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I. Introdunction. In this paper we shall be concerned with the
propositions FS, (for definitions, see Section II) first considered by the
author in [1], restricted versions of FS,, their relation to the proposi-
tions <n) considered by Mostowski [5], Szmielew [7], and Sierpihski [6],
and various other weakened versions of the axiom of choice. In particular
we shall deduce some interesting decompositions of the axiom of choice
into conjunctions of mutually independent propositions. We shall give
a third proof of Theorem 8 (see [5] and [7]).

II. Definitions and terminology. If X and Y are any sets,
X\Y denotes the relative complement of ¥ in X, P(X) the set of all
subsets of X, P*(X) the set of finite subsets of X, Px(X) the set of k- element
subsets of X, and |X| the cardinal of X.

We denote the set of positive integers by I, the set of all primes
by §, I v {0} by IL,.

If m,nel, we define (m,n) by
max {m, n} ’ ifm=0o0orn=0,
greatest common. divisor of m and »n otherwise .

The multiple choice axiom FS,, for n eI, is defined as follows:

FS,. For every set X of non-empty sets there ewists a function f such
that for each ¥ € X, {(Y) 18 a finite non-empty subset of Y and ([f(Y)|, n) =1.

We note that with the above definitions, FR, 4s the axiom of choice
and FS; says merely that f(XY) is finile and non-empty.

The axioms IS, first arose in connection with the theory of vector
spaces (see [1]). '

The proposition (nd, n eI, is defined as follows:

* The author would like to thank the National Science Foundation for ﬁi}anoia.]
assistance. :
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). If X is a set of n-element sets, then there is a function f such that
for each Y e X, f(y)e Y.

Many properties of (n) can be found in [5], [6], and [7].

If N C I,, then by FSy (<(N)) we mean the proposition that for each
n e N, FSy ({n)) holds.

If X is any set of non-empty (n-element) sets, then FS(X) ((n)(X))
denotes the proposition-that there exists a function for X which satisfies
the conditions of FS, ({n)). We shall also have occasion to consider

TSk For every set X of non-empty finite sets, FSy(X).

If ¥ C I, then by FS% we mean the proposition that for each n e ,7

FS; holds.

III. Some connections between FS, and <n).

1. LEMMA. If n =pi*-pz...p% where the pi are an increasing se-
quence of primes, e; > 1, and P = {p;, p,, ..., pr}, then FS,(X) is effectively
equivalent to FSp(X).

Proof. The implication FS,(X) implies FS,(X) follows from the
number theoretical result that (a,n) =1 implies (a, d) =1 for all di-
visors d of n. It will be convenient to use the notation din for d divides x.

To prove the reverse implication, let f; be functions realizing FS,,(X),
we must construct a function f which realizes FS,(X).

Let y € X, and y, = f1(y); then either (jy,|,n) =1 in which case we
define f(y) = yo, or there is a least 4, 1< 4 < %, such that pqlly,|. In the
latter case let y; = fily,). Thus 3, Cy,Cy and 1 < |y} < 9ol < oo since
pi %] and (p, [31]) =1. We iterate this process, stopping only if we
obtain a set y¢ C y such that (Jy¢, n) = 1. If the process has not terminated
after 1 iterations we obtain: #:Cy;,C..CyCyCy and 1<yl
<l < .. <yl < |yl < oco. Thus, 1< |y|, so this process must
terminate, yielding a set y; C y for which (|ys|, n) = 1. We define f(y) =y,
and the desired function has beenweonstructed.

1*. LevmA. Let n="pi' ps* ...p% where the p¢ ave an increasing se-
quence of primes, ec>1, and P = {p,, ps, ..., pi}; then FS,, is equivalent to FSp.

Proof. This is an immediate congequence of 1.

COROLLARY. If n and m are integers with the same prime factors then FS,

is equivalent to FS,,. ‘

We shall have occasion to use the following lemma.

2. LeMMA. Let p be a prime, n a positive integer and X a set. Then, given
a function f satisfying <{py>(P(X)), we can effectively define a function g
on Pup(X) such that for y « Bu(X); g(y) Cy and 1 < lg(y)| < lyl.

The proof of 2 is obtained by a simple modification of the proof

of a lemma of A. Taxrski for which proofs may be found in [5], Lemma 15,
or [6], p. 99.
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3. THEOREM. If p is a prime and @ is a set, then given a function f
satisfying <p>(Pp(X)) we can define effectively a function g satisfying
FS,(PHE))-

Proof. According to 2 we have, for each integer ¢ ¢ I, an effectively
determined function f, defined on 9,,(X) such that for Y € Pop(X), foly)
is a proper non-empty subset of y. We now construct a function g satis-
fying FS,(P*(X)).

If y e PXX) and p r |y| then define g(y) = y. To handle the situation
when |yl = gp, we first define inductively auxiliary functions g, satis-
fying FSp(Pon(X)). I ¢ =1, we take g =7;. Suppose that we have
effectively defined g, for g < r. Let y ¢ B,p(X). Consider fr(y), a proper
non empty subset of y. If (ifs(y))l,p) =1, let gi(y) = f(y), otherwise
Ifr(y)l = gp for some ¢ < r-and we define g.(y) = f,(f.(y)). We now define
g(y) = gqly) where [y| = ¢p, and the construction is complete.

3*. THEOREM. If p is any prime then {p)> implies FS;.

This theorem is an immediate consequence of 3.

4. Impva. If & and n are positive integers then (lm) implies k.

A proof of this lemma may be found in [7] p. 79.

In view of 4, 3, and 1 we obtain

5. LeMMmA. If n and m have the same prime jactors, then {n) implies FSL,.

6. TEEOREM. If X is a set, and n o positive integer, then the following
are effectively equivalent:

(1) For every prime p < n, {p>(Pp(X)).

(2) For every prime p < n, FSy(P*(X)).

(8) For every positive integer q < m, (q)(SBq(X)).

(4) For every positive integer ¢ < n, FS,(P*(X)).

Proof. Thé fact that (1) implies (2) follows from 3.

We now show that (2) implies (3). This will be done by induction
on ¢. It is clear that for ¢ = 1 we can effectively construct a choice function
on P,(X). Suppose that we have effectively constructed choice funetions 7,
on Py(X) for ¢ < r < n. We now construct a choice function f, on By(X).
Let p be the least prime divisor of 7. Let ¢ be afunction realizing FS,(P*(X)).
For yeP(X) define f(y) =f,(g(y)) where ¢ =|g(y)|<r. Tt is clear
that f iy the desired function.

The implication (3) implies (1) is obvious. Thus (1), (2) and (3) are
effectively equivalent. On the other hand, 1 yields the effective equiv-
alence of (2) and (4).

6*. THEOREM. Let N = {gel: g< n}, and P ={p e9: p < n}); then
the following are equivalent:

(1) <P>; o

(2) FSB;
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(3) <N3;

(4) FS%.

The proof of this theorem is immediate from 6.

The equivalence of (1) and (3) is also a gimple corollary of the known
sufficient conditions for implications of the type “<Z) implies {(m)”
where Z CI and m eI ([5] Theorem II, p. 149, [7] Theorem 2, p. 79).
We shall obtain these conditions later.

T is convenient to define the condition (Z) for a given g e I and N C1I.

k

(2) If ¢ = 3 qi where g; > 1, then there is an integer m ¢ N such that
i==1

(n, gi)>1 for c;t= least one qi.
Tt is not difficult to see that (ZX) is equivalent to the following con-
dition (S) of Mostowski.
k

®) If ¢ ={Z pi where the ps are primes, then for at least one py, there
=1

is a multiple of p¢in N.

7. THEOREM. If N and q satisfy (Z) and for each me N, fu realizes
FSa{B*(X)), then we can effectively realize <D (P X))

Proof. In virtue of 1 we know that if P is the set of all prime factors
of all the integers in %, then for each p ¢ P, we can effectively define
a funetion f, which satisties FSy($*(X)). Thus the proof will be complete
if we can effectively define a function ¢, realizing <q>(€Bq(X )) given the
funections fp- ’

If ¢ =1, it is clear that we can define g;. Suppose, inductively, that
the proposition is true for all ¢ such that ¢ < and P and ¢ satisfy (2).
We now suppose that r and P satisfy (Z) and construct a function g,
realizing (r)(P(X)). By (Z) we know that there is a prime p ¢ P such
that plr; let p, be the least such prime. Let y € P(X) and ¥, = fp(¥)-
Consider the following decomposition:

¥ =%\ (H\5) -

Since 7 = {y1{4 [y\y1l, we see that one of |y, and |y\y,| must satisfy (%)
for, if neither did, then r would also fail to satisty (X). If |y,| satisfies (X),
then define g(y) =J, () where ¢ = |y,| <7 If |y,| does not satisfy (2),
then |y\y;| does. Define g(y) = fo(4\9,) where ¢ = |y\y;|. This can be
done since ¥, is a non-empty proper subset of ¥ and hence in either case
1<g<r.

7*. TEEOREM. If ¢ i8 @ positive integer and N is a set of positive integers
which satisfy (Z), then FSy implies <{g>.

The proof of this theorem is immediate from 7.

8. THROREM. If q is any positive integer and N any set of positive
integers satisfying (S), then <N implies {g).

icm®
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Proof. The proof follows from 5, the fact that () and (8)
alent, and 7*.

Theorem 8 was proved first by Szmielew [7] and, independently, by
Mostowski who used entirely different methods. Mostowski also ga,v;a
a condition (M) ([7], p. 160) which is necessary for the implication <N
implies <g>. It is known that (S) is not necessary for the implication <N
implies {g>. The proposition ¥8%, in view of 5 and intuitive reasoMné,
appears to be weaker than (), and it is unknown if (S) is necessary for
the implication I'S¥ implies <{g>.

are equiv-

IV. Some connections between FS, and the axiom of
choice. We shall be concerned with the following axiom of countability:

(C) A countable union of disjoint finite sets is countable.
9. THEOREM. The conjunction of (C) and F8g is equivalent to FS,.

Proof. It is clear that FS, implies (C) and FSgp.

We supposc now that (C) and FSy are valid. Let X be an arbitrary
set of non-empty sets. We wish to construct a choice function. for X.
For each p € let 5 be the set of all functions satistying FS,(PB(LJ X))‘.l
By hypothesis, F, 7 @. Also by hypothesis there is a function g realizing
FSy(U {Fp: p €T}). Let Fp =g(F,), then |J {Fp: p €T} is a countable
union of disjoint finite sets and hence countable by (C). If we fix on 3 par-
ticular counting of | J {Fp: p €T}, then in each F, there is a least element,
52y fp. We shall construct a choice function f from the #,.

First we define an auxiliary function k as follows: For Y e X, if
|¥]| =1 define h(¥) =y where y ¢ Y. If |¥|> 1, but |¥| is finite, define
h(Y) =fp(¥Y) where p is the least prime factor of {¥|; if ¥ is infinite,
define h(Y) = fy(¥). It is clear that for any set ¥ ¢ X there is a least
integer n = n(Y) such that after n iteration of h applied to ¥ we obtain
an element of ¥, i.e., h"(Y) ¢ ¥. Thus, if we define F(¥) = k"(Y), we

- have the desired choice function.

The next proposition is of a metamathematical nature and shows
that the hypothesis (C) cannot be deleted from 9. In the sequel we let &
stand for any one of a number of suitable set theories, for example that
of Mostowski [4]. :

10. TeEoREM. If © 4s consistent then FSy does not imply FS,.

Proof. From 6* we see that FSy is equivalent to FS, and ¢I). The
theorem now follows from a result of A. Lévy [3] (in our notation):

TemorEM. If & (or the system A, B, C of Godel [2]) is consistent,
then S, and <I) implies FS, is unprovable in &.

In order to show the independence of FS, from the axioms of € we
need the following two lemmas.
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11. LenmwmA. If every set can be linearly ovdered, then FSi holds.

The truth of 11 was first observed by Kuratowski. The proof is not
difficult and may be found in Sierpinski [6], p. 412. )

12. LEmmA. The conjunction of FS, and FSY is equivalent to TS,

Proof. Obviously FS, implies both FS, and FSF. Qn the ot.her hand,
FS, says that given a set X of non-empty sets thel:e is a flil.IlGﬁlOn f.such
that for ¥ € X, f(¥) ¢ B*(Y), while FS3 says there is 2 choice function g
on P*(|J X). Since P+(¥) C P X) for each Y ¢ X, it follows that g(f)
is the desired choice function.

We are now in a position to prove

13. THEOREM. If © is consistent, then the awioms of & do not imply FS,
for any ne X,

Proof. Since for each n ¢ I, FS, implies F'S;, it is sufficient to prove
that FS, is independent of the axioms of &. In view of Lemmas 12 and 13
we see that FS;, together with the supposition that every set can be
linearly ordered, implies the axiom of choice. Since Mostowski [4] has
shown that the axioms of &, together with the principle of linear ordering
do not imply the axiom of choice, it is clear that they cannot imply FS,.
It follows that the axioms of & alone certainly cannot imply FS,.

It is clear from the above independence results that FS; isindependent
of the conjunction of the axioms of G and FS§, and conversely that FS}
is independent of the conjunction of the axioms of & and FS,. In view
of this independence 12 gives a nice decomposition of the axiom of choice
into independent, heuristically complementary statements. The feeling
that the statements are complementary is strengthened by the fact that
if ¥8¢ is replaced by <I) the new conjunction does not imyly the axiom
of choice.

In view of 9 it would be interesting to know if there is a prime p e
such that FSg implies ¥Sp where P = F\{p}.
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An interpolation theorem for denumerably
long formulas *

by
E. G. K. Lopez-Escobar (Cambridge, Mass.)

0. Introduction. Ly is the first-order language obtained by
modifying the usual formation rules for the finite first-order formulas
50 that conjunctions and disjunction of less that o formulas and quan-
tifications over fewer than f individual variables are allowed (thus in
particular, L,, is the usual (finite) first-order language) (1). We say that
the interpolation theorem is true for L, just in case that for all for-
mulas @, @ of Ly if the implication p->@ is valid, then there exists
a formula = of L, such that (1) p-—>m and m—+d are valid, (2) if a
variable occurs free in =z, then it occurs free both in ¢ and in @, and
(3) if a relational symbol occurs (oceurs positively, occurs negatively) in
@, then it occurs (oceurs positively, occurs negatively) both in @ and in @.
The interpolation theorem is known to be true for L,, (see Craig [2] and
Lyndon [10]) and, whenever ¢ is an inaccessible cardinal, for L (see Mae-
hara-Takeuti [11])**. In this paper we show that the interpolation the-
orem is true for L.

The interpolation theorem is obtained as a consequence of the
completeness of a Gentzen type formalization for Ly,. The essential
property of our rules of inference, in addition to the usual subformula
property associated with Gentzen type systems, is that the number of
variables that occur free in the premise(s) and do not occur free in the
conclugion (i.e. are quantified out) is always finite (2).

* The results in this paper form part of the results contained in a dissertation
submitted in partial satisfaction of the requirements for the Ph. D. degree at the Uni-
versity of California, Berkeley, prepared under the direction of Professor Dana 8. Scott,
to whom the author wishes to express his sincere thanks for much valuable advice.

(*) These kinds of infinitary languages (i.e. infinitary languages Lqs where a need
not be equal to f) have heen studied by C. R. Karp [4].

** Added in proof. J. Malitz has shown that the interpolation theorem for
Ly is false, of. Notices of Amer. Math. Soc. 12(1965), p. 379. )

(*) E. Engeler [3] has obtained a formalization for Ly which has the subformula
Pbroperty, however his formalization does not have the property mentioned above and
thus it is unsuitable for deriving the interpolation theorem (the.author did not learn
Fundamenta Mathematicae. T. LVII 18
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