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11. LenmwmA. If every set can be linearly ovdered, then FSi holds.

The truth of 11 was first observed by Kuratowski. The proof is not
difficult and may be found in Sierpinski [6], p. 412. )

12. LEmmA. The conjunction of FS, and FSY is equivalent to TS,

Proof. Obviously FS, implies both FS, and FSF. Qn the ot.her hand,
FS, says that given a set X of non-empty sets thel:e is a flil.IlGﬁlOn f.such
that for ¥ € X, f(¥) ¢ B*(Y), while FS3 says there is 2 choice function g
on P*(|J X). Since P+(¥) C P X) for each Y ¢ X, it follows that g(f)
is the desired choice function.

We are now in a position to prove

13. THEOREM. If © is consistent, then the awioms of & do not imply FS,
for any ne X,

Proof. Since for each n ¢ I, FS, implies F'S;, it is sufficient to prove
that FS, is independent of the axioms of &. In view of Lemmas 12 and 13
we see that FS;, together with the supposition that every set can be
linearly ordered, implies the axiom of choice. Since Mostowski [4] has
shown that the axioms of &, together with the principle of linear ordering
do not imply the axiom of choice, it is clear that they cannot imply FS,.
It follows that the axioms of & alone certainly cannot imply FS,.

It is clear from the above independence results that FS; isindependent
of the conjunction of the axioms of G and FS§, and conversely that FS}
is independent of the conjunction of the axioms of & and FS,. In view
of this independence 12 gives a nice decomposition of the axiom of choice
into independent, heuristically complementary statements. The feeling
that the statements are complementary is strengthened by the fact that
if ¥8¢ is replaced by <I) the new conjunction does not imyly the axiom
of choice.

In view of 9 it would be interesting to know if there is a prime p e
such that FSg implies ¥Sp where P = F\{p}.
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An interpolation theorem for denumerably
long formulas *

by
E. G. K. Lopez-Escobar (Cambridge, Mass.)

0. Introduction. Ly is the first-order language obtained by
modifying the usual formation rules for the finite first-order formulas
50 that conjunctions and disjunction of less that o formulas and quan-
tifications over fewer than f individual variables are allowed (thus in
particular, L,, is the usual (finite) first-order language) (1). We say that
the interpolation theorem is true for L, just in case that for all for-
mulas @, @ of Ly if the implication p->@ is valid, then there exists
a formula = of L, such that (1) p-—>m and m—+d are valid, (2) if a
variable occurs free in =z, then it occurs free both in ¢ and in @, and
(3) if a relational symbol occurs (oceurs positively, occurs negatively) in
@, then it occurs (oceurs positively, occurs negatively) both in @ and in @.
The interpolation theorem is known to be true for L,, (see Craig [2] and
Lyndon [10]) and, whenever ¢ is an inaccessible cardinal, for L (see Mae-
hara-Takeuti [11])**. In this paper we show that the interpolation the-
orem is true for L.

The interpolation theorem is obtained as a consequence of the
completeness of a Gentzen type formalization for Ly,. The essential
property of our rules of inference, in addition to the usual subformula
property associated with Gentzen type systems, is that the number of
variables that occur free in the premise(s) and do not occur free in the
conclugion (i.e. are quantified out) is always finite (2).

* The results in this paper form part of the results contained in a dissertation
submitted in partial satisfaction of the requirements for the Ph. D. degree at the Uni-
versity of California, Berkeley, prepared under the direction of Professor Dana 8. Scott,
to whom the author wishes to express his sincere thanks for much valuable advice.

(*) These kinds of infinitary languages (i.e. infinitary languages Lqs where a need
not be equal to f) have heen studied by C. R. Karp [4].

** Added in proof. J. Malitz has shown that the interpolation theorem for
Ly is false, of. Notices of Amer. Math. Soc. 12(1965), p. 379. )

(*) E. Engeler [3] has obtained a formalization for Ly which has the subformula
Pbroperty, however his formalization does not have the property mentioned above and
thus it is unsuitable for deriving the interpolation theorem (the.author did not learn
Fundamenta Mathematicae. T. LVII 18
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After giving some immediate applications of the interpolation theorem
for L,,, we show that unlike the case of L., the interpolation theorem
is not true for sets of formulas of Lo (i.e. there exists disjoint PCy(L,,,)
classes which can not be separated by a class which is closed under L,
elementary equivalence (cf. Theorem 6.3)).

1. Preliminaries. We will distinguish between classes and sets,

namely, a set is a clags which is a member of some other class. We assume -

the axiom of choice and any of its equivalent formulations. For the most
part standard set-theoretical notation will be used. Thus, for example,
¢ is the. membership relation and C, 0, v, |, ~ and (M are respectively
the relation of inclusion, the empty set and the operations of forming
unions (intersections) of two and arbitrary many classes. X ~Y is the
set-theoretical difference of the classes X and ¥ and if Z is a set then P(Z)
is then the set of all subsets of Z. If #(») is a term containing @ ag a free
variable, then a symbolic expression of the form {t(z): @} where & is
to be replaced by any formula containing # as free variable denotes the
class of all #(x) for which « satisfies the given formula. (2, ¥) is the ordered
pair with # as its first term and ¥ as its second term. A function is a set
of ordered pairs satisfying the usual conditions and if f is a function
then Df and @f are respectively the domain and the range of f. If f is
a funetion and « ¢Df, then f(x) or sometimes f, is the value of f at x;
thus f = {[z, f(2)): # ¢ Df}. A% is the class of all functions whose domain
is B and whose range is inclued in A. f} X, the restriction of f to X, is
the class {{z, f(2)): xe¢Df X} u {(z,®): e X~Df}. Note that the
domain of X is always X. -

Ordinals are assumed to have been defined in such a way that an
ordinal is the set of all smaller ordinals and we shall use the letters:
#y1,¢, 0,8 to represent arbitrary ordinals. The formulas u<< 7, 5> u
and u €7 are equivalent and will be used interchangeably. u-7 is the
ordinal addition of 4 and . If a function 7 has an ordinal u as its domain,
then f is called a p-sequence (or simply: a sequence) and (f,>y<, = f. The
letters: m,n,p, g will be used to represent natural numbers (i.e. finite
ordinals) and <ay, ..., an_y) is the n-sequence {Aiyicn. I 8 = {8y)p<, a0
t = {lou<s BT sequences, then the concatenation of s and ¢, in symbols:
s+, is the ¢4-4-sequence s {{g+p, L) p<é}; <a, t,,),.;.; = {ay *
(t[l>ﬂ<5'

By a cardinal it is understood an initial ordinal, i.e. an ordinal whose
power exceeds the power of each smaller ordinal.  is the smallest infinite
cardinal and o, is the least cardinal greater than (i.e. the smallest
uncountable ordinal). |4| is the cardinality of the set A.

of Engeler’s axiomatization till after obtaining the interpolation theorem). For another

axiomatization of Lue, see Karp [4),
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" A sequence v such that the range of » iy a set of natur.

. such - atural numbers
will be called a similarity type. We shall uge the letter » to represent
similarity .‘(,ypes and then g, (ov simply: o) to represent the domain of ».
By a relational system of type v (or simply: a relational System) we under-

stand a g,+1-sequence A = ¢4, B)u<o, such that A4 =0 (and then 4
is called the universe of %) and such that R, € A% for all 4 < o,. Relational
systems will in general be represented by capital German letters and it
will be always understood that the corresponding capital Roman letter
denotes its universe. If U = (4, B,> u<e 804 6 < o, then AP is the relational
system <4, Byyu<s and is called the d-reduct of 9.

If T'is a set of finite sequences of natural numbers such that exactly
one element of T, called the 700t of 7', has no immediate predecessor
(where an element s e 7' is an immediate predecessor of an element ¢ e T
just in case that for some n < w, ¢ = s*(n)) then T ig a pseudo-tree. It T
is a pseudo-tree, then a branch of T is a maximal subset of T satisfying
the condition that no two (distinct) elements have the same immediate
predecessor; if s € T and there is no n < w such that §*¢n) e T' then s is
an uppermost element of I'. By a tree we understand a pseudo-tree T such
that all branches of 7' are finite; clearly if 7 is a tree then every branch
of T has an uppermost element.

To every element s of a tree 7' we can associate an ordinal Atg(s),
called the T'-depth of s, as follows:

(i) if s is an uppermost element of T, then dtp(s) = 0,
(ii) if ¢ is not an uppermost element of T, then

dtp(s) = [ {dbp(t): s is an immediate predecessor of ¢}1-1 .

If T is a tree, then the length of T is the T-depth of the root of 7.

2. The language L., . The language L.y can briefly be described
as follows. The symbols of L,,, include a set V of w; distinet individual
varlables and we shall use the letters (with or without subseripts):
2, W, %, 4, and = to denote the elements of V (ie. individual variables).
The equality symbol ‘=’ and the relational symbols: Py, ..., P,, ... are
included amongst the symbols of Liyw; the number and type of relational
symbols is determined by the similaxity type (°). Hence the atomic
formulas of L, are of the form » =w or Pwy...Vyy1 . Ly is the least
class W such that:

(1) every atomic formula is in W,
(ii) if ¢ is in W, then its negation —~¢ is in. W,

() For the purposes of this paper the equality symbol is not considered to be
a relational symbol. T

18*
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(iii) if X ={ps: eI} C W and |I| < o, then the conjunction of X,
in symbols: [] X (also written [ir i), is also in W,

(iv) if @ is in W, then its universal generalization (Vw)e is also in W,

When writing formulas of L.,, we will sometimes use the existential
quantifiers (Ev)g, (countable) infinite disjunctions Diergi (o 2, X) and
the usual finite sentential connectives: —, <—, A, V; we shall assume that
they have been defined in the usual way in terms of —, [1, (Vv). Note
that in (iii) it is not assumed that X = 0 and thus the empty conjunction
I10 is a formula of Ly, We let T =[] 0 and call T the truth symbol.

We assume it to be known what it means for an w,-sequence s of
elements from the set A to satisfy the formula ¢ ¢ Ly, in the relational
system %, in symbols: (¥, s)|= ¢ (see [4]). In the case that ¢ is satisfied
by all w,-sequences from A4 we say that ¢ is true in U (or valid in U) and

“we express this condition by: A= ¢. If ¢ is valid in all relational systems
(of the suitable similarity type) then ¢ is valid, in symbols: F- g. It is
clear that T is a valid formula.’

DEFINITION 2.0. If ¢ € L,,, then the set of variables occurring free
in g, in symbols: FV (g), is defined as follows:

(i) 3if ¢ =v =w, then FV () = {v, w},
(i) 4f ¢ = Pyog.aty, 1, then FV(g) = {2 & <y},

(iii) if ¢ = -, then FV(p) = FV (D),

(iv) f ¢ = [Liex D¢ then BV (9) = Uit FV (D),

(v) #f ¢ = (V0)®, then FV (p) = FV (D)~ {v}.

In a similar way we can define the set of variables occurring bound
in ¢, in symbols: BD(g), and then VS8(p) = FV(g) v BD(p) is the set of
variables occuring in ¢.

DEFINITION 2.1. I @ € Loy, then the set of subformulas of g, in symbols:

F (@), is the least set W containing ¢ and such that whenever it contains
(i) —9P, it contains P,

(il) (Vv)@, it contains @,

(iil) [] X, it includes X.

DreriNiTION 2.2. If ¢, P eL,, then “@ is an immediate member
of 97, in symbols: ® < ¢, just in case that either

(i) ¢ = =D or
(i) for some v, p = (V;v)qf' or

(iif) for some X, ¢ = [[X and & < X.

The following lemma is immediate from the above defmltlonb

Levva 1.3. If @, ¢ e Loy and @ e SF(p), then

1 = BV (@) ~FV(p) < 0,
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(2) - for some n < o there ewist am n-+1-sequence (midicy, of formulas
0f Lo Such that:

(i =0 and =g,
(i) for all i <m, <.
DEFINITION 2.4. A relational symbol P, (equality J symbol =) has

a positive (negative) occurrence in a formula ® € Lo, just in case that there
exists o finite sequence (m:dicy 0f forinulas such that:

(i) 7w =@ and m, is of the form ann...v,ﬂ_l [v = w]

(i) for all 1 < n, m <3 miyq,

(i) [{5: ¢ < n& miyy = —a}| s even (odd).

DEFINITION 2.5. A ]‘mmula ® €Luw 18 a “positive formula® just in
case that neither the equality symbol nor any relational symbol has a negative
oceurrence n @.

It us clear that a relational (or the equality) symbol has a negative
(positive) occurrence in ¢ if and only if it has a pos1t1ve (negative) occur-
rence in —@.

A replacement function is a function f sueh that Df =V and dfjCV.

DeriNitioN 2.6. If f is a replacement function, then Rp; and Sby
are defmed as follows:

?

(1) Rpyv = w) =8bsv = w) =f(v) = f(w)
(i) RPI( Vo< Vuy—1) = Sby(P,y... 0, 1) —P of (D) oo f (00, 1),
(iii) R[] lier ¢1) = [ier Rps(o) M’bd SbA[ Lier 94) = [lier Shy(gs),
(iv) RBpf—~¢) = —Rps(p) and Sby—p) = —Sby(e),
(v) Rpy((Vo)g) = (Vf (v)) RpAp) and Sby((Vo)p) = (Vo) Sby(p) where

g = (I (V~{})PV.

Intuitively Rp/(p) (Shy(p)) is the formula obtained by simultaneously
replacing all oceurrences (all free occurrences) of the individual variable v
in ¢ by the variable f(v).

If f is a funetion such that DfCV and fACYV, then we let Rp,(p)
= Rpa(p) and Shy(p) = Sbx(p) where h = fNV. We will usually only be
concerned with substituting finitely many free variables and thus we
introduce the following more suggestive motation: Suppose that e V"
is such that w; = u; whenever ¢ < j<n, ¢ ¢Layu, 4 € V", f= {(u;, u):
i< n}, then we let

q:v[uo/ué, (L) un—l/'u‘;’h—-l] = Sbf(q’) .

DEFINITION 2.7. If @ € Ly, then “w is free for v in ¢ just in caso
that either (1) v = w or (2) for all n < o and all (n+-1)- sequences {mutdicn
of Subformulas of @ such that (i) mp =@, (ii) for all i < n, 7 <7wiy1, and
(ii) for some B, my = (V1o) D and v « FV (B); then for some i << 0, we; = (V) 7.
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DEFINITION 2.8. If ¢pelaw and A is o sel of individual varighles
and @ = [tofthgy vy Un—y[Un—1], then D is a “proper A-substitution instance
of @ (or simply: a proper substitution of ) if and only if {ui: i < n} cA
and for all i< n, uj is free for u; in @.

DEFINITION 2.9. @ is a normal form of ¢ just in case that no variable
occurs both free and bound in @ and ¢ = Rpy/D) where | is a replacement
function such that (i) f(v) = v for all v ¢ FV(D) and (ii) for every subfor-
mala of @ of the form (Vo)m, f(v) ¢ FV (n)~{o}.

Intuitively, if @ is a normal form of ¢, then @ can be obtained from p
by “renaming” the variables that occur bound in ¢ in such a way that
no variable occurs both free and bound in & (the purpose of clause (ii)
is to make sure that if @ is a normal form of ¢, then $<—¢ is valid). It is
clear that to every formula ¢ there corresponds at least one formula @
such that @ is a normal form of ¢.

As mentioned in the introduction we will consider a Gentzen type

formalization of L,,. Hence the following definition.

DermNiTION 2.10. If X and ¥ are countable sets of formulas of Ly
then we let X+ = (X, ¥) and it is called & “Li,,-sequent”’ (or: a sequent);
X is the “antecedent™ and Y is the “succedent’’ of the sequemt X—7Y.

If 8§ =X~Y is a sequent, then the set of variables occurring free
in §, in symbols: FV(S), is the set | pex FV(p) U Uper FV (¢). The set of
variables occurring bound (occurring) in §, in symbols: BD(S) (VS(8)),
are similarly defined. If r is either the equality symbol or a relational
symbol and X is a set of formulas, then r has a positive (negative) occur-
rence in X just in case that 7 has a positive (negative) occurrence in some
formula of X; if X+ ¥ = § is a sequent, then r has a positive (negative)
occwrence in § if and only if » has a positive (negative) oceurrence in
{=prpeX}IU Y.

DEFINITION 211. X'+X’ is a “normal form of X+Y if and only
if [loexror ¢ is a normal form of eexor 0.

. Ifsis an w;-sequence of elements from the universe of the relational
system %, then s satisfies the sequent X—Y in 9 if and only if

, 3”:”0:&2 lP"*queY‘P . ‘
The notions which are defined in terms of satisfaction are extended in
the natural way to sequents. Thus, e.g., we have that a formula @ € Ly

is a valid formula if and only if the sequent 0— {p} is a valid sequent.

3. Proot theory for L,,. In the axioms and rules of inference
given below it is assumed that:
(a) "~ @ and O are jormulas of L, ,
(b) M, M, N and N' are countable sets of formulas of L

o1 -
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STRUCTURAL RULES OF INFERENCE
1. PRINCIPAL STRUCTURAL RULE OF INFERENCE.
M—+N
MouM-NUN.
2. RULE OF INFERENCE FOR RENAMING BOUND VARIABLES. % If

M'+N' is a normal form of ¥—N, then the following is a rule of in-
ference:

M >N’
M-N .
AXIOMS
1. LOGICAL AXIOMS.
(A.0) M v fpl+ N w {g},
(A1) M~¥N o {T}.

2. AXIOM FOR EQUALITY. Whenever v is an individual variable the
following is an axiom:
M+N v {v=0}.
RULES OF INFERENCE FOR THE LOGICAL SYMBOLS
1. RULES OF INFERENCE FOR NEGATION.

Mo {p}=+N
(=) M+N © {~7¢}
M~N v {p}
(>~ Ao =g ¥
v {7g}+N

2. RULES OF INFERENCE FOR CONJUNOTION. If |I] < e, and {p¢: i eI}
C Ly, then the following two rules are rules of inference:

Mo {piiel}+N
Mo {”mq’:}—*N
M+N o {py}: forall el
M~N v {Hm'?’i}

3. UNRESTRIOTED RULE OF INFERENCE FOR THE QUANTIFIER. If =
and y are free for v in ¢, then the following is a rule of inference:

Mo {ploja]}+N
Mo {(Vy)elofylt+N

(*) This rule of inference is needed becaunse we have omitted the rule of inference
usually known as a cut, i.e. from M— N u {¢} and M’  {p}+N" to obtain M o M
-+N U N/, and yet we allow a variable to occur both free and bound in a formula; c.f.
Kleene [7]. .

([T~}
(=I1)

(V)

'
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4. RESTRICTED RULE OF INFERENCE FOR THE QUANTIFIER. If ¢ and y
are free for » in ¢ and, unless » is v, # does not oceur free in ¢, then the
following is a 1ule of inference provided that x (called the eigenvariahle
of the inference) does not occur free in the conclusion:

M~+N o {plo/z]}
M-N v {(Vy)p[v/y]}

RULES OF INFERENCE FOR EQUALITY (%)

If « and y are free for » in ¢ and in @, then the following two
rules are rules of inference:

(=V)

M o {p[vjal}~+ N o {@[vfz]}
Mo {z=y,plofyl}=>N v {O[v/y]}
M o {plvfz]}+N o {Blvfz] }
Mo fy=a,o/yli~N o Dy}

DerINiTION 3.0. If A is a set of sequents, S is a sequent and P a fumction
such that: ) :

(i) DP is a tree,
(ii) ¢f s is an uppermost element of DP, then P(s) € A,

(iii) if s e DP and s is not an uppermost elemsnt of DP, then there exists
a rule of inference R such P(s) is the conclusion of an application of B
with {P(s*(n)): n < 0 &s*(n) ¢ DP} as the set of premises (and
then we shall say that “R has been applied in P”),

(iv) P(r) = 8, where r is the root of DP,
then “P is an A-derivation of 87

DerrvitioN 3.1. 4 sequent § is “provable”, in symbols: - 8, if and
only if there ewists an Ax-derivation of S where Ax is the set of axioms
0f Law-

Next we show that certain sequents which express some elementary
properties about equality are provable in our system. Hence

DEFINITION 3.2. If I' is a set of equations (i.e. atomic formulas of the
form s =1y) and v and w are individual variables, then ‘v is congruent
to w modulo I, in symbols: v =w[I', if and only if for some n<< w there
exists a n-+1-sequence (Ydicn of individual variables such that 1) yo=m,
(2) Yn=w, and (3) for all i < Ny either y; = yi or else I A {y: = Yipa,
Y1 =Yi} # 0.

{*) The author is indebted to Maehara-Takeuti [12] for this form of the rules of
inference for equality.

@ ©
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The following properties of v w[I'] are eanily verified:

LevmA 3.3.

If v=w[I'}, then there exists a finite set I C I such that v~ w[IM],
if vxxw[l'] and w=2[I"], then v= 2[I",

if vxwl[I'] then w=v[I,

2= 2[0].

— e~~~
W 00 b M

Lemma 3.4. If for all © <n, @< yI'], then
(1) == {2; = y:}, whenever i < n,
.2) if ¢ s an atomic formula, then
=1 {p[vo/@o, - s Vn—afn_1]} > e[/, -+ s VnafYn1]}-

Proof. It follows from the axioms and rules of inference for equality
(noting that if w =y eI, then I'U {& =y} =I).

DEFINITION 3.5. A séquent XY is o “fundamental sequent’’ just
in case that either (a) X—Y is an awiom or (b) there ewisis a finite set of
equations I'C X and o finite number of individual variables m;, y; (4 < n)
such that w; X yi[I'] for all & < n and either (i) @, =1y,¢ ¥ or (il) for some
atomic formula g,

elv/@oy -y Inaftny] € X and  plvgly,, ..., Unafyny]e Y .

Using lemma 3.4 we immediately obtain (by an applcation of the
prineipal structural rule of inference) that

Lmvma 3.6. If 8 is a fundamental sequent, then S is provable.

DermvITION 3.7. If P s a junction and § a sequent such that P is
an F-derivation of 8 in which tne rules of inferemce for equality are not
applied and where ¥ is the set of fundamental sequents, then “P is a proof
of 8”.

By ||-8 we understand that there exists a proof of §. The following
theorem can easily be proven by induction on the lengths of the domain
of the proof and of the domain of the derivation respectively:

THEOREM 3.8.

1) If |8, then |- 8.
(.2) If — 8, then |=8.

We will show in theorem 3.16 that the three notions: 8, -8
and |=8 are equivalent. The equivalence of |- § with |- tells us that if
we enlarge the set if axioms of L, to ineclude all the fundamental sequents,
then we can omit the rules of inference for equality.

To show that if |=8 then |-§ we proceed as follows. With every
sequent § we associate a function TAg (called the tableau of. 8) such
that (1) the domain of TAg is a pseudo-tree, (2) the range of TAg is a set
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of sequents, (3) TAs(0) = 8, and (4) if § iy valid, then from TAg we can
obtain a proof of §, while if § is not valid then from TAg we can obtain
a (countable) relational system in which § is not valid. However, instead
of defining TAg directly we first define an auxiliary function Tag from
which TAg is easily defined. We ghall give an informal definition for Tag
(ie. we define simultaneously the domain and the functional values)
because the content of Tag more clearly expressed. The gist of the def-
inition of Tag is as follows:

(a) the domain of Tag is to be a pseudo-tree,

(b) if s ¢ DTag; then Tag(s) is to be a 2-sequence such that Tag(s),
and Tag(s), are finite sequences of sequences (of type < w) of substitution
instances of subformulas occuring in a (fixed) normal form of & (T Ag(s)

will then be defined by eliminating the structure of Tas(s), and Tag(s),,

i.e. by making them into sets of formulas),

(c) whenever Tag(s) is defined, then {Tag(s*(n)): n < w & s¥*¢(n)
€ DTag} is defined in such a way that there exists a {TAgs*n>): n< o
& s¥¢n) e DTag} — derivation of TAg(s) in which the rules of inference
for equality are not applied, and this in turn is done by breaking down
the formulas occurring in the first [s| places of the sequences in Tag(s),
and Tag(s);.

DeFINITION 3.9. If § = XY is a sequent, then Tag is defined as
follows:

PART 1 OF DEFINITION 3.9. First we choose a normal form &’ = X'+
~+X" of 8. Then let W be a set of individual variables such that |W| =
and W~ V8(§') =0. Then let Z = W u FV(§’) and finally let <@:}ico
be an ennmeration of Z (by an enumeration we understand an enumeration
without repetitions).

PART 2 OF DEFINITION 3.9. Let 8, = <8y(6)>icuce a0d Ty = (To(8)ds<pco
be enumerations of X' and ¥’ respectively. We “start” the definition
of Ta (we omit the subscript § because there is no risk of confusion) by
letting <0> e DTa and

Ta(<05) = <8y, To -

ParT 3 OF DEFINITION 3.9. Suppose that Ta({Ng, .., Bg—1)) has
already been defined (d < o) and that Ta (¢n,, ... s Ma—1p) =<8, T> where 8§
and T are finite sequences of sequences of type < o of proper Z-sub-

stitution instances of subformulas of formulas oceurring in 8’. Then we
define

(1) 4 = UJ{{8:5): jed A D8y ieDS},
(2) B = J{{T4§):  ed ~DTe}: i e DT} ~{T},
{3) %= Mgy ey Bg—y -

e ©
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Case 1. d = 6h. Let {—@dicn be an enumeration of the negation
formulas ocourring in A (note that 4 is finite). Then A*(f> e DTa it and
only if j =0 and

Ta(n*{0)) = <S7 T*<<¢i)i<m>> .

Case 2. d = 6h+1. Corresponding case for the negation formul.
in B.

Oase 8. d = 6h-+2. Let ([ iz, piopen be an enumeration of the con-
junctions occurring in A. Then let M be an m-sequence such that for
each p < m, M(p) is an enumeration of {p;: i e I,} into either n finite

as

"or an w-sequence.

Then 2*(j> e DTa if and only if § =0 and
Ta(7*(0)) = <S*M, T .

Oase 4. d = 6h-+3. Let {[[ies, ps)pem e an enitmeration of the con-
junctions oceurring in B (note then that for all p < m, I,s%0). Then let
{Ripp<mdi<p<o e an enumeration of all possible m-sequences of formulas
such that for all p <m and §j < u, 7 € {ps: 1€ I;). Then #*¢5> e DTa if
and only if §j < 4 and

- Ta(n*{f)) = <8y T impemdy
whenever j < p.
Case 8. d = 6h+4-4. Let {(Vwy)@ppdpem be an enumeration of the
universally quantified formulas occwrring in A. Then let

O = Lpolwofas]DEcaiplwifai]dica .. {Pm—1[1Wm—1/05]i<q -
Then #*¢j> e DTa if and only if § =0 and

Ta (7*¢0)) = (S0, T .

Case 6. d =6h+5. Let {(Vwy)@pdpem be an enumeration of the
universally quantified formulas in B. Then let by, ..., by_; be the first m
individual variables from the set Z (see part 1 of the definition) which
oceur neither in the range of 8;, 7 € DS, nor of T4, i e DT. Then #*¢j> ¢ DTa
if and only if § = 0 and

Ta(#*¢07) = <8, T*Upplwp/bpDp<md> -

Note that because 8 is a normal form of § (i.e. no variable occurs bhoth
free and bound in 8’) and because of the choice of the set Z all the sub-
stitutions in cases 5 and 6 are proper Z-substitutions. Thus in all cases
Ta(A*(j>) (when defined) is again of the required form. Thus the def-
inition of Ta is complete.

DErINITION 8.10. The lableaw of a sequent 8, in symbols: TAg, is
the function defined.as follows: :
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(i) DTAS = DTag v {0},
(i) TAg(0) =8,
(iil) if s eDTag, then
TAs(s) = U (Qf: fe G(Tas(S)o)} U{af: /e QTag(s),)} .

The definition of TAg was chosen so that the following lemma-holds.

LemMma 3.11.
(1) DTAg is a pseudo-tree.
(-2) TAg(0) =
(.3) 8 is obiained from TAg(<0)>) by an application of the rule of inference

for renaming the bound variables.

(4) If s e DTAg~{0}, then there exists a {TAg(s*(nd): n < o & s*(n)
e DT Ag}-derivation of TAg(s) in which neither the rule of infer-
ence for renaming the bound variables nor a rule of inferemce for
equality are applied.

If F is a function whose domain is a pseudo-tree and whose range
is a set of sequents, then (a) by a branch of F' we understand F' restricted
to a branch of the domain of #, (b) a sequent § occurs in F (or the occur-
rence of S in F is at ) just in case that § occurs in the range of ¥ (or
F(s) =08), and (¢) an occurrence of S’ is above an occurrence of S in F
just in case that F(s) = § and F(s*s’) = 8§ for some s’ # 0.

LemmA 3.12. If in each branch of TAg there occurs a fundamental
sequent, then there is a proof of 8 (and hence 8 is provable).

Proof. By 3.11, 3.8 and 3.0.

LemmA 3.13. If B is a branch of TAg, Z = {as: i < o} is the set
defined in part 1 of definition 3.9 (i.e. of Tag), # is the union of the ante-
cedents of the sequents occurring in B and § is the union of the succedents
occurring in B, then:

1) f —pest, then e,

2) #f —@e8, then pe#,

3) if [leerps e #, then for all ieI, ;€ 4,

4) if Tlier pi €8 and I #0, then for some iel, @ €8,
) if (Vew)p e 4, then for all i < w, plw/ai] e 4,

6) if (Vw)p €8, then for some i< o, plw/as]eS.

If in addition B iy a branch in which there occurs no fundamental
sequent, then we have:

Lemwva 3.14. If B is a branch of TAg in which there does mot ocour
a fundamenial sequent, Z = {as;: { < w}, & and $ are defined as in lemma 3.13,
and I' is the set of equations occurring in A, then:
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1)-(.6) as in lemma 3.13,

) Te¢s,

8) if vz w[I'}, then v =w¢S,
9)

if ¢ is an atomic formule, n < w, 2; < y{I'] for all i < n and

(-
(-
(-
(-

@[Vo/@gy +vy Vna[Bn_s] € 2, Then @[vg[yy, ..., Vn_yfyn_i] ¢ 8,
(10) £~ 8 =0.
Proof. (.7) follows immediately from the condition that in B there

does not occur a fundamental sequent. Suppose next that v w[I.
Then there exists a finite subset I” of I' such that v w[I"]. But then
because I is finite, I” must be included in the antecedent of some se-
quent §; oceurring in B. Then, if contrary to (.8), v =we 8 we would
have that v = w oceurs in the succedent of some sequent S, oceurring
in B; but then any sequent which occurred above §; and 8, in B would
be a fundamental sequent. Thus (.8). (.9) is proven in an analogous way
(note that essential use is made of the fact that the atomic formulas are
finite). From (.8) and (.9) it follows that if g € £ A §, then ¢ is not an atomie
formula; using (.1)-(.7) we see then that ¢ cannot be a compound for-
mula. In other words £~ 8§ = 0.

LemMa 3.15. If in some branch of TAg there does not oceur a fun-
damental sequent, then S is not valid. ,

Proof. Let B a branch of TAg in which there does not occur a fun-
damental sequent. Let then Z = {ai, 4 < w}, #4, $ and I' be defined as
in lemma 3.14. Then for all zeZ, let [#] = {y: y e Z &< y[I']} and
then let N = {{#]: # e Z}. If P, is an n-ary relational symbol occurring
in 8, then we define

R, = {<t‘”0]7 oy [Ty 13

while if P, does not occur in §, then we let R, = 0. It is then immediate
to verify that § is not valid in the relational system (N, B,<,-
Combining the above lemmas we finally obtain:
THEOREM 3.16. If 8 is a sequent, then the following three conditions
are equivalent:

Pxy..Ty_y € A},

(i) l'"‘:SJ
@) 4,
(iif) |—8.

It follows from theorem 3.16 that the system of axioms and rules
of inferences given for L. is complete. It also follows from the proof
of theorem 3.16 that if § a valid sequent in which the equality symbol
does not ocour, then there exists an Ax’-derivation of § in which no rule
of inferénce for equality is applied and where Ax’ is the set of logical
axioms. ‘
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4. The interpolation theorem for L., .

THEOREM 4.0. If XY is a valid sequent, then to every pair of partitions
(4y, 4y) and (By, By) of X and Y respectively there corresponds a formula ¢,
called an ““interpolating formula for (A;= By, Ay B,)”, such thai

1) A;+B; v {g} and Ay, {p}—+B, are provable,

2) FV(p) CFV(4;~B,) ~n FV (4, B,),

3) if the equality symbol ocours in ¢ then it occurs in X~ ¥,

A4) if a relational symbol has a positive (negative) occurrence in @, then
i has a positive (negative) occurrence in A,—~B, and a negative
(positive) occurrence in Ay~ B,.

Proof. Assume that X—Y is a valid sequent. Then by theorem 3.16
there exists a proof P of X—¥. Let u be the length of DP.

Part I: x =0, Then X—+Y is a fundamental sequent and for fun-
damental sequents the theorem is easily verifed.

Part II: g > 0. Let r be the root of DP (hence P(r) = X—+Y) and
then let O = {r*¢(n): n < o & 1*¢n) ¢ DP}. For each ¢ e 0, let P, =P} {s
:8 «DP & ¢ C s}; then P, is a proof of the of the sequent P(c) such that
the length of DP, is strictly smaller than x. Thus we assume (induction
hypothesis) that the theorem is true for all the sequents P (c) where ¢ € C,
and then we shall show that the theorem is also true for P(r) (i.e. X=+Y).
- Because of the definition of a- proof (cf. definition 3.7) it follows that
XY is the conclusion of a rule of inference, other than a rule of inference
for equality, with {P(c): ¢ e C} as the set of premises. We shall consider
only the case when the rule applied is V-, the remaining cases being
similar. In this case then € = {¢} and P(c¢) must be of the form

Aiv A5 O {@[v/wl}~> B, v B,
where either
(a) Adi=4; and 45U {(Ve)B[nfe]} =4,
or
(b) Aiv {(V2)O[vfe]} =4, and A} = 4,.
Suppose (a) (the case for (b) is analogous). Then by the indnction hypo-
thesis there exists an interpolating formula » for (d1v By, 450 {D[vjw]}~
—B;). Hence
(i) 4, B v {m}
(i) Az w {@[vfwl} v {z}~B,.
Hence from (ii) and V-, we obtain:

F 4z v {(V2)O[v/e]} w (a}~+B,,
that is:

(i) F4; v {n}>B,.

[ ]
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Because # is an interpolating formula for (4, By, As v {D[vjw]}~ B;)
it follows that FV(m)C (FV (4, B,) N EV(4,+B,)) U {w} and that a,
(Vw)z and (Bw)z (L.e. —(Vw)—=) satisfy conditions (-3) and (.4) of the
theorem.

Case 1. w e FV (4~ By) ~ FV (4, By).

Then we may take = as an interpolating formula for (4;~ By,
A+ B,).

‘Case 2. w e FV(4y=B;) and w¢ FV(4,~B,).

Then from (i) and (iii) we obtain

(iv) b A=+ By v {(Vw)a} ,
(v) Ay {(Vw)a}— B, .

That is, (Vw)m is a suitable interpolation formula for (41~ By, A, B,)e

Case 3. we PV (4, B,) and w ¢ FV(4,— B,).

In this case (Ew)x is a suitable interpolation formnula for (4,—+ By,
Ay~ By).

Case 4. wé FV(4,~B,) v FV(4,+ B,).

In this case either (Vw)z or (Bw)m would be a suitable interpolation
formula for (A;=B;, A;—By).

ToeoREM 4.1. If @@ is a valid formula of L., then there exists
a formula m, called an ‘“enterpolating formula for @@ such that:

1) ¢-»n and w—>D are valid formulas of L.,

2) FV(n) CEFV(p) ~n FV(D),

3) if the equality symbol occurs in =, then it occurs in @->®,
4)

(.
(.
(-

(. if a relational symbol has a positive (negative) occurrence in x, then
it has a positive (negative) occurrence both in ¢ and in &,

Proof. Apply theorem 4.0 to the sequent {p}— {®}.

5. Applications of the interpolation theorem for L,,.
Just as in the case of L,, an immediate consequence of the interpolation
theorem is the definability theorem, i.e. that explicit definability coincides
with implicit definability (cf. Beth [1]).

THEOREM 5.0. If ¢, @ are formulas of L., such that @ is obtained
from @ by replacing, for every p <u, the m,-ary relational symbol P, by
the n,-ary relational symbol Q, not already occurring in ¢ (and such that
Qu # Qu whenever u £ u') and if

[= {pAD > (Fp) ... (Fon_1) (Pyy... Vngy <> Qo . Vo))

then there ewists a formula = such that

O FV(7) C {oi: i < mo},
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(ii) for all w<n, P, does not occur in m, .
(iil) 4f a relational symbol occurs in 7, thew it occurs in g,
(i) = {p—>(F06) v (Vnoy) (<> Pyees VUnea)) -

The proof of theorem 5.0 is essentially the same proof as in the cage
of L,, and is thus omitted.

A sentence ¢ €L, is preserved under homomorphism just in case that:
for all structures ¥, if Al=p, then B |=¢ whenever B is a homomorphic
image of . If we repeat (mutatis mutandis) the proof in Lyndon [10]
we obtain: )

TerorEM 5.1 (Homomorphism theorem). If ¢ is a sentence of L,
then @ is preserved wnder homomorphisms if and only if ¢ is equivalent
to a positive sentence.

As a final application of the interpolation theorem for L,,, we give
theorem 5.3 below. However we must first give some definitions.

Suppose that fis a function whose domain is the power set of w? and
whose range is included in the power set w®; then fis an elementary function
just in case that there exists a formula ¢ € L, (which will then be called
a description of f) such that (i) FV(p) = {v;: ¢ < 3}, (ii) the only relational
symbol occurring in ¢ is a binary relation symbol and (iii) for all B C o

FR) = {{hiyica: ({0, RY, Midics) =) . (8)

Introducing the natural topology in the power sets of w? and «® it is clear
what is meant by “f is a Borel function”. If ¢ is a permutation of w and
R C of then we let o(R) = {<o(n)dj<it {Njdsese R} If f is a function
with domain the power set of w? and range consisting of subsets of b,
then f is an 4nvariont function just in case that for all permutations o
of  and all BC w? f(o(R)) = o(f(R)). A set X CP(w?)xP(w? is an
elementary set just in case that there exists a sentence @ of Loy such
that the only relational symbols occurring in @ are a binary and ternary
relational symbol and such that X = {<R, 8>: <o , B, 8)|=D}. The
notions of an invariant set and a Borel set are analogously defined.
Before the author had shown the interpolation theorem for L.,
D. 8. Scott had shown that: if the interpolation theorem is true for L

oL

then a set is invariant and Borel if and only if it is an clementary set (7)

(and in fact D. 8. Scott’s-result was a motivation for studying the inter-

polation theorem for L,,.). If we slightly modify the proof of Scott’s

(unpublished) result, in particular if we use the definability theorem

(*) The zestriction to functions / such’ that Df = P(«?) and Ufc P(w*) is clearly
not essential, i.e. dorresponding results hold for functions fsuch that Df = P (wno X ... X whs)
and df ¢ P(wmo X ... X wme).

(") C. Ryll-Nardzewski has shown the converse.

©
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instead of the interpolation theorem, we obtain that the elementary
functions are exactly the invariant Borel functions, Firgt we show the
following lemma

LeanA 5.2. To every Borel set X CP (o) X P(o®) there corresponds
a sentence @ € Lo, such that (i) the relational symbols occurring in @ are:
two binary relation symbols, a ternary relation symbol, and for each n < @,
a unary velation symbol Py, and (ii)

X = {(R, 8>: {w,<, {n}, R, S>n<m|:<P} .

Proof. Let & be the sentence of L, which charaeterizes (up to
isomorphism) the relational system <o, <, {PPn<o. Note that the ele-
ments of the subbase for the topology for P(0?) xP(w?) are of form
either By = {<R, 8>: ¢, j> e R}, or B = ((R, §5: {i,7,%)e8} or their
complements. Now it is clear that

By = {{B, 8>: {w, <, {r}, B, <o F= (Bg) (Bv,) (Paw, A Py, A Qugor) A B}

and similarly for B"* or their complements. But the Borel sets are built
up from these sets by means of countable (propositional) operations.
Thus a simple induction on the rank of the Borel set completes the proof
of the lemma. ’

THEOREM 5.3, If f is a function whose domain is the power set of w?
and whose range is included in the power set of ?, then f is an elementary
function if and only if f s an invariant Borel fumetion. (5)

Proof. Let @ be the sentence of Lo which characterizes the re-
lational system <@, <, {#}n<y. The proof is completed in 3 parts.

Part L .If f is elementary then f is an imvariant and Borel funetion.
Suppose that f is elementary. Then let ¢ be the description of 7. Tt is
clear, because of the way satisfaction is defined, that fis then invariant.
To prove that f is Borel we use induction on the rank of the formula
(noting that the quantifier also corresponds to a countabls operation
since we are considering relational systems whose domains are ).

Part IL If f is a Borel function, then the graph of f (i.e. {<R, F(R)>:
RC w?®) is a Borel set.

For a proof of the above, see Kuratowski [8], p. 291.

Part IIL If f s an invariant Borel function whose domain is the
power set of «w?, then f is am elementary function.

. By part I, the graph of f is a Bovel set, and hence by lemms 5.2
there exists a sentence ¢ such that:

(a) KR, f(B)>: RC ) == {(B, 8 {w,<, {n}, B, ‘S>n<m|:‘7’} .
Then let y be the formula obtained from @ A @ by replacing the ternary

relational symbol @ by a new ternary relation symbol @’, the relation
Fundamenta Mathematicae, T. LVII 19


GUEST


270 E. G. K. Lopez-Escobar

symbol corresponding to < by a new binary relation symbol and also
replacing, for every n < o, the unary relat]on:eul sym.bol Pn by a new
unary relational symbol P;. Then because f is an invariant function
and @ characterizes (up to isomorphism) the relational system <(w,<,
{1}>nco We then obtain from (a) that

(b) A g A B (Vo) (V) (V05) (Quityve e @0g010,)

Thus applying the definability theorem (theorem 5.0) we obtain that
there exists a formula @, such that FV(x) C {v:: © < 3}, the only relational
symbol oceurring in = is a binary relational symbol and such that

(c) ! =@ A @ (V) (VoL (V) (> Qugn0s)

But because the domain of f is the whole of the power set of w? we also
have that
{d) =@ —((Vog) (Vo) (Vo) (7 <— Quovrtn) ) -

Because suppose that (d) were false, then there would exist B, C w? and
8, C @* such that

@ * (o, <, in}, Ry, Sodnce [=(V05) (V0,) (V05) (70 <> Qugvy0s) ,

(ii) {w, é7 {n}, Byy Bpdn<a l= hrd'/
From (a) we then obtain that
(iii) <o, <,y {0}y By, f(Bo)dn<o =@ -

From (iii) and (¢) we obtain that ‘
(iv) (o, <<, {n}, Ry, f(Bo)dn<a [= (V00) (V01) (V) (7% <—> Qugty03)

From (iv) and (i), because @ does not occur in #, we obtain that Sy = 7 (R),
but then (iii) and (ii) would contradict each other. Thus combining (c)
with (d) we have that

) - [P {pe (Vo) (V01)(V0,) (e Qogoyy))
ie.

F(B) = {{mdicst (Ko, BY, {Midycs) [=a} .

6. Model-theoretical versions of the interpolation theorem
for L...

DerINITION 6.0. If K is a class of relational systems of type v, then K

s an “elementary class” in symbols: K ¢ EC (L) [“elementary dlass in

the wide sense” in symbols: K € ECs(Luyw)] just in case that there eisis

a sentence ¢ € Ly, [a set of sentences ' C L,,,] such that the relational symbols

oceurring in @ [in I'] correspond to the similarity type v and such that K is
the class of all models of ¢ [ of I'].
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DEeFINITION 6.1. If K is a class of relational systems of type v, then K
is a “pseudo-elementary class”, in symbols: K e PC(L.o) [a “pseudo-
elementary class in the wide sense in symbols: X e PC4(Low)] just in class
there exists a similarity type v' D v and a class M of relational systems of
type »' such that K is the class of all o,-reducts of the members of M and
such that M € EC(Lu,0) [M € EC4(Lyyo)].

The interpolation theorem for L, (theorem 4.1) can then be ex-
pressed in the form:

THEOREM 6.2. If K, K’ are classes of relational systems of type v such
that K ~K' =0 and such that K e PC(Ly.), K’ € PC (Loww), then, there
ewists a class N of relational systems of type v such that K CN,NAK =0
and N e EC (Lwlm)-

In the case of Ly, the corresponding theorem is also true for PC,-clas-
ses (cf. Keisler [6]). However in the case of L., it i5 not so, in fact we
have the following:

. THEOREM 6.3. The classes K; = {: 9 is isomorphic to {wy, S0}y
and K, = {W: A is a non-well-ordered linear ‘ordering} are such that
K; e PCo(Loyo), Ko e PC(Lw), Ky A Ky =0 and such that there does not
ewists a class N which is closed under L, elementary equivalence and K, CN
and Ky ~ N = 0. (%)

Proof. That K, ¢ PC(L,,,) and K; ~ K, = 0 is immediate. To show
that K, € PCy(La,o), We note first that <e;,e,> can be characterized
up to isomorphism as a relational system {4, B) such that (i) R is a linear
ordering of A, (ii) for every u < w,, there exists an initial segment of %
isomorphic to {u, ¢, », and (iii) for every a ¢ 4, the set of R-predecessors
of @ is countable. Condition (iii) can be expressed in the following form:
(iil') there exists a ternary relation F on A4 such that for each ae A,
{(z, 4): <a,,y> ¢ F} is a function whose domain is (isomorphic t0) w and
whose range is the set of R-predecessors of a. Since every countable
ordinal can be characterized by a single sentence of Lo (cf. [9] and [13]),
it follows then from (i), (ii) and (iii’) that K; ¢ PCy(Lypw). Suppose next
that N is a class such that:

" KCN and K;AnN=0.
Then {w;, &,» ¢ N and all linear orderings in N must be well-orderings.
Hence since , and o, +w, o* (considered as linear orderings and where o*
is the order type of the negative integers) are Lu.-elementarily equiv-
alent (cf. [5] and [9]), it follows that if N satisfies the condition (*)
then N cannot be closed under Liyo-elementary equivalence (and in
particular N cannot be an elementary class).
mional systerms U and B of the same similarity type » are Lue-ele-
mentarily equivalent just in case that for every sentence ¢ e Luyw Such that the relational
symbols occurring in ¢ correspond to the similarity type », Aj=¢ if and only if Bi=¢.
19+
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On a Freedman’s problem
by
C. Ryll-Nardzewski (Wroclaw)

Given a compact and metrisable space X, let us consider the space
2% of all closed subsets of X (cf. [1], p. 106) and an arbifrary fixed
7 2%, Let 2°C 2% denote thé set of all homeomorphs of Z contained
in X. D. Freedman has conjectured that Z° is always a Borel set in 2%
and, in fact, for the case where X is the Cantor dyadic set this was
proved by D. Scott ([2], pp. 126-128). Our aim now is to prove the general
statement for an arbitrary X. This is based on a refinement of the
method of [3] (%).

TawormM 1. If F is an orbitrary group of autohomeomorphisms of
a separable topological space G admitting a complete metrization (2) and
a continuous map @ from @ into a metric space satisfies the condition

(C) the class of all level-sets of @ and the class of oll F - orbits are identical, i.e.
{9: 9@ =0(90)}: doc @) ={{gf: feF}: ge@},

then @(G) is an absolutely Borel set (i.e. every homeomorph of zp(G) n any
meiric space is Borel).
Proof. The decomposition of & given by Fy = {gf: f ¢ F} is open
in the sense of [3] since
{9: By U #0} =H1{g: gfeU}.

Let 8 be a Borel selector given by the Lemma (see [3], p. 129). The con-

. tinuous mapping’p is one-to-one on 8 and ¢(8) = @(G) (8 is a selector),

whence ¢(@) is an absolutely Borel set (cf. [1], p. 396).
THEOREM 2. The set Z° (introduced at the begining) és Borel.
Proof. The set G of all homeomorphisms of Z into X is a Gy set
in the space XZ of all continuous maps of Z into X with the topology
() [2] and [3] give information on other topics similar to those presented in
this note.
(*) Let us recall that every. G, set in a complete metric space always admits

a complete metrization topologically equivalent to the original one ([1], . 316), e.g. the
set N1 of [2] is such a set in the space N” of [2]. :
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