cube I, Namely, if 3.2 has
an affirmative solution for f(X)CI™ (n =1, 2, ..., &), the same is true
for any compact f(X) with dimf(X) <n. In fact, consider a mapping
@: f(X)-I" such that dimg =0 (see [1], p. 361). Since f is closed and
f(X) is compaet, ¢f is closed. But ¢f | ¢ clearly implies f | g, and we have
dimf = dimgf, according to 1.6.

(II) Problem 3.2, in the case of compact X with dimX < », reduces
to 3.2 for X = I™, where m == 2n+1 (m may be %,). In fact, all at most
n-dimensional compacta X are, by the Menger-Nébeling theorem, embed-
able in I""**. So we can assume that X C I"™. Take a mapping f* of I™,
determined by the upper semi-continuous decomposition of I™ into the
sets f '(y), where y e f(X), and the single points from I™\X. Let g* be
a suitable mapping of the cube I™. Then g = g*| X is closed, and f* 1 ¢*
implies f1g. But dimg(X) <dimg*(I") = dimf* = dimf, whence dimf
= dimg(X), according to 2.4.

(I1I) Problem 3.2, after such a modification that the inclusion
g(X)CIdjm’ is required, reduces to 8.2, g(X) being a compact space.
In faet, if g(X) is compact and dimg(X) = dimf, then there exists,
by the Hurewicz theorem, a mapping y: ¢(X)—>I™ for which dimy = 0.
Thus pg is closed, and f1g implies f|wyg, according to 2.3.

(IV) Problem 3.2 can also be considered as a conjecture concerning
some strengthened form of the Hurewicz theorem. Namely, suppose f is
a mapping of a space X. By a generalization of the original Hurewicz
theorem, due to Kat8tov (see [1], p. 361), there exists, for any point
y e f(X), a mapping ¢y f () ~>I"™ such that dimgy, = 0. Now, if f is
closed and f(X) is compact, an affirmative solution of 3.2 would
allow us to choose these mappings ¢, so that, taking them all together,
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one would obfain a continuous mapping of the whole space X into 1%
In fact, let g be a closed mapping of X such that f1g¢ and dimg (X)
= dim/. By the same result of Kat8tov, there fexists a y: g X) 1
such that dimy = 0. It suffices to put @y = wy|f (y), since f| yg, accord-
ing to 2.3.

(V) Problem 3.2 has a trivial solution for two particular cases:
(i) dimf = 0, and (i) dimf = dimX. In fact, we can define ¢ as a con-
stant mapping in case (i), and the identity mapping in case (ii). More-
over, case (i) yields a new proof of Sersnev’s result quoted above, in
the remark preceding 3.2, since Theorem 3.1 gives here Dimf = 0.
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