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Quasi-universal flows and semi-flows
by

R. D. Anderson * (Amsterdam)

1. All spaces on which groups are to act will be compact and
metrie. (*) (?) As general references for language and background we
cite [4], [5], and [6], Chapter 5. A flow on a space X is a transformation
group (G, X) with ¢ either isomorphic to the integers (a discrete flow)
or the reals (a continuous flow). A discrete flow may be considered as
generated by any one homeomorphism (the unit of &) of X onto itself.
A semi-flow may be considered as arising from a mapping (%) x of X into
itself and consists of the semi-group of mappings formed by the identity
and the various (positive) iterates of u.

A flow (G, X;) on a space X, is called universal if for every flow
(G, X,), for X, a copy of X, there exists a homeomorphism ¢ of a closed
subset X’ of X, onto X, such that for each p ¢ X’ and ¢ ¢ &, pg(p) = go(p).
The set X’ will be invariant under @. In sho:t, (&, X,) is universal pro-
vided every flow (&, X,), for X, homeomorphic to X, can be imbedded
in (¢, X;). If (@, X;) is universal and the flow is discrete, we call that
homeomorphism of X; which is the unit of & a universal homeomorphism
of X,.

A flow (G, X) is called quasi-universal (*) provided that for any flow
(G, Y), for ¥ any compact metric space, there exist a closed subset Z
of X and a mapping ¢ of Z onto ¥ such that for each z¢Z and g ¢ G,

* Alfred P. Sloan Research Fellow.

(*) As .usual, to get theorems about locally compact metric spaces we may use
one-point compactifications and require that all homeomorphisms carry the adjoined
point onto itself.

(%) The main results of this paper follow from results and methods of [1] and two
theorems of Baayen and de Groot communicated orally to me. Proofs are included
herein. It is my understanding that they intend to publish a rather general theory of
Jinearization of mappings which will include these theorems. The two theorems follow
from methods developed earlier by de Groot [2] as used in [8].

(®) A mapping is a continuous transformation.

(*) or, more specifically, quagi-universal with respect to all flows (discrete or
continuous as appropriate) on any compact metric gpace.
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@g(3) = ¢p(2). The set Z will be invariant under ¢. We say also that (¢, Z)
is a subflow of (G, X) and that (G, X) is raised to (&, Z).

We similarly define universal and quasi-universal semi-flows. A map-
ping w of X into itself is called universal and generates a universal sems-flow
provided that for any mapping 4 of X into itself, there exists a homeo-
morphism ¢ of a closed subset X’ of X onto X such that for each p ¢ X7,
pu(p) = Ap(p)-

A mapping x of X into itself generates a quasi-universal semi-flow
provided that for any mapping ¢ of a compact metric space Y into itself
there exist a closed subset Z of X and a mapping ¢ of Z onto Y such
that, for each p e Z, gu(p) = op(p). We may also say that o is raised
to ux (acting on Z).

In this paper we shall prove that there exists a quasi-universal
discrete flow on the Cantor set O (%) (Theorem III), that there exist quasi-
universal continuous flows on the solid torus in Euclidean 3-space and
on a certain 1-dimensional continuum (Theorems VII and VI), and that
there exists a quasi-universal semi-flow on ¢ (Theorem X). In Theo-
rems IV and V, some characterizations of a natural quasi-universal discrete
flow on C are given.

2. Discrete flows. The following theorem is established in [1];
we shall not prove it here.

TrEOREM 1. Any discrete flow on a compact metric space can be raised
to a flow on a Cantor set.
Let the Cantor set € be represented as the infinite product [] ¢

—oo<{< 0o
of copies of the Cantor set and let p e U be represented as {p:}, ps e Cs.
For each 4, let ¢; be a homeomorphism of C;.; onto C; which, for con-
venience, could be taken as canonical if all the O;’s have the same re-
presentation. Let @ be a homeomorphism of O onte O given by & ({p:})
= {pi} where p;= @i(pi11), Le. the image of {p;} under & is that point
whose ith coordinate is @i(p;+1) for each 4.

TeeorEM II (Baayen and de Groot), The homeomorphism &
is @ universal homeomorphism of C onto itself.

Proof. Let ¢’ be a copy of the Cantor set and let » be a homeo-
morphism of ¢ onto itself. We wish to exhibit a homeomorphism 0 of ¢’
into ¢ such that 87'¢0 = 7, (in which case 87 is the definitional homeo-

(*) By a Canior set is meant a space homeomorphic to a Cantor ternary set. A cantor
set may be characterized as a zero-dimensional compact metric space with no isolated
points. In this note, various representations of the Cantor set will be used most of which
are standard and all of which are easy to verify as being the Cantor set.
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morphism desired). Let 6, be a homeomorphism of ¢’ onto C,. For each

" ¢e 0y we define 0(c) = {pi}, pse O; where

Do = B4(c) ,
—1 —1 -1 (3 3
pi= { Pic1-@1 @0 Ben'(e), >0,
Pi-p-18o77(c) , i<0.

It is easy to see that 8 is 1-1 and continuous into . As ¢’ is compact
so is 8(C') and thus 8 is a homeomorphism.

‘We wish to observe that @ carries 0(C’) onto itself and that for each
ce 0, ®b(c) = bn(c). Applying » and then 6 means that p, = Byn{c).

P { pigi g G o), i>0,
P= ) .
Piv @b T (0) 1<0.

However first applying 6 produces

fpf; = B(c) . )
v = { 9o e Oy(e),  i>0,
: P Bo1'(C) 4 <0,

Then applying @, noting that p;y,—>pi, we get

Po =000 Bon(0) , _
e = { (i ) pitaengi 90 007 e), P> 0,
(@) @is1--92 007 (c) i<0,

a8 we wished to show. We also note that this last observation shows
that @ carries each point of 6(C’) to a point of 6(C"). A similar argument
suffices for &™*. Thus 6(¢’) is invariant under @, completing the proof.

As an immediate corollary of Theorems I and II we have

THEOREM IIT. The flow generated by @ is a quasi-universal discreie
flow on C.

Remark. Since & is a universal homeomorphism of ¢ onto itself,
it is immediate that any homeomorphism of ¢ which “contains” a copy
of @ on a closed subset is also a universal homeomorphism. There are
many such, including, for instance, one which is the identity on some
open set in C. Thus it is not a priori clear that @ is ‘“the” universal homeo-
morphism which merits study. However, in the ensuing discussion of &,
it will be shown (Theorems IV and V) that @ is, in fact, a naturally arising
homeomorphism from various points of view.

OTHER REPRESENTATIONS OF @. The Cantor set (' can be thought
of as the space of all functions f, defined over the set I of all integers
into the set {0, 1}. The shift o, of symbolic dynamics (see [5], for instance)

1*
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is the homeomorphism of ¢ onto itself that corresponds a function f. to
a function f; where, for each 4, |4 < oo, fo(f) = fo(i—1). The shift % hag
exactly two fixed points, the two constant functions, and thus is not
“the same” as @ which has a Cantor set of fixed points. @ can be thought
of as defined like o, but with a geometric Cantor Set replacing the pair
{0’11};1 [1], an “infinite” shift o is defined essentially as follows: Let
{¥;}, ljl < oo, be a collection of digjoint subsets of I with | Ny=1I

lil<eo

and with each N; unbounded positively and negatively. For each ¢, let ¢
denote the unique predecessor of 4 in the N; to which ¢ belongs. Then ¢
is that homeomorphism of C onto itself that corresponds f. to f; where
for each 4, |i] < oo, fu(1) = f5(4"). Thus ¢ is the homeomorphism obtained
by simultaneously using “ordinary” shifts on.each of eountably many
Cantor sets €; whose product may be considered as C. Hence, o is an
“infinite shift”. In a sense, @ permutes coordinate Cantor sets while ¢
preserves them. However we have the following theorem.

THEOREM IV. There is a representation of O such that & and o can
be interpreted as the same homeomorphism.

Proof. Let € be regarded as the set of all functions g, from the
set of all ordered pairs (¢,§) of integers to the set {0, 1}. Then ¢ may be
regarded as the homeomorphism of C onto itself that corresponds a func-
tion g, to a function g, where for each (¢, §), |i], |j| < oo, gal#, §) = ga(i —1, 7).
But let 0; = {f10lfi,0 is a function from {(¢, j)} for fixed ¢+ and all |j| < oo,
into {0, 1}} and let ¢; map C;—; onto U; canonically. Then if we regard ¢
as [] O, it follows that & is precisely the homeomorphism ¢ of ¢ onto

] <oo
its:zllf. Thus Theorem IV is proved.

For any #, 1 <2 < oo, U may be represented as the space of all
functions from the set of all ordered n-tuples of integers to the set {0, 1}.
For any §, 1 <§j < n, one can define a “shift” ¢(j, n) with respect to the
first §j of the coordinates of the n-tuples (the ‘shift” being simultaneous
in all of the first j coordinates and the homeomorphism being the
identity on the other (m—j)-coordinates). The following theorem is easy
to prove either by analogy with the original deseription of ¢ or with
that of @.

THEOREM V. If n>1, every o(j,n), 1<j<n, is conjugate to o
(or @), i.e. there is a homeomorphism n of U onto dtself such that o(j, n)
=n"ton. If n=1, then o(1,1) s o, by definition.

Thus it is seen that, in the above sense, the shift o, is a rather special
homeomorphism while the infinite shift besides being a universal homeo-
morphism on O is, in the sense of Theorem V at least, the natural gen-
eralization of o,.
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3. Continuous flows. While the results of this section follow
easily from constructions of [1] and the results of Section 2, the final
result (Theorem VII) that there exists a quasi-universal continuous flow
on the solid torus in E® seems rather surprising.

For any discrete flow (I, ¥) with ¢ the unit of I,, let TC(Y, 9)
denote the twisted cylinder over ¥ with respect to ¢, i.e. the image of the
set which iy ¥ cross the unit interval [0,1] under a map B which for
each y ¢ Y identifies the point (y, 1) with the point (g(y), 0)) and is 1-1
otherwise. Let (B;, TC(Y, g)) represent the continuous flow on TC(X, g)
induced by (I,, Y) and the [0,1] parametrization (with ¥ identified
as the image under g of ¥ x {0}). For & the homeomorphism of Section 2,
(s, 0) induces (R, TC(O, ®)) and as O is zero-dimensional, TC(C, D)
is 1-dimensional.

Let (R,, X) be any continuous flow with ¢ the unit of the reals R,.
Let (I;, X) denote the discrete flow whose generating (unit) homeo-
morphism is g. Let a be the canonical (identity) imbedding of (I,, X)
in (B,, X). Let, by Theorem I, (I,, 0) be a discrete flow on C for which
there is a mapping » of ¢ onto X such that for each ¢’ ¢ I,, ¢'v = vg’,
with ¢’ though of as acting on the appropriate space. As » maps ¢ onto X,
there exists an induced mapping I" of TC(C, g) onto TC(X, ¢) such that I'
raises (R,, TC(X, g)) to (R,, TC(C, g)), i.e. I' commutes with each ¢’ < R,
thought of as a homeomorphism of the appropriate space.

Let A denote the map of TC(X, g) onto X induced by the canonical
imbeddings of (I,, X) in (R,, X) and in (R,,, TC(X,¢)) and such that
(By, X) is thus raised to (R,, TC(X,yg)) by means of i

Thus we have the following diagram:

(By, TC(O, 9) > (B, TCX, 9)) > (By, X)

I,C) “—v~'> (I,X)

with the vertical arrows representing the cannonical imbeddings implied
by the twisted cylinder construction. The map AI' raises (R,, X) to
(By, TO(0, 9)).

Further we have by Theorem III that there is an imbedding of
Iy, 0) in the flow (I, 0) and thus an induced imbedding of (R;,, TC(0, g))
in the flow (R,,,,TO(G’, (6)}. Hence (R,, X) may be raised to a closed
subflow of (Ro, TO(C, ®)). Thus we have established

TaroREM VI. The flow (Rp, TC(C, ®)) is a quasi-universal continuous
flow and TO(0, @) is one-dimensional.

By definition, any continuous flow in which (B, TC(U, &)} is
imbedded is also a quasi-universal flow. But in [7] it is shown that for
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any imbedding of C in the interioir of the 2-dimen§iona1 dise Mz; t.he
flow (I, ) can be extended to a flow (Igs, .Mz). with @* the identity
on the boundary of 3f,. From the last condition it follows that the set
TC(M,, ¥*) is in fact a solid torus. Then we may agsert that the con-
tinuous flow (Res, TC(M,, @*)) is a quasi-universal flow, for (Rg, TC(C, @)
is imbedded in it. Thus we have

TraeorEM VII. There ewists a quasi-universal flow on the solid torus
in BB

The exhibited flow has no fixed points and may be thought of as
having circular orbits on the boundary of the torus. Furthel: each orbit
may be thought of as parametrized by the number of revolutions around
the “hole” of the torus.

4. Semi-flows. In connecticn with Thecrem ITA and IIB of [1]
it was observed that with obvious modifications of the argument given
in [1] for Theorem I of this paper, the following theorem may be estal?-
lished. (““Onto” maps were used in [1] but the suggested argument is
just as valid for “into” maps.)

TaEoREM VIII. Any mapping of a compact metric space into itself
may be raised to a mapping of C into C.

There is also an easy modification (given below) of the proof of our
Theorem IT to establish.

TEEOREM IX (Baayen and de Groot). There exists a universal
semi-flow on C.

Proof. Let C= [] C; where, for each i, C; is a Cantor set and

0<i<oo

let wi be & homeomorphism of C;4; onto Cy. Let ¥ be the mapping of ¢
onto € such that, for p = {pi} e 0, pre Oz, ¥(p) is the point whose ith
coordinate is pi(psa1) for each ¢ > 0. We shall show that ¥ is a universal
mapping of O into C.

Let ¢’ be a Cantor Set and let 1 be an arbitrary mapping of ¢ into C'.
‘We wish to describe a homeomorphism x of € into ¢ such that, for each
ce U, Px(c) = =A(c).

Let x, be a homeomorphism of ¢’ onto C,. For each ce (', we
define

#(e) = {ps}, peely

where

Po=mle) and  pi=witi..yitws ndie) for >0,

It is easy (and routine) to see that » is one-to-one and continuous. As ¢’
is compact, »(C") is compact and thus » is a homeomorphism.

‘We wish to observe that ¥ carries »(0’) into itself and that.for each
c¢e C'y, Wu(e) = #A(c).
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Applying 4 and then » means that

Po=#pA(e) and p;= yJi—_ll...qul_lzpo—lxﬂ}.Hl(c)

whereas applying x produces
Bo=nle) and  pi=yili..ur y T die)

and then applying ¥ produces

Po=(pows V%h(e) and  ps = (pepi )pi i ys e A e)

as we wished to show.

We also note that this last observation shows that ¥ earries each point
of »(C') to a point of =(C").

As a corollary of Theorems VIII and IX we have

THEOREM X. There exists a quasi-universal semi-flow on the Cantor
set, i.e. a mapping ¥ of C onte C such that each mapping of any compact
metric space into itself may be raised to ¥ restricted to a suitable closed sub-
Cantor set of C.

Question: Let ¢ and ¢’ be Cantor sets. Does there exist a homeo-
morphism w of ¢ onto itself such that for any homeomorphism « of ¢’
onto itself there exists a map ¢ of ¢ onto ¢’ such that gw = ap? Here
we are asking that the closed subset of ¢ (of quasi-universality) be
itself. There does exist such a strongly quasi-universal p-adic homeo-
morphism with respect to all p-adic homeomorphisms but the author
does not know the answer to the general question. An affirmative solution
to such question would imply, by the devices of Section 3, the existence
of a continuous flow on a certain 1-dimensional compactum M such
that all continuous flows on compacta can be raised to such flow itself
{as distinet from closed subflows of such flow as in Theorem VI). As the
solid torus can only map onto locally connected continua, there could
be no similar general analogue for Theorem VII.

Added in proof: Ellard Nunnally has answered this question in the negative
Submitted to Collogquium Mathematicum.
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Linear-compact congruence topologies in *-lattices*
by
P. S. Rema (Madras)

1. Introduction. The notion of “linear-compactness” was first
introduced by Lefschetz in topological linear spaces. This concept has
been further extended to topological groups and modules by Leptin.
This paper gives a formulation for linear-compactness in a class of topo-
logical lattices the C-lattices. Here the gemeral properties of linear-
compact C*-lattices are analysed and it is shown that the study of any
Hausdortf linear-compact C*-lattice can, in some senge, be reduced to
the study of certain discrete linear-compact lattices. We then proceed
to establish that the centre of a discrete linear-compact C*-lattice is
finite which enables us to prove that the centre of a linear-compact
Hausdorff C*-lattice is eompact. Next we investigate the structure of
the compact complemented modular C*-lattices from which we deduce
that any linear-compact Hausdorff C-Boolean algebra is the direct
product of (two element) simple Boolean algebras. Hence the question
naturally arises as to whether every linear-compact C*-lattice admits
such a direct product decomposition into simple lattices. In this paper
we shall answer this question in the affirmative for a certain elass of
CO*-lattices viz., the generalized continuous geometries. We also define
the concept of a PC*-lattice and show that a Hausdorif PC*-generalized
continuous geometry is linear-compact if and only if its cenfre is com-
pact. The paper ends with a brief discussion on some unsolved problems
concerning the PC*-lattices.

2. Preliminaries and basic results. In our notations and ter-
minology in lattice theory and <opology we shall generally follow [2]
and [5], respectively.

It is seen that in a lattice L, given any set (' =[68;] (¢ e I) of con-
gruences directed below in the lattice of congruences, the subsets
Vi=[(e, y)[z0:1y] (¢ € I) define a uniformity V' on L. Further the lattice
sum and produet in L are uniformly continuous with respect to V.
A complete study of these uniformities, termed ‘‘congruence uniformites’

* Forms a part of the author's doctorate dissertation, University of Madras, 1963.
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