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of uniform convergence. Further we put F = {f: f e & and fZ = Z} and
we define the map ¢ of @ onto Z° by the formula: ¢(g) = gZ. It is easy
to check that the triple @, F, g satisfies all the conditions of Theorem 1,
whence Z° = (@) is Borel.

Finally let us observe that, in fact, the Lemma of [3] yields the
following general proposition.

PROPOSITION. If a continuous map ¢ from a melric, separable ond
complete space X into a metric space satisfies the condition

(C")  ¢7%(T) is open for every open U C X,

then @(X) t8 an absolutely Borel set.
This proposition yields Theorem 1 of this paper since (C) implies (0').

References

[1] C. Kuratowski, Topologie I, Warszawa-Wroctaw 1958,

{2} Dana Scott, Invariant Borel Sets, Fund. Math. 56 (1964), pp. 117-128.

[3] C. Ryll-Nardzewski, On Borel measurability of orbits, ibidem 56 (1964),
pp. 129-130. '

INSTYTUT MATEMATYCZNY POLSKIEJ AKADEMII NAUK
INSTITUTE OF MATHEMATICS OF THE POLISH ACADEMY OF SCIENCES

Regu par la Rédaction le 6. 11. 1964

Some theorems of set theory
and their topological consequences

by
R. Engelking and M. Karlowicz (Warszawa)

It iy generally known that numerous theorems of topology have
a set-theoretical content, and some even prove to be theorems of set
theory formulated in a different language. In such a situation it is often
possible to formulate the corresponding theorem of set theory *and
prove it, and finally — by applying some substitution — pass to a topo-
logical theorem. This usually permits a simplification of the proof and
a better understanding of the content of the theorem.

The object of the present paper is to give such proofs of several
theorems of general topology concerning Cartesian products, among
them the well-known theorems of Bockstein and Marczewski (and some
of their generalizations), and the Hewitt-Marczewski-Pondiczery theorem
on dense subsets of Cartesian products (). All topological theorems of
the present paper are grouped in the secopd part and are,deduced from
three theorems of set theory which are presented in the ‘first part and
which, as we think, may be interesting in themselves.

1. Three theorems of set theory. In the proof of Theorem 1
we shall use theorem I(ii) of [4] (a simple proof of this theorem is given
in [10]), which permits one to estimate the power of a family of sets with
the help of the powers of its elements and the powers of its quasi-disjoint
subfamilies. Recall that a family of sets W is called quasi-disjoint if
Ay~ Ay, =X(A) for distinet 4,, A, e A (?). The theorem of Erdos-Rado
mentioned above tells us that if a family U is composed .of sets of power
at most n and the power of every quasi-disjoint subfamily %, C9 does
not exceed m = ¥, then W< mn. ®)

() Recently K. A. Ross and A. H. Stone gave in [12] a very simple and elegant
proof of the theorem of Bockstein and certain of its generalizations. It appears (see [3])
that by a similar method one can also obtain some results of the present paper.

(*) By the symhol I(W) we mean the intersection of all sets belonging to . The
union of all sets belonging to %A is denoted by S(%).

) Small Gothic letters denote finite and infinite cardinal numbers. The symbol z
denotes the power of ‘the set 4. -
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THEOREM 1. If families A and B are composed of sets oj power not
exceeding . and m respectively, where n < m =8, and
(1) AnB#0 forall Ae¥,Be¢B,
then there exists a set N of power not greater than, m™ such that
(2) AABAN#0 forall AeW,BeB.

Proof. Let us suppose that the family % is well ordered by the
relation <. Let

B*={TCSA): T~ B #*0 for all Be B}.
For all A, ¥ the family
W(do) = {A eW: 4 ~ Ay e B*}

is non-empty, since it contains 4,. Denote by A¥ the first set (with
respect to the ordering <) belonging to it and let

TAoz.A.or\A::

clearly T4 e B* for all 4 .
Let us now consider sets A,, 4, ¢ W such that T4, ~ T4, € B*. Then
we have

Ty nTay =41~ AF A Ay~ Af = (A3 ~ A)) ~ (AF ~ 4,),

from which it follows, in view of the fact that B* contains with each set
all subsets of S(U) which include it, that A¥ < A¥ and A¥ < 4. Hence

(3) it Tg o~ TseB*, then A =A%,

Let ¥ ={T.4}4ex and let I, be an arbitrary quasi-disjoint subfamily
of T. We consider first the case

(i) I(T,) e B* .

Since T, n T4 =1(T,) for distinet Ty, Ta, eT,, on the basis
f (3) and the definition of the sets 7, there exists an A, e such that

T_A=.AH.A*=.AI‘\A0 for all TAE%

From this it follows that S(I,) C 4, and —in view of the >_quasi-
dJS]Olntness of the family I, and the condition f <n < m—that T, < m.
If (i) does not hold, then

(i)  X(T,) ¢ B*, ie. there exists a B, e B such that I(To) ~ By = 0.
Since T4~ B, 0 for all T, eF,, we have
(TAUT) A By#0  for T,e%,,

©
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and hence in view of the quasi disjointness of the family ¥, and the con-
dition B, < m — we conclude that To<m

Hence the power of a quasi-disjoint subfamily ."&,CI does not
exceed m and from the theorem of Erdés-Rado we have T < m"%, from
which it follows that the set N =S(Z) satisfies the conclusion of the
theorem. f

CoROLLARY. If families A and B are composed respectively of finite
sets and sets of power abt most wm = x and satisfy condition (1), then there
exists a set N of power ai most m which satisfies condition (2).

-5
Proof. Observe that % = (JA;, where
=1

= {4 «A: A has exactly i elements} .
Using Theorem 1 we obtain a set N; of power <<mf=m such that
AnNnBAN;#0 for AeWyand BeB.

- .
It is easy to check that the set N = | J N; satisfies the required con-
‘ i1

dition.

In [2] a theorem is proved establishing a special case of the above
corollary. By meodifying slightly the proof of that theorem one gives
a direct proof of the above corollary. A variant of Theorem 1 with
n =1 = K, and Ry41.in place of m® is obtained, by using the continuum
hypothesis, in [9].

THEOREM 2. If the families of sets {Aier and {Bilier are composed
of sets of power not exceeding respectively n and m, where n <m > 8, and

4) Ai~nBy#0 and A;~nB =0 foral t,tel,t#1",

then T < mn. )
Proof. The families A = {4, v {1}},., and B = {B, v {1}},,, satisty
the hypotheses of Theorem 1, where in place of n we must take n--1.
For the set NV satisfying the conclusion of that theorem and an arbitrary
te T we have
(Ao ) A (Biu{t) =8ICN

and hence T'C N and T < N < m™ = nin
"~ The corollary below follows from Theorem 2 in the same way as
the previous Corollary follows from Theorem 1; it can also be deduced
from the Corollary to Theorem 1. ‘

COROLLARY. If the families of sets {Aiher ond {Bier are composed
respectively of finite sets and sets of power ai most m =8, and satisfy con-
dition (4), then the power of the set T' does not ewceed wm.
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Remark., Theorem 2 can be derived directly from the theorem of
Erdos-Rado. Let T,C T be a non-empty set of indices such that the
family {d:)ier, i8 quasi-disjoint. Choose %, ¢ I, and notice that B, ~
~ ) A; = 0. For every teT,\ {{;} we have (4:\ ﬂ At) ~ By, # 0, and

teTo
hexice, in view of the quasi-digjointness of the fam]ly {4diMer, and the

condition Bt,, <m, we conclude that To<m+1 =m, since 4,4,
for ¢t % t'. It follows that T < mm

In the proof of Theorem 3 we shall use theorem II of [5], which
states that an arbitrary set 4 of power m > &, includes 2™ independent:
subsets, i.e. that there exists a family & of subsets of the set A such that
& =2" and

SEASEA..A8E#£0, where =48, 8= ANS,

for an arbitrary finite sequence 8, Sy, ..., Sz of distinct sets from & and
an arbitrary finite sequence ¢, 4, ..., % of zeros and ones.

THEOREM 3. For every set A of power m > 8o there ewists a family §
of functions mapping the set A into dtself such that T =2m and for an arbi-
trary finite sequence fy,fs, ..., fr of distinct functions from § and an arbitrary
finite sequence ay,ay, ...,ax of elements of the set A there exists an ac A

such that
fi(a) = for  i=1,2,..,k.
Proof. TLet %A be the family of all sequences (ay,ds, ..., a;
Fy, Fy, ..., Fi) where k is an arbitrary natural number, a,,a,,...,a; are

elements of 4, and F,, F,, ..., Fy are finite subsets of 4. Since ¥ =m,
there exists-a one-to-ome-map h of the set A onto the family 9.

Let & be a family of power 2™ of independent subsets of 4. and a,
an arbitrary element of A. For every § ¢ S we define a function fg mapping
the set A into itself. Accordingly we consider for every a ¢ A the sequence
h(a) = (ay, Gy, ..., ax; Fyy Fy, ..., Fi) and set

a; if there exists 4 < k&, such that F;C 8 and
F;¢ 8 for j %1,
a,  otherwise.

We shall show that the family § = {fs}scc satisfies the conclusion
of the theorem. Let fg,, fs,, ., fs, be an arbitrary finite sequence of
functions, where 8y, 8;, ..., S are distinct sets from © and @y y Aoy ..
are elements of A. From the independencs of the sets of the famlly G
it follows that there exist elements a;; such that

aye8\S; for i,§=1,2,.., % and i=].
Let Fo={an, Gis, .-, Gg—1, Qi1 e, aix}; then
FC8 and F;¢8 for j#Ei,

icm®
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and hence, in agreement with (5), we conclude that for

7Fk))

i=1,2,..,k.

-1
a=h""((ay, a5, ..., ax; Fy, Iy, ...

we have

fsi(a) =a; for

Since the functions fy and fg are distinet for § == 8, it follows that
F-E-om

Remark 1. The property of a family § satistying the conclusion of
Theorem 3 may be expressed differently by saying that, for an arbitrary

sequence of distinct functions fy, /s, ...,fr chosen from the family §,
the function attaching to a point a <A the point (fi(a), foa), ..., fi(a))

belonging to the kth Cartesian power A" of 4, is a map of A onto A*.
Remark 2. Theorem 3 may also be formulated as follows:

For every set A of power m > x, there exists a family of subsets of A,
{Astlses,ter, Wwhere S =m and T = 9", such that

(6) Agin Agy =0 for ss#s,1eT,
(7 \J A=A for every teT,
868 -
(8)  for. every function s: T -8 the family {Aspiher 8 composed of

independent (and distinot) subsets of A .

In fact, assuming that Theorem 3 holds, we set § =4, T' =, and
Agy =f""(a). It is easy to check that conditions (6), (7), and (8) will then
be satisfied. If, on the other hand, there exists a family {4s¢}ses,ter of
subsets of A4 satisfying these conditions, then setting § = 4 and pubting
for teT and ac A
where

fila) =s

(on the basis of (6) and (7) there exists exactly one s satisfying this con-
dition) we obtain a family § = {fi}ier satisfying the conclusion of
Theorem 3.

Remark 3. It is not difficult to check that the above proof of
Theorem 3 allows us to obtain the following stronger formulation:

For infinite cardinal numbers n, m such that n < m and an arbitrary
set A of power Z mP there exists a family § of functions mapping A into

[*2 €Ag't

itself such that @ = 2" and for any indew set 8, where S<n, any family
{fo)ses composed of distinct fumctions from § and any family {Gses of ele-
ments of A, there ewists a e A such that fia) = as for all se 8.
Analogously we can also strengthen the formulation of Theorem 3
given in remarks 1 and 2.
Theorem 3 establishes & generalization of theorem I of Hausdorff [5]
and, as follows from remark 2, also of the-theorem abeut the existence
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of independent sets. Strengthening Theorem 3 (in the formulation given
in remark 2) by the method indicated in remark 3 we obtain a generaliza-
tion of lemma 3.16 of Tarski [13].

2. Topological consequences. We shall denote the Cartesian
product (with the Tychonoff topology) of the family {X,},es of topological
spaces by the symbol. P X,. For every S, C § the projection pg,: P X,

s€8 8€8

— P X, is defined and continuous. In particular for each s, e S the
2€8)

continuous transformation pg,: P Xz —X;, is defined, the projection on the
8e8 .
seth axis of the product P X.. Subsets of the product P X; of the form
seS 8e8
K= PK;, where K,CX,,
seS

we shall call cubes; the set K; will be called the sth face of the cube K
and the set
D(K) = {s: K, +* Xs}

will be called the set of its distinguished indexes. A criterion for the
disjointness of cubes is given by the following easily provable
LevvA 1. For non-empty cubes K = P Ky, L = P L; of the Cartesian
8€S 3€S

product P X, the following equivalence holds:
8€8

(K ~ I =0) = (there evists an s, « D(K) ~ D(L) such that Ky, ~ Lg, — 0).

Let us consider now the class R = {SR;}“‘S, where R, is a family of

subsets of the space X,, and set i
A(K) = {K;: se D(K)},
B(E,R)= |J {ReRs: R K,=0},
8€ D(K) .
where, as above, K is a cube P K,.
ses
Lemma 1 immediately implies

Lemma 2. Suppose we are given a family {Xs}ses of disjoint topological
spaces and the class R = {Re}ocs, where Ry is a family of subsets of Xy, For
non-empty cubes K — 41; Ksand L = Ps L, of the Qartesian product P X,

€ s€ ge8

where K, ¢ Ry for s e D(K), the following equivalence holds:
(B L =0)=(4(E)~ B(L,R) #0).

A sub_set of a topological space X which is the intersection of m =Ry
open sets is called & @' set, and the union of an arbitrary number of G5
sets is called a Gy set. Instead of @%° and G we shall write G5 and Gz,

[ ]
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For each s ¢S let B; be a base for X;. A cube K = P K, where
JE— s€8

D(K) < sp and K, ¢ B, for s € D(K), will be called a basic cube with respect
to the class B = {Bs}ses. Clearly every open set in P X, is the union of
se8

basic cubes. A cube K =, }; K, where D(K)< m and K, is for every
S€

s € 8 the intersection of at most m elements of the bage Bs, will be called
an -cube (*) with respect to the class B = {Bglyeq. Bvery m-cube is a'Gy
set in }; Xs.

8s€

Levmma 3. Every Gsy sel in a Cartesian product P X, is the union
s€S

of m-cubes with respect to an arbitrary class B = {Bs)ses.
Proof. It suffices to consider GF sets. Hence let
M = Hi, where T <m and H;is open in P X,,
teT 8568 .
ull

be an arbitrary G5 set. For every p e M and te T let K(p,t) be a basic
cube with respect to the class B satistying the condition

peK(p,t)CH;.
We then have
peNE(,)CHM and M= (E(p,1).
teT peEMieT
The lemma follows from the fact that the intersection of at most m
basic cubes is an m-cube.
THEOREM 4. Let {Xs}ees be an arbitrary family of topological spaces
such that w(Xs) <w for sef (5) and let U,V C %X; be Q35 and @iy
L) S€.

sets respectively where n << m. If U~V =0, then there ewists a set 8, C 8
such that Sy, < (m-w)* and pg, (U) ~ pg,(V) = 0.

Proof. Without loss of generality we may assume that Xs A Xy =0
for s = s’. Choose for each se§ a base B; of the space X, suech that
Bs <w. From Lemma 3 we have

= d V=L
U iyf](; an rij .

where K; and Ly are respectively non-empty n and m-cubes with respect
to the class B = {Bslseg. In view of the disjointness of sets U and V
we have :

9) KinL =0 for teT,reR.

(*) The intersection of the empty subfamily of B, is the whole space X,.
(*) The symbol w (X) denotes the weight of the space X, i.e. the power of the least
numerous base of the space,
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We denote by R the family of all subsets of X; which are intersections
of not more than 1 elements of the base B; and put R = {Rslses. In
particular the sth faces of the cubes {Ki)er belong to ;. From con-
dition (9) and Lemmsa 2 it follows that the families

U= {AH)her and B ={B(Lr,R)}rer

satisfy condition (1) of Theorem 1. Since A(K:)<n for all teT and
B(Ly, R) <m-w" for every r ¢ R, it follows from Theorem 1 that there
exists a set N of power at most (m-w™)* = (m-w)* such that

AEK:)~BLyy,R)AN#0 for teT and reR.
Using Lemma 2 it is not diffienlt to check that the set

8y = {s € 8: the sth face of some cube of the family {K:}er
belongs to N}
satisfies the conclusion of the theorem.

COROLLARY. For every pair U,V of disjoint Gsy sets in the Cartesian
product P X; of a family of topological spaces {Xs}ses, such that w(Xs) < 2%
seS

for s € 8, there exists a set 8, C 8 such thai S, < 2% and Ds(U) A ps(V) = 0.
Remark. The following example shows that the power of the set §,
of the last corollary cannot be reduced.
Let I denote the closed interval [0,1] and for each teI let D: be
a copy of the two-point discrete space {0, 1}. Let p denote the projection
of the product T xi }; Dy on the I-axis and p; the projection of this produet
€

on the D;-axis. For every teI consider the x,-cubes

-

B =p7 ) ~ps0) and Ly =p7'@) ~pi (1) .
It is not difficult to check that the @,z sets
U= U Kg and V = U Lt

tel tel

are digjoint but their projections on P D; and Ix P D;, where I, _¢_ 1,
have a non-empty intersection. < el

The spaces considered in the above example have countable bases,
whence our corollary cannot be strengthened even in this case. We have
not succeeded, however, in finding an example of two disjoint &, sets in
the Cartesian product of the family {X,),es of spaces with a countable
bage whose projections on every product P X,, where §,C 8§ and

. 8€Sy

8, < %, have a non empty intersection (compare Corollary 1 to Theorem 5
below). That such a situation is possible in s Cartesian product of spaces
of weight 2% is shown by the example considered above in which I must

©
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be regarded as a discrete space of power 2%; the sets U and V in this
case will be open.

THEOREM 5. Let {Xs}ses be a family of topological spaces such that
w(X) <w for se8 and let T, VC_Z;XS be an open set and G set

3€

respectively. If U~V =0, then there exists a set 8, C § such that S,
and ps(U) ~ psoV) = 0.

Proof. We proceed as in the proof of Theorem 4 except that the
corollary to Theorem 1 is used in place of the Theorem itself.

CoroLLARY 1. For any two disjoint sets U, V, respectively open amd
Gz in the Oartesian product }; X of spaces with countable bases, there
8¢

<m-w

exists @ set Sy C 8 such that Sy < 8 and ps,(U) A pg (V) = 0.
COROLLARY 2. For any two disjoint open sets U and V in the Cartesian
product P X5 of spaces with countable bases there exists a set S, C 8 such
€8

that 8y < % and ps(U) ~ psy(V) = 0.

CorOLLARY 3. Any .closed Gy set in the Cartesian product P X, of
s€S __
spaces with countable bases is of the form pg,(Fy), where S,C 8, §y< %,
and Fy is a closed G5 set in the product P X,.

eS8y

COROLLARY 4. Any open F, set in the Cartesian product P X, of
3€8

spaces with countable bases is of the form pgl(U,), where 8,C8, §,< Ky
and V, i3 an open F, set in the product P X, (5.

8eSy

Notice that the proof of Theorem 5 requires only the corollary to
Theorem 1 and hence may be carried out without the use of the Erdos-
Rado theorem, modifying the proof of the theorem in [2]. Corollary 2
to Theorem 5 is proved (in a somewhat different formulation) in [1].

Let us turn now to the application of Theorem 2.

THEOREM 6. Any family {Ki}ier of non-empty and pairwise disjoint G5
sets in the Cariesian product PSX, of topological spaces such that w(X,)

8¢ .

<w > 8, for se S has power at most wn.

Proof. Without logs of generality we may assume that X; ~ Xy =0
for s = 8’. Choose for every s ¢ § a base B; of X, such that B, <w. On
the bagis of Lemma 3 to Theorem 4, we can suppose that the family {Ki}ier
is composed of n-cubes with respect to the class B = {8Bs}ses. Denote by Rs
the family of all subsets of X, which are intersections of not more than n
elements of the bage B, and set R = {Rs}ses. From Lemma 2 to Theorem 4
it follows that the families :

{A(E)hter and  {B(K:, R)}ter

(°) For further consequences of Theorem 5, see Theorems 4 and 6 in [3]. °


GUEST


284 R. Engelking and M. Kartowicz

satisfy the conditions of Theorem 2 if for m we take 1n-w" = " and hence

T < (" =" ,
CoROLLARY. Any jamily of non-empty and pairwise disjoint @, sets

in the Cartesian ;orodfuots ;}; X, of topological spaces, such that w(X,) < 2%

for s €S, has power at most 2%,

THEOREM 7. Any family of non-empty and pairwise d@'sjoint open,
sets in the Cartesian product }; X, of a family of topological spaces {Xy}ees
8€

such that w(Xs) <w>= 8, for s €8, has power at most w.
Proof. We proceed as in the proof of Theorem 6 except that the
corollary to Theorem 2 is used in place of the Theorem itself. '
CoROLLARY. Any family of non-emply and pairwise disjoint open
sets in the Cartesian products g; X of spaces with countable bases is countable.

Notice that the proof of Theorem 7 requires only the corollary to
Theorem 2 (which follows from the corollary to Theorem 1) and hence
may be carried out without the use of the Erd¢s-Rado theorem. Theo-
rem 1.2 of [10] is similar in character to our Theorem 6, but it appears
to us that Theorem 6 does not follows from it. The corollary to Theorem 7
was first proved in [7].

From the final theorem of the first part we derive:

THEOREM 8. The Cartesian product of mot more than 2™ topological
spaces which contain dense subsets of power < m > &, contains a dense subset
of power <.

Proof. Such a product contains a dense subset which is a continnous
image of the product of 2™ copies of the discrete space of power m, in
fact a cube, the faces of which have power <m and are dense in the respec-
tive spaces. We consider a set 4 of power m and a family § of functions
mapping 4 into itself which satisfies the conclusion of Theorem 3. It
suffices to show that the product I_l; Xy, where for all fe, Xy= A4 is

€

the discrete space of power m, contains a dense subset of power m.
Let the function ¢: A—>, }; X; attach to a point ae A the point
€

{f(@)}reg of the product ,P% X;. The power of the set p(4) C P X; does
€ fe§
not exceed m. To prove that the set p(A) is dense in P Xy it suffices
¥

1
to check that for any finite sequence f, fag veey i Of dj;tinct functions
from § and any finite sequence a,, ay, ..., ax of elements of A there exists
an aed such that pslp(a)) =a, ie. that fia) = as, for ¢ = 1,2,..,k
The existence of such a point 4 is ensured by Theorem 3.
Theorem 9 was proved in [11] and [6] and, for the case m = &,
in [8]. It is not difficult to check that the Cartesian product of more
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than 2™ spaces of more than one point does not have
power m (see [11] and [8]).

Finally we note that from the theorems of the first part we can also
derive theorems analogous to those above for p-box topologies in the
productS ;l; X, i.e. for topologies defined by a bage composed of sets of

a dense subset of

the form @ 2 (Us), where U, is an open set in X and §0 < p. We shall
8€S)

not formulate these theorems here since they are legs interesting, but the
reader, if he wishes, will be able to do so without the least diffienlty.
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