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On a Freedman’s problem
by
C. Ryll-Nardzewski (Wroclaw)

Given a compact and metrisable space X, let us consider the space
2% of all closed subsets of X (cf. [1], p. 106) and an arbifrary fixed
7 2%, Let 2°C 2% denote thé set of all homeomorphs of Z contained
in X. D. Freedman has conjectured that Z° is always a Borel set in 2%
and, in fact, for the case where X is the Cantor dyadic set this was
proved by D. Scott ([2], pp. 126-128). Our aim now is to prove the general
statement for an arbitrary X. This is based on a refinement of the
method of [3] (%).

TawormM 1. If F is an orbitrary group of autohomeomorphisms of
a separable topological space G admitting a complete metrization (2) and
a continuous map @ from @ into a metric space satisfies the condition

(C) the class of all level-sets of @ and the class of oll F - orbits are identical, i.e.
{9: 9@ =0(90)}: doc @) ={{gf: feF}: ge@},

then @(G) is an absolutely Borel set (i.e. every homeomorph of zp(G) n any
meiric space is Borel).
Proof. The decomposition of & given by Fy = {gf: f ¢ F} is open
in the sense of [3] since
{9: By U #0} =H1{g: gfeU}.

Let 8 be a Borel selector given by the Lemma (see [3], p. 129). The con-

. tinuous mapping’p is one-to-one on 8 and ¢(8) = @(G) (8 is a selector),

whence ¢(@) is an absolutely Borel set (cf. [1], p. 396).
THEOREM 2. The set Z° (introduced at the begining) és Borel.
Proof. The set G of all homeomorphisms of Z into X is a Gy set
in the space XZ of all continuous maps of Z into X with the topology
() [2] and [3] give information on other topics similar to those presented in
this note.
(*) Let us recall that every. G, set in a complete metric space always admits

a complete metrization topologically equivalent to the original one ([1], . 316), e.g. the
set N1 of [2] is such a set in the space N” of [2]. :
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of uniform convergence. Further we put F = {f: f e & and fZ = Z} and
we define the map ¢ of @ onto Z° by the formula: ¢(g) = gZ. It is easy
to check that the triple @, F, g satisfies all the conditions of Theorem 1,
whence Z° = (@) is Borel.

Finally let us observe that, in fact, the Lemma of [3] yields the
following general proposition.

PROPOSITION. If a continuous map ¢ from a melric, separable ond
complete space X into a metric space satisfies the condition

(C")  ¢7%(T) is open for every open U C X,

then @(X) t8 an absolutely Borel set.
This proposition yields Theorem 1 of this paper since (C) implies (0').
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Some theorems of set theory
and their topological consequences

by
R. Engelking and M. Karlowicz (Warszawa)

It iy generally known that numerous theorems of topology have
a set-theoretical content, and some even prove to be theorems of set
theory formulated in a different language. In such a situation it is often
possible to formulate the corresponding theorem of set theory *and
prove it, and finally — by applying some substitution — pass to a topo-
logical theorem. This usually permits a simplification of the proof and
a better understanding of the content of the theorem.

The object of the present paper is to give such proofs of several
theorems of general topology concerning Cartesian products, among
them the well-known theorems of Bockstein and Marczewski (and some
of their generalizations), and the Hewitt-Marczewski-Pondiczery theorem
on dense subsets of Cartesian products (). All topological theorems of
the present paper are grouped in the secopd part and are,deduced from
three theorems of set theory which are presented in the ‘first part and
which, as we think, may be interesting in themselves.

1. Three theorems of set theory. In the proof of Theorem 1
we shall use theorem I(ii) of [4] (a simple proof of this theorem is given
in [10]), which permits one to estimate the power of a family of sets with
the help of the powers of its elements and the powers of its quasi-disjoint
subfamilies. Recall that a family of sets W is called quasi-disjoint if
Ay~ Ay, =X(A) for distinet 4,, A, e A (?). The theorem of Erdos-Rado
mentioned above tells us that if a family U is composed .of sets of power
at most n and the power of every quasi-disjoint subfamily %, C9 does
not exceed m = ¥, then W< mn. ®)

() Recently K. A. Ross and A. H. Stone gave in [12] a very simple and elegant
proof of the theorem of Bockstein and certain of its generalizations. It appears (see [3])
that by a similar method one can also obtain some results of the present paper.

(*) By the symhol I(W) we mean the intersection of all sets belonging to . The
union of all sets belonging to %A is denoted by S(%).

) Small Gothic letters denote finite and infinite cardinal numbers. The symbol z
denotes the power of ‘the set 4. -
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