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P. 8. Rema

QUESTION i. Does a Hausdorff linear-compact relatively complemented
lattice with zero have a unit 12

QUESTION ii. Is the lattice of congruences of a discréte linear-compact
C*-lattice finite?

In this connection I wish to express my gratitude to Doctor V. §.
Krishnan and Doctor V. K. Balachandran for their valuable guidance
in the preparation of this paper. My thanks are also due to the referee
for suggesting various improvements (particularly (3.14)).
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On a singular plane continuum *
by
R. Duda (Wroctaw)

§1. Introduction. Using slightly extended Bernstein’s argument
on the decomposition of a plane into two disjoint and totally imperfect (1)
subsets (cf. [3], p. 422), it is easy to decompose each complete separable
space Y having the property:
(1) if a set ACY separates Y, then A contains a perfect subset,

into a countable sequence of disjoint, connected, ponctiform (2) and dense
subsets. Such are, for instance, all manifolds (in particular, euclidean spaces)
of dimension n > 2, the universal curve of Sierpifiski (‘‘a carpet’; see [4],
p.202) and many others. The points of these spaces are of continuumrange.

On the other hand, however, such a decomposition is impossible
for a regular curve (*). Moreover, a regular curve even does not contain
a countable sequence of disjoint and connected sets {Sg}z-1s,. of diameter
6(8k) > e >0 (%. Thus a natural question arises whether decomposition:

=]
(2) X = U 8k, where S are mutually digjoint, connected, ponctiform
k=1
and dense subsets of X

(hence of diameter &6(8i) = 6(X)), is possible for a continuum X not
possessing property (1)? Is it possible for a rational eurve (5), which,

* This research was partially supported by the D.S.I.R.

(1) A subset .4 of a space I is maid to be fowally imperfect provided that it does
not contain any perfect subset of ¥ (ef. [3], p. 421).

(*) A set 4 is said to be ponctiform provided fnat each of its subcontinua con-
sists of one point only (ef. [4], p. 130).

() A continuum Y is said to be regular curve provided that each its point is of
{inite or w range or, in ovher words, that each its point has arbitrarily small neigh-
bourhoods, the boundaries of which are finite ([4], p. 201). In particular, dim ¥ < 1.

(%) For suppose that a regular curve ¥ does. As a compact, it containg then
a point p ¢ ¥ such that each neighbourhood G of p meets infinively many Si. Taking
G of diameter 6(G) < &, we have, by our assumption and connectedness of Sk,
Fr(@) N Sk 5 0 for infinitely many Sz, and therefore Fr(Sr) must be infinite (sets
Sk are disjoint). A contradiction.

(®) A continuum ¥ is said to be a rational curve provided that each its point is
of at most countable range or, in other words, that each point has arbitrarily small
neighbourhoods, the boundaries of which are finite or countable ([4], p. 201).
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by its definition, can be separated between each two points by a finite
or countable subset?

The aim of this paper is to prove that there exists (%) a continuum X
which has the property (1) and is not only rational but even hereditarily
locally connected (7) and plane (see Theorems 1 and 2), that is, from topolog-
ieal point of view, the simplest one among rational but not regular curves.

This continnum X may be also interesting with a respect to a well-
known theorem of Gehman, who has proved (see [4], p. 366) that he-
reditarily locally connected and plane continua are characterized by not
containing any sequence of disjoint subcontinua of diarpster surpassing
any positive value given in advance. This resulf was completed by
TUrysohn and Whyburn (ef. [4], p. 196), who constructed a spatial but
hereditarily locally connected continuum containing such a sequence.
The result of Gehman was later improved by Lelek, who has shown [5]
that hereditarily locally connected and plane continuum does not con-
tain any sequence of connected subsets, any two of which are separated
and all of which have diameters surpassing any positive value given
in advance. This raises a natural question whether hypothesis of sepa-
ratedness in Lelek’s theorem is essential or can it be replaced by a weaker
one that sets in question are mutually disjoint only? The answer iy given
by the continuum X: there exists hereditarily locally connected and
plane continuum which not only contains but simply is composed of
a countably many connected, mutually disjoint and of diameter §(X)
subsets. (They are, moreover, dense and ponetiform.)

The continuum X may be also regarded as a some kind of gener-
alization of a construction given by Knaster and Kuratowski, who
have established [2] in a Triangle Curve of Sierpiniski a connected, locally
connected and ponctiform subset. Namely, each set S is, as a subset
of hereditarily locally connected continuum X, locally connected itself
(cf. [4], p.199) and therefore the main result of the paper (see Theo-
rems 1 and 2) can be restated as follows:

TrwoREM 0. There exists a sequence {Si}r—is,. of comnected, locally
connected, disjoint and ponctiform subsets of plane, the closure each of which
48 the same hereditarily locally connected continuum X.

The definition of X is unfortunately rather complicated. It is, in
some sense, similar to the mentioned above Triangle Curve and will be

{%) Strictly speaking, the paper describes a method of construction of such a con-
tinuum. Since construction is not univocal (see reference on p. 32), then there is many
(probably 2%%) hereditarily locally connected and plane continua satisfying (2).

(’)_A continuum X is said to be hereditarily locally connected provided that each
subcontinnum of X is locally connected ({4], p. 195). In particular, if X is hereditarily
locally connected, then X is rational ([6], p. 94) and therefore 1-dimensional. Full
account of ths property can be found in [4] and [6]. ’
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obtained in a similar procedure by removing open dises from a triangle
(roughly speaking, more but smaller ones). In view of technical diffi-
culties we must, however, use the machinery of upper semicontinuous
decompositions. Nevertheless, the very idea of the construction is simple
and will be fully explained in § 3. The proof of hereditarily locally con-
nectedness is intuitively obvious and short. It is given in § 4.

And as to the proof of property (2), let us mention its main features.
We shall distinguish in X a countable set V, which we shall divide next
into a countable sequence of mutually disjoint subsets Ty each of which
has the property

(8) if set ACX separates X and X ~ Vi =0 for some &k, then 4 con-
tains @ perfect subset.

(compare in with (1)). The proof of this property takes the most part
of the paper and is rather difficult. But when it is done, the rest is simple.
Following the mentioned Bernstein’s argument we divide X—V into
a countable sequence {Hply—ie,.. 0f mutually disjoint and totally im-
perfect subsets. Since each separator of X missing some 7y must meet
by (2) the set Hy, then Hyw Vy is connected for each k and it suffices
to put Sy = Hpw Vg.

T am obliged to Professor B. Knaster for the problem and a good
deal of helpful suggestions and criticism, to which I owe so much.

§2. Construction. Let Nx, where & is natural, denote all se-
quences consisting of & members any one of which is equal to one of
the numbers 0, 1, 2 or 3. The elements of Nz will be used in sequel as
indices of the sets and will be denoted by , ux, 7, or 7. The number
% will be called an order of the set provided with such an index. In the
case of order 0 which also will be used in this paper, ie. for &k = 0, we
simply omit the index.

The continwum X will be defined as the hyperspace of some upper
semicontinuous decomposition of other continuum x.

We shall proceed gradually starting with the operation on T,
where T,,,, is an arbitrary at the moment but equilateral triangle. Let
a be the length of the side of T‘.k. At a distance /3 from each vertex
take a point on any of two sides ending at that vertex and join them
by a segment.

Similarly, join by segments also the middle points of the sides
of T,,. In this way the triangle T, is now divided into 4 equilateral
triangles (on which the operation y will be iterated) and 3 trapesoids
{see Fig. 1). Denote the central triangle by i’,,,co and the remaining trian-
gles by T, T, and T,.0; everyone of these 4 triangles 1s now of order
k+1. By P!, denote trapesoid having a common side with & triangle T\,:;
this side of ﬁﬁk and the opposite one will be called conjugate. They play
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an important role in the sequel. The remaining sides of the trapesoids
.P1 form 3 middle segments (in partition for 3 equal parts according
to our definition of the operation y) of the sides of the triangle T,

These segments will be called completive and their union will be denoted
by L,

-~ o~ 8 ~
By yT,, we shall mean the continnum L, v | Ty, ie. the con-
i=0

tinwum made of the triangle ’f‘;k by removing from it the interiors of
3 trapesoids f" INJ2 and B .

Using now Just clrcumscrlbed operation y we can define a decreasing

Let T De the equ.llateral trmngle of vertiees (0, 0), (1, 0) and (4, /3/2).
Put ¥, = 'yT (see Fig. 2, but at the moment do not pay attention to
arrows). Hence ¥ is a contmuum consisting of 4 triangles 7, Tl, Tz, T,
and joining them 3 completive segments of order 0 (the wnion of which,
according to our convention of omitting an index », is denoted by .I).
Defining now Yg by the application of the operation y to any of the
4 triangles of ¥, we receive the continuum consisting of 4 ‘triangles
Tm, Tm, very Ty and ]ommg them complemve segments of orders 0 and 1,
belonging to the sets I, 1}(,,L1,L2,L3 (see Fig. 3, but at the moment

do not pay attention to the arrows). We proceed by induction putting
for =1,2, .. '

i”k+1=l\%]y uU U I

1=0 nEN,
Hence, by the definition of yT, m we have
k=1

(4) Y= U T uU U I v,  for each k=1,2,..

€N, I=0 y €N,

Singular plane continuum 29

Thus {lk.k 12, 18 @ dec1eaamg sequence of continua, any one of
whirh consists of 4% triangles T,, and all joining them completive segments
of orders 0,1, ..., k—1.

Note that comple’me segments are all disjoint. Indeed, the 3 com-
pletive segments of order 0 (i.e. components of L) are d]\]Olllt Moreover,
any one of them meets the triangles TO. TI, T, and T3 in their vertices

Tig. 2 Fig. 3

only, and the completive segments of order 1 (i.e. components of UNLN,,)
1

are the middle parts of the mdes of these triangles. So they are dlspmt
one with another and with T. The induction is obvious.

Notice also that because the operation y ha.s the obvmus s_property
that the diameter § of any of the 4 triangles T, T, 1) T”w 7 is not
greater than the half of the diameter of the instant triangle T, , then
taking into account §(T) =1 we easily get

(3) 8(T,) <1/2¢ for any meNyand k=1,2,..

The next step of our eonstruction consists in adding up to any con-
tinnum Y3 some number of infinite sequences of segments in order to
form a new decreasing sequence of larger continua {Zi}p-rs... This
is a decisive step of our construction, because announced at the begmmng
continmum X will be the common part of all these continua X, and
the segments enlarging Yy to X together with the completive ones will
form the only non-degenerate elements of the decomposition of X. Hence
the whole rest of the paper depends on the manner of enlarging the
continuum ¥y but it is, unfortunately, rather complicated.

We begm at an orientation of the sides of the triangles T of the

continium Y. Namely, we shall assign the orientation to some (not
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to all) sides of the triangles fyk, which will satisfy two following con-

ditions:

(6) any two conjugate sides (see p. 27) will be oriented and the orien-
tations will be the same,

(7) no one vertex of any triangle Tvk can be simultaneously initial and
final point of its two oriented sides.
This orientation will be called consisient. )
Since any side of the triangle T, o is conjugate with some side

of a triangle T, s where i=1,2 or 3, then by (6) we have

(8) all 3 sides of any central triangle f"'»-x‘” where ;10 e Ny are
oriented, and

(9) at least one side of any triangle 7', , where » ¢ Nx, is oriented.

[ AN /N

Fig. 4

) The definition of the consistent orientation is inductive and starts
with 4 triangles of Y,: orient clockwise 3 sides of the triangle T, and
zlext- B?lz'giegt aﬁcordiigly to (6), 3 sides conjugate with the just oriented
see where the orientati
s, 2 Thero tho orait on is worked by arrows). The remaining

Suppose now that we have defined the consistent orientation of the
sides of the triangles of Y. Havmg in memory that from any triangle
T of ¥y are formed 4 triangles T, 09 T, o T, 2 T,. s Of I"k+1, let us orient
fu'st by the following formulae these 6 sides of triangles T., 1, T,, sand T, 5
‘which lie on the sides of the triangle _'[’ (see Fig. 4, where the exten,:n"
arrows show the orientation of sides of a triangle of ¥} and the arrows

* ©
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Iying on the sides of smaller triangles of Tro1 show their resulting
orientation):

(i) if the side of the triangle T,, i, where ¢=1,2 or 3, is a part

of a not oriented side of the triangle T,k, then it remains not oriented
itself (e.g. sides & and b on Fig. 4); )

(ii) if the side of the triangle T”w where 7 =1, 2 01'3 is a part
of an oriented side of the triangle .’I’ but does not contain the final point
of this oriented side, then it is also not oriented (e.g. sides ¢ and e on
Fig. 4);

(iii) if the side of the triangle TH, where ¢ =1,2 or 3, is a part
of an oriented side of the triangle T and does contain the final point

of this oriented side, then it inherits the orientation of this oriented side
(e.g. sides @ and f on Fig. 4).

Now let us turn to the 6 rema;i.ning' sides of the 4 triangles IN’M,
T,,kl, T”;ﬁ and T,,ks, that is to those sides, which are not parts of a bound-
ary of 7’%. They form 3 pairs of conjugate sides and therefore by virtue
of (6) must be oriented.

To this effect we shall use one of the just oriented sides of these
triangles, for in view of (9) and formula (iii) above at least one side of
one of them is already oriented. The orientation of this side implies the
agreeing with (7) orientation of the third side, i.e. of the conjugate one,
of this triangle (e.g., in Fig. 4 the orientation of @ implies that of g),
and therefore we can easily extend, in full accordance to (6) and (~ )y
the orientation of this third side to the conjugate side of the triangle T,
and next to the 2 other conjugate pairs of sides (see Fig. 4). Since orien-
tation in ¥ was consistent, then it is obvious that this last part of our
definition does not depend from which oriented side of T,, ) Tvk27 v,3
we start and, moreover, that defined in such a way orlenta.tmn of the
sides of all the triangles T,,m, where vpy1 € Niy1, 15 consistent. The in-
duction is completed.

Having defmed consistent orientation we may now construch in
each trapesoid 4 ) where eNg, k=0,1,... and ¢=1,2,3 (recall
that index », we s1mply omit: trapesmds B P2 and B* complete T; to
the triangle T), a sequence of segments {'D,k,,}?,l . The sides of P1
common with the triangles T,s, and T 0 Te by the defmmon (see p. 27 )
conjugate and in view of (6) both these gides are equally oriented.

Taking into account this orientation, let us denote (see Fig. 5) by
a$ the initial point and by af the final point of the side of P‘ common
with the triangle T”»’* (a=0, .
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Observe now as changes the position of ﬁik when we pass from the
continuum f‘Hl (the parts of which are triangles T,,L_VL- and IN’,,EO) to if“z.
Both triangles T,, o and Tv ¢ are divided (in view of y-operation),
each into 4 smaller tuangles and 3 trapesoids, the way that each
oriented side of P,’,k is divided into 3 equal parts; the first and the thirg

are sides of the new triangles of T’Mz , and the middle is a union of 2

sides of these 3 trapesoids. This middle segment—recall that it is a mem-
ber of our decomposition—joins the vertices of 3 triangles of Yk+2
Passing now to ¥iys we realise that the sides of the triangles of ¥y,
lying on oriented sides of P,f are divided - again into 3 parts:
extreme are sides of new triangles of ¥y, and the middle are the mem-
bers of our decomposition. All these middle segments (we called them
completive) range out the Cantor ternary sets on oriented sides of Pf. .
It is far to much we need; for our purpose will be enough that both

points a7 and a; are cluster points of the set a?am U U L,,L, which
1=0 v, €Ny
is obviously disjoint with the all completive segments.

Let pz be the kth prime number. Denoting by 3° the middle point

of the segment afaf (ie. the vertex of the triangle Ty lying on that

o0
segment), let us choose from the set ala,,. U Ln the sequence of
I=0 ’l‘NL

points {af};-s,.. in such a way that (%)

(%) It is a point that we lose the uniqueness of X, Roughly speaking, there are

many sequences {aj} satisfying conditions (10)- (12) and for some of them the obtained
continua are not homeomorphic.

@
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(10) af precedes ajy; (in the orientation of the side afal,

(11) 45, precedes b® (in the same orientation),

(12) limaj = a,

j—o0

and join them pairwise, a to a}, by a segment which denote by 43?,#,»
(i=1,2,..,0). All segments %ﬁk,, where vz eNp, ¢=1,2,3 and
j=2,8,.., we shall call enlarging continuum Y to continuum Xy,

which is to be defined now (the segments ”'kl and u,,k,m are not called
8

enlarging, as they are the subsets of I, ; in fact, Lyk =J ('Lyklu'))vk o))

i=1

Fig. 6 Fig. 7

Since by (12) the segments fv,k,, , Where j = 2,3, .., form a con-
vergent sequence and Inm'u,,k,7 = v,k,a, is a part of L,, , then X, (see
Tig. 6) defined by adding to ¥, three sequences {5t} =2,5,09 7 where t=1,2,3,
is a continuum, X, (see Fig. 7) defined by adding to X, 4-3 sequences
{'Lﬂfkﬂ-}jﬂ,a,_,_, where » ¢ N; and ¢=1,2, 3, is also a continuum, and ge-
nerally, X1 defined for all k=1, 2, ... by the formula

(13) -ik+1 =X U U U'Uv;,,i

vkst i=17f=2

iy a continuum too. From that formula we infer, in particular, that
F,11C X, and therefore X, the common part of all Xk,

~

38

(14) - ¥ =

is a continuum as well.

k

k=1

Fundamer.{a Mathematicae, T. LVII 3
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Continuum x is, by virtue of (4), (13) and (14), the union of a per-

fect seb ﬂ U Tv , all completive segments and all segments enlarging
k=1r.eNy

T to Xpfork=1,2,..

At last we come to the transformation of X onto continuum X. This
will be done with the help of an upper semicontinuous decompo-
sition of 7.

The definition of the decomposition of T is simple: its only non-
degenerate elements are the completive segments and the segments
enlarging T: to Xi for all k =1, 2, ... We show that this decomposition
is upper semicontinuous.

Indeed, the completive segments, as we stated Defore (see p. 29),
are pairwise disjoint and by an easy induction starting from the seg-
ments enlarging ¥y to X, we conclude that the segments enlarging T
to Xy for k=1, 2, ... are pairwise digjoint as well (cf. (10)). Moreover,
in consequence of our cautious choosing of the points a,q; outside the
completive segments, no one completive segment meets enlarging one.
Hence all elements of our decomposition of X are disjoint and therefore
it remains to show that the limit of any convergent sequence of these
elements is contained in some other element. For this purpose recall
that L C T by the definition and B(T o) < 1/2% by (5), which means
that for any g > 0 there exists only a finite number of eompletlve seg-
ments of diameters greater than &> 0. Similarly in view of 7, ; C P . C T
we have for the same £>0 only a finite number of bequeneeq of
segments {'v,k,,}J:»g infinitely many of which have diameters greater
than e. It follows then that any converging sequence of elements of our
decomposition, the limit of which does not reduce to a single point (and
certainly only such sequences are here worth considering) is, excluding
perhaps finitely many initial elements which is not of the slightest con-
sequence here, a subsequence of some {")yk,j}:l=23 But me,, 7 18, as
we noted before (see . 33), a part of one of the completive segments
belonging to the set L, , i.e. a part of the element of our decom-
position.

Hence our decomposition is upper semicontinuous and therefore,
in view of Alexandroff’s theorem (cf. [4], p. 42), there exists a conti-
nuous function f running over i’ the counter-images of which are the
elements of our decomposition. The hyperspace of our decomposition
is then equal to (7). Since the only elements of our decomposition of 7
are segments and pomts, otherwise continua not separating the plane,
hence by virtue of Moore’s theorem {cf. [4], p. 380) the hyperspace f(T)
is a plane continuum as well. (The reader can imagine f(1~‘) as a con-
tinuum obtaining by contracting to a point any element of our decom-
position.)

e ©
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Let us accept the sunple convention that the images under the
function f of the triangles T,, , trapesoids Pw continua Xy and X and
segments ‘”rw we shall denote smlply by dropping the wavy line. We
shall then write T, instead of f(T, w)y ete.

By (4) and (13) we have

~ ~ k—1 ~ 8 oo .
Xy = UV T"k v{lU U [Lv;u U U '”vm]}
[ 1=0 v, N; i=1j=2

Since Xy is continuum and all the elements in {...} are disjoint segmen ts,

go any one of them meets U T, ,» and therefore
v €Ny

(15) Xi= U Ty,

v €N,

(see Figs. 8 and 9, where X, and X, are shown).

4

Fig. 8

Note by the way that since the triangle T’vk is a topological disc
and the elements of our decomposition restricted to T,,k are, as in T,
the points and segments only, then by the quoted above Moore’s theorem
the continuum 7, is also a topological dise. For that reason we shall
continue to call it triangle. The vertices of T', are the images under the
function f of the vertices of 7, »,- Since the decomposmon restricted to
a side ab of the triangle T congsists of points and segments only, then
ab is transformed by f onto an are, whose ends are f(a) and f(b). We
shall call this are (together with its end-points) the side of T, . The
boundary of the triangle T, consists then of the 3 just defined sides
meeting in the just defmed vertices. We also preserve the orientation
of the sides of the triangles 7T, (the side of ends f(a) and f(b) of the

3*
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triangle Ty, is oriented from f(a) to 7(b) if and only if the side ab of the
triangle T, is oriented from a to b) and the name of conjugate sides
(two sides of triangles T, and T, ; are conjugate if and only if they
are the images under f of two conjugate sides of triangles T,.ko and f",,k,-),
One does not need to add that the inherited in such a way orientation
i consistent and satisfies (6)-(9).

In view of Xz CX; we have obviously

(16) X1 C Xg,
whence by (14) (*)
an X = Xx.
k=1
Finally, putting
18) &5 = Sup 8(T,)
v €N,

we have by (5) and the continuity of f
(19) lime; =0.
k00

§ 3. Main geometrical features of the construction. Let us
turn back for & moment to the trapesoid P, (see Fig. 5). Since the only

non-degenerate elements of our decomposition restricted to ff.k are seg-
ments "éﬁk,,- (j=1,2,..,0) and completive segments lying on its 2
oriented sides, then obviously its hyperspace P;, (= f(?}k) by the def-

inition of f) is a sequence of topological discs joined by the points 'U:k,f
(see Fig. 10).

Let us call P,} a chaplet and denote composing it discs consecutively
by 0,5 (7 =1,2,..). Let us call also fvfk,,- for j = 2,38, ... joints, vﬁk,l initial
and o, . final points of P . The last 2 points we shall also call shortly

exvireme poinis of Pfk. We shall say that chaplet Pfk divorces triangles
T,Q and T’k" of Xk+1.

&

(*) We apply here the following simple property of the continuous mappings:
If {Ax} 4s a decreasing sequence of compact sels and Y is a topological space, then
HN 4x) = M {{4x) Jor every contimuous function f: 4,-Y.

In fact, the left side is contained in the right one without any hypotheses con-
cerning neither sets nor function (see [3], p. 17) and if b « N f(4z),
a sequence {ar} such that ax e Ax and f(ax) = b for & = 1,2, ... Removing now, if
necessary, some terms of the sequence {4:}, we may assume that the sequence of
points {a;} is converging. Putting a = limax we have f(@) = b by the continuity of f.
But the sets A are compact and form a decreasing sequence. Hence we have also
a () A and therefore b e () Ax).

then there exists

) ©
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Examine now the situation of 1-":"b in X3.2. Any one of both txjia,ngles
T, (a=0,4) is divided into 4 smaller triangles T,.; (j :¢071’2’3)
in the way that 2 of them have whole sides common with P, and the
central triangle T, ., common vertex only. In view of' (11) thig vertex
Ties after the joint of . (in the orientation from w, ., to ©,.) and
therefore

(20) the vertex of Tju (a =0 or i) lying on a chaplet P;, does not be-
D=l | . :
long to the union [ J @, ; of first pr—1 dises of P, .
7=1

This is a crucial property of the construction. It will be used in
the proof of decomposition (2) only and an application of. it, howeYer
often, is stereotypical. Roughly speaking, we shalll. consider sifartmg
from a point vfk,l a connected union consisting of first pr—1 discs of
a chaplet Pfk, to which we add first pr—1 dises of all chaplets, the
initials of which belong to them, and so on. Property (20) assures that

this union does not contain dises of a chaplet, the initial of which is
vertex of T,,q: actually, this union is contained in 2 shadowed in Fig. 10
triangles. Thig fact has some important consequences.

Now look at X; (see Fig. 8). Topologically, it is a triangle T, in
which 3 points, one in each side, are joined by 3 pairwise disjoint and
lying in interior of T (except of their extreme points) chaplets P', P*
and P* in the way that each extreme point is simultaneously initial and
final of 2 chaplets meeting in it. We get X, by removing interior of these
chaplets. So X, consists of 4 topological triangles T, Ty, T, and Ty. By
the definition of the orientation (see pp. 29-31 and 35-36) their only oriented
sides are those lying on chaplets Pi. More precisely, the side of ends o
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and b of triangle T is oriented from « to b if and only if it containg ay
points {v}}j-1s,.. and b =1, for some i =1, 2 or 3.

Continuum X, (see Fig. 9) can be obtained from X, by the applic-
ation of the similar procedure to each of the 4 topological triangles T,
(1=10,1,2,3). As previously, 3 points (one in each side) of each triangle
T; are joined by 3 pairwise disjoint and lying in interior of 7; (except
of their extreme points) chaplets Pi, Pi, P} in the way that each ex-
treme point is simultaneously initial and final of 2 chaplets meeting
in it. As previously, we get X, by removing interiors of these 4.3 chap-
lets. However, these 12 chaplets satisfy 2 essential additional conditions:
(20) explained above and that of consistent orientation. (20) means that
the vertex of Ty (a =0 or 4) lying on P* does not belong to Qf. More-
over, this vertex is not a joint of chaplet P¢ and therefore is a common
vertex of 3 only triangles of X, (those lying in 7,). And consistent
orientation means that if we consider the orientation of sides of triangles
T,, of X, as defined on pp. 29-31 and 35-36, then it satisties (7). Notice that
side of ends a and b of triangle T,, is oriented from & to b if and only if
it contains almost all points of some sequence of joints and b is the final
point of this sequence.

By the application of the same procedure (i.e. preserving (20) and
consigtent orientation) to each of 4* triangles 7, of X, continuum X,
can be obtained, and applying it in the same way to each of 43 triangles
T,, of X; continuum X, can be obtained, and so on.

.By an easy inductive argument, simply checking the definition of
consistent orientation, we find out thas:

(21) the side o‘f fsnds a and b of triangle T, is oriented from a to b if
and on{ly if it contains almost all points of some sequence of joints
and & is the final point of this sequence,

The procedure described above allows us to construct a decreasing
sequence. {Xk}k=1,.. of continua X determinating X by formula (17).
It remains, however, one condition concerning this whole sequence.
Namely, we mu§t secure that diameters of triangles 7T, of Xy tend to
?ero‘together fvmh koo (cf. (18) and (19)). And just for that reason,
m-wew_of sgm.)us technical defficulties connected with correspondingly
s]n]]iul mscnp.txon .of new chaplets, we had to betake ourselves to less
Enhntlvedbut in this cagse far more simple apparatus of upper semicon-

uous decompositions. Nevertheless, I hope i
ermotion 1o y pe the very idea of the con-

In §5 some more important i i

In Droperties of the construction will be
E}:ghe_mly noted and those less obvious will be provided in a proof. But
ik 11;1 1: a%l. Iﬁ order to make th.is. Daper readable I consciously resign

aking down all the properties of the construction, upon which
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the further proofs will be based. For a reader who understands the idea,
given explanations will be more than enough. It seems to me hopeless
and useless to write a huge paper containing all details, logically correct
and step by step verifiable, but at the same time completely unreadable.

§ 4. Proof that Y is hereditarily lecally conmected. Let
us recall that a continuum C contained in a space Y i3 calleda contin-
wum of convergence of Y provided that there exists a sequence of pair-
wise disjoint continna C;C Y such that ¢ = Lim (; and ¢ ~ (y= 0 for
all ¢ (see [4], p. 176).

Urysohn and Zarankiewicz (see [4], p. 196) have proved that con-
tinnum Y is hereditarily locally connected if and only if each conti-
nuum of convergence of ¥ reduces to a point, or, in other words, if it
does not contain any proper continuum of cegvergence.

4.1, Among each three different triangles of Xy there are two such that
their common part is empty or consists of one point only.

Proof is by an easy induction. For % =1 it is clearly obvious,
because each pair of non-central triangles of X, has one point common
only (see Fig. 8). Suppose that it is true for %k > 1 and take three dif-
ferent triangles of Xy.,. If they are subtriangles of the same triangle
of Xy, then it is equally obvious as for ¥ = 1, and if each of them lies
in another triangle of X3, then it follows by induction hypothesis. So
remains the case that 2 of them lie in one triangle of Xz and the third
in another. If both these 2 are not central, then they meet in one point
only, and if one of them is central, then it has only one of its vertices
common with each side of that triangle of Xy in which it lies, and, con-
sequently, can have only that vertex common with the third.

1.2, If C is a continuum of convergence of Xy, then C is contained
in a union of 2 triangles of Xy.

Proof. Let O = Lim(;, where C;~ 0;=0 and Cn Ci=0 for
i,§=1,2,.. and i % §, and suppose, to the contrary, that C meets 3
different triangles Ty , Ty, Tr, in their interiors °T, ,°Ty,, °Tx, with
regard to Xi. Applying 4.1, let

(a) T,, ~ T, be empty or consists of one point only.
Choosing for each =1, 2, ... a pair of points
{b) a; € C’;r\“T,,k and bteop;r\OTuk,

we shall show that there exists a sequence of pairwise disjoint ares
LiC X of ends a; and b;. ’

" Indeed, X is, as a union of finitely many topologieal dises T,
locally connected. Let K (4, 7n) be, for any 4 C Xj and n > 0, the set
of all points of X which can be joined with .4 by an arc L C X; of dia-
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meter 6(L) < 7. Since any such K (4,7) is a locally connected continuum,
then each K (Ci, &), where

(e) 3e; = inf o(@, y):
wel;
veU;iC;

contains an arc L; of ends a; and b;. Moreover, in view of (e) we have
K(C1y8) ~ K(Cj, 1) =0 for 4§ and therefore all I; are pairwise
disjoint.

In view of (a) and (b), infinitely many arcs are not contained
in T, v T,,k, the interiors of which they meet, and therefore each arc L;
must “pass” through some other triangle Ty, i.e. going along I; from
a; 10 by we “come in’ some triangle T, through one of its sides and
“come out” through anoffer. Since there is only finitely many triangles

Fig. 11

T, of X, then we may suppose, removing if necessary some subse-
quences of {Li}ims,., that all L; “pass” through the same 7, and
moreover, that all “come in” through the same ‘“front” side of 7 a;nd7
all “come out’ through the same “back” side of T;. K
The “entering” points of I, belong, of course, to the boundary of
T,k with regard to X and since all of them lie in the same side of T,
then they are the points of some sequence {v;, ;};_10.. and the limlgt
Oym0 Of this sequence is a vertex of Tz, (see Fig. 11). ’]f’énote this vertex
by a;, the second end of the ““front” side by a;, and the third vertex
of T§ bytas. By (21) the side (a145) 18 then oriented from a, to a,.
Ow two cases are possible: the “back’ side is (a o . 8i
tkse argumentation is in both cages identical, considfarl?)ar)ﬂyrtgg ?fsilsf 1(1;22
Fig. 11). The “coming out’ points of Z; are, as previously, the points
f’f some (other) sequence {051} 1=12,.. and the limit v}, o Of tilis sequence
18 4, OT a;. But in view of (21) the side (@ a5) 15, as co‘ntaining infinitely
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many points of a sequence {v;,;}j-12.., oriented, and, in view of (7)
and the orientation of the side (@,a,), s = 3. It is a contradiction,
because any arc on T joining interior points of the sides (a;a;) and
(aya,) separabes T between infinite parts of sequences {v;,;}j-1s,.. and
{8},,}i=1z,... and therefore the arcs L; cannot be disjoint.

It follows then that any continuum of convergence of X; is con-
tained in at least two triangles of Xj.

THEOREM 1. Continuum X 48 hereditarily locally connected.

Proof. It suffices to show (see p.39) that it C is a continuum
of convergence of X, then 6(C) = 0. But if ¢ is a continuum of con-
vergence of X, then we infer from inclusions € C X C X, following by
(17) and hypothesis C C X, that ¢ is a continuum of convergence of
each Xi. In view of 4.2 and (18) we have then 4(C) < 2& for each
E=1,2,.., whence 4(0) <0 by (19).

§ 5. Some simple properties of the construction. Before
we proceed to the proof of the existence of the decomposability (2) of X
let us state some simple properties of our construction. Since they are
often obvious, then only few of them will be provided in explanation
or outline of the proof.

Let us observe first that

(22) Fr(Xy) =  Fr(T,).
v €Ny
We shall often use the complementary sets of continua Xy. For
that purpose notice that since Xy, arises from Xj by a suitable inscrip-
tion of 3 chaplets into each triangle T, , then

3 .
(23) BE—Xn=F-Xv U UP,
'kENk i=1
and

(24) each Pfk meets B°—Xj in its extreme points vfk,l and vf,k,w only.

It implies, in particular, that

(25) Fr(Xu) = Fr(Xe) o | i@lm(pfk),
whence
(26) Fr(Xe) CFr(Xps) .

Thus obviously Fr(Xx)C Fr(Xz+) for each 1=1,2,.. and since
Fr(Xy41) C Xpu1, because Xy is & continuum, then in view of (16) and
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(17) we have Fr(X;) CX for all k=1,2, ... Hence and from (18), (19)
and (22) we infer that

o
27) U Fr(Xy) is simultaneously dense and boundary subset of X.
k=1

Also another important property of Fr(Xy) will be needed. Namely,
{28) no point of Fr(Xg) sepr;mtes it.

Proof is inductive and starts with a simple closed curve Fr(X,)
as by (18) X,=T. Assuming (28) for Fr(Xy), let us take a poing
P e Fr(Xz:)—Fr(Xg). By virtue of (25) peFr(P,). Since Fr(Pfk) is
a union of a sequence of simple closed curves Fr(Qf,k,,-) joined consecu-
tively by joints vfk,j, and of a point @f.k,,u , then it can be separated by
one of its joints only. But in such a case Fr(P.fE)——(p) is a union of
2 connected sets, one of which contains 'L*Zk,l and the other @fk,m, and
these 2 points are precisely the common points of Fr(Pik) with Fr(Xg).
Hence Fr(Xy) v Fr(P,)—(p) is connected for each p e Fr(P}) and it
proves (28) for k4-1.

From (27) and (28) we get at once

(29) no point of X separates it.
In strong connexion with the above property is the following one
(30) If A is subset of Fr(.’l’), then X —A4 is connected.

For the proof notice first that Fr(X,)—Fr(T) consists of 4 com-
ponents: the boundaries of 3 chaplets of order 2 having both extreme
points on Fr(T) and the rest (see Fig. 9). The rest forms 2e,-net for X,
and therefore for X, because X C X, by (17). Now, the boundaries of
chaplets of order 3 join these 3 exceptional chaplets of order 2 with
the “rest’” and therefore one of the components of Fr(X;)—Fr(T) con-
taing the boundaries of all chaplets of order 3 except of those 3 (lying
near the vertices of T') which have both extreme points on Fr(T). This
eomppnent is 2¢ymet for X. Proceeding by .induction, we get an in-
creasing sequence of sets, each of which is a component of Fr(Xz)—Fr(T)
and 2e-net for X. Tts union is then a connected and dense subset of X.
Property (30) is a mere consequence of the last statement.

Properties (27), (28), (29) and (30) are valid for each triangle T,
separately. Namely, using literarily the same argumentation (with the
only restriction to T, instead of 7) one proves that

(31) 191.: Ty, nFr(Xy) ds simultaneously dense and boundary subset of
T, . X,
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(82) no point of T, ~Fr(Xy) separates it,

(33) no point of T, ~X separates it,

(34) if A is a subset of Fr(T,), then Iy nX—41is connected.

By an easy induction we also find that

(33) each side of triangle T, is a subset of a side of triangle T' or of one
only chaplet of order <kj

{36) each vertex b of each triangle T, CInt(T) is initial or final point
of a chaplet and this chaplet contains a side of T, , one end of
which 8 b; ]

(87) f vl 0 €Int(T,), then Py, o —1h o CInt(T,),

(38) if p eFx(T,,), bul p is not a veriex of Ty, , then for each & >0 there
exists a triangle T, of diameter 6(T, ) <s, which contains p and
has the following property: one of the ends of the side T,  con-
taining p is an initial point and the other end a final point of chaplets,
each of which contains one of 2 other sides of T, (look at the sides
of T, in Fig.9).

(39) If continwum M is contained in Pﬁk and contains at most one of
extreme potnts of Pfk , then Xy —M is connected.

Indeed, by its definition Pfk divorces 2 triangles T, and T, of
X;1: and has only its extreme points common with Fr(Xj). Hence
Tyy—M, T,o—M and Fr(Xy)—M are connected, and T, ~M =0
for w1 ¥ or wg. Joining then to Fr(Xy)—M the sets Ty —M,
T,o—M and all other triangles T, we get a connected set Xyp1—M.

(40) If continuum K separates the plane between 2 triangles of Xz and
K CE—X;, then K contains all joints of some chaplet of order
<k-1.

Proof is inductive. For % =1 it is obvious.

Supposing then (40) for k, take a continuum K contained in E*—Xp41
and separating the plane between some points of Xyy,. We shall show
that K contains all joints of some chaplet of order <k.

For that purpose, let us start with considering common parts of K
with the chaplets of order k. Since each continuum lying in a chaplet
and containing its extreme points must contain all its joints, then we
may assume that no component M of K ~ P, , where » ¢Np and
i=1,2,83, containg simultaneously both extreme points of Pfk, and
therefore, in view of (39), that M does not separate Xz.:. Since be has
only its extreme points common with the rest of B?—Xy., then we
may write K = K P}, v M, v M,, where M, and M, are digjoint com-
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ponents of K mPfk containing the initial and final points of Pﬁk Te-

speetively (M, or M, may be empty), and K—P’ﬁk is obviously a con-
tinuum. Since neither M, nor M, separates the plane between points
of X4, and K does, then, by First Theorem of Janiszewski (see [4],
p. 353), K —Pfk does as well. It means that removing from K all its
parts lying in 3-4% chaplets P, we get continuum XK' contained in
F—X; and still separating plane between some points of Xj.,. Since
X1 C Xy, then to finigh the proof we apply the induction hypothesis.

§ 6. Some preliminary lemmas. Let 7, be the set of all those
joints "’f;, 4, the consectuve number j of which is a multiple of the mth
prime number p,. Since no point is simultaneously a joint of 2 chaplets,
then obviously

(41) VianVe=0 for I,m=1,2,.., l#m.

-4
The union |V, forms the announced at the beginning (see p. 27)

n=1
set V. .

Denote also by ¥, the set of initial points of all chaplets, i.e. the
set consisting of all points v}, ;.

From that time until the end of the paper let n be a fimed natural
number.

Take a chaplet Pfk and consider its subset consisting of interiors
of all forming it discs ka’i (j=1,2,..), of all its joints vf,‘,f except
those belonging to V, and, finally, of initial points of all other chaplets
lying in the boundaries of dises ka,,v. The components of this subset
are then the unions of interiors of # consecutive discs joined by joints
lying between them, and of a set of initial points of other chaplets of
all orders lying on boundaries of these discs. We shall call these com-
ponents Zinks and will denote them consecutively by Pfk,,-, where
i=1,2,..

) Eﬁpecia,lly important is the role in the sequel played by the first
link P, ;. Obviously,

. Pp—1
(42) Poa= U @ ;.

=1
The"proof of the decomposition (2) of X requires congidering the set
Z=(T-X)v U W,
n#Fl=0

eoysisting of the il?te1_-iors of all discs forming chaplets, all their initial
points and all their joints except those, the consecutive number j of
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which is a multiple of the p,th prime number. Since this set lies mainly
in the complement of X to T, then one seems to be easier to discover
some of its important properties by considering it as far as it appears
in the successive approximations Xp of X. We shall consider then
the sets

Zgir = (T —=Xpar) @ (Wrer—Va),

where Wrsr is the subset of |V, consisting of all joints of chaplets of
1=0

orders <k--» and all initial points lying on the boundary of T and on
these chaplets. Hence Zyy, is formed by the interior of all dises of the
chaplets of orders <k-r, all the initial points lying on the boundary
of T and on these dises, and all joints between these dises. except those
belonging to Fa.

A good deal of our considerations will be restricted to the common
part of Zpy, with the triangle I',,’c for some »; € Ny, i.e. with the set

z,

£

T (-T‘vk'Xk-:-r) A (Tﬂk A Wian—Va) .

Sinee, in particular, it can be k = 0, then this case covers also the
case Zrip-

Thus, for instance, Z, o is a countable and dense subset of Fr(T, )
consisting of some joints of those 3 chaplets, the subsets of which the
sides of T, are, and of the all initial points lying on Fr(T, ). The set
Z,, . consists of Z, o enlarged for the links of 3 chaplets Pik (1=1,2,3)
of order %k lying in T, . Adding to Z, , all the links of 12 chaplets Pﬁki
(=0,1,2,3, and 1 =1,2,3) of order k-+1 lying in T, we get Z, ,
And so on.

- 3
In particular, Z, o= Fr(T,,), 2y = Fr(T,)v U P;, and, generally,
i=1
Z,k,, is the union of boundary of T, and all chaplets of T,]c of orders
<k-+r. )
Returning to Z, » notice that since 12 chaplets Pik,- have only their

extreme points coml;non with the closure of Z, . then each of their

links, different from the first, is & component of Z,, . and, consequently,
the only components of Z,,k,g are:
(i) each point of Z, ., which lies on Fr(T,) and ig not the initial
of any chaplet P or Plj;
(ii) unions of first link of a chaplet Pﬁkj with some link of a chap-
let Pi (namely with the containing the initial point v}, of Pj);
(iii) all other links of 15 chaplets Pfk and Pf,k,-.
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Similarly, passing from Z, » to Z, s we find that only those com-
ponents of Z, s, which contains the initials of chaplets of order %+ 2,
can be enlarged

Denoting then by 0, s(e) a component of a point aeZ, s, we
have in general

6.1. If a EZ%:S’ then

P?

Yetol
a)

Oy sr1(a) = Gy, sa) v U
s 1(00) y

vis Ovel

This lemma has some important consequences.

Notice first that passing from 0, .(a) to containing it ka,rﬂ(a)
we enlarge the first for links of chaplets not contained in Z, , but
having its initials in 0, .(a) CZ,,, and therefore C, ,ia(a)n Zyr
= G,k,r(a), whence by an obvious induction, we obtain:

6.2. If aeZy, and 7 <s, then G, oa)~ 2, = Cyr(a).

Secondly, we have

6.3. If acZ, s, then O, s(a) is a point or a union of some links of
chaplets of orders <k s contained in T,,k and each such chaplet has at most
one link common with C, J(a). More exactly, if v, is the first natural

number such that Z, r ~ Gy, ola) + 0, then

(&) Zyp, Oy sla) is @ point for ro =0 and one, but not first, link
of .some chaplet of order k+v,—1 for ry > 0;

(b) if 7 <1 <s, then Cyefa) ~ (P}, —
first link 'P:k-\-r’l'

Proof. (a) If 7, = 0, then Cysla) ~ 2, o is a point, because Zy0 18
& countable subset of Fr(T,k).

And if r, >0, then C, Ls(@) meets some chaplet P
not meet Z, r—1.

’L’:Hrg) is empty or equal to

vein— DA does
Since ﬁrst link of this chaplet has common initial
point o, With Zy,r,1, then Py 4s(0) contains one of the
next links of P, . And since each link of ch -y @xcept the first is

a component of Z,km and Z, ., ~ Gy, q(a) i3 connected by 6.2, then it
consists of this link only,

{b) follows by 6.1 and 6.2.

64 If aeZyg, then C',k,s(a) is the union of oloswes of first links
contained in Cyqa). In particular, if C, J(a) ~ (P, — ’L%_H_’ 1) # 0, then
”vh,,,le Cv‘,,x( )-

Proof. Since C’, s(a) consists of finitely many first links (as there

is only finitely many chaplets of orders <% +3), then its closure is the
union of closures of these links.

icm
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6.5. For each P,,k ,CT,,
Cy,,r(a) "’*»ww) = 0‘
Proof is any easy induction on 7 =0, 1, ..., because initial point
, of Pf,,ﬁ lies on the boundary of T,, or on the chaplet of order
<%+7p, and the assumed inequality implies, by 6.3, that 'v,,w,l €0, r(a).

6.6. If a = 'u,,m,l for some p = 0,1, ..., v51p € Nyyp and 1=1,2,3,
then GV a) C(a) v Int( Tykﬂ;) for each r = 0, 1, ...

Pr oof. By 6.1, we have C,,,(a) =a for r=0,1, ..., p and 0, y1(a)
~P,k 1+ Since the chaplet P:,,ﬂ, , which divorces (by its deﬁnition)
2 subtriangles T, o and T,,Hpi of T, lies entirely in Int(T,

ktp L+p
except its extreme points, then, in view of ”vmﬂ =g and ”vk ot Pv,,+p,1~
we have 6.6 also for r = p-+1. Now, the inductive proof follows by (37).

The next lemma is valid for all %, but we shall use and therefore
formulate it for the case k& =0 only.

6.7. Let s=1,2, ..., aeZs, beZs and ¢ = b. Then

(1) X—C, s(a) is dense in X,

(2) X0y sla) is connected,

(3) tf Cys(a) n Gy 5(b) =0, then G, s(a) ~ Gy s(D)C V.

Proof. (1) By 6.4, C, s(a) is a union of closures of finitely many
links and therefore of finitely many discs of chaplets of orders <s. Since
no internal point of any of these discs belongs to X, then X can meet
Gy s(@) in boundaries of these discs only. And since these boundaries
are parts of boundaries of chaplets containing these dises, then X ~
n Gy s(a) CFr(X;), because, by (25), Fr(X,) is a union of Fr(X,) and
boundaries of chaplets of order <s. Now, Fr(X;) is, by (27); boundary
in X and so is its subset.

(2) Note first that in view of 6.3 the set O, s(a) does not contain
all joints of any chaplet of order <s.

Hence and from (40) we infer () that X;—C, s(a) is connected.

In view of (13) we have X;—C, s(a) = |J {T,, —C s 0, +(a)). Now replace

ve€Ng
each sommand on the right hand by I, ~ X —O,.n,x(a), which is con-
nected by (34), because O,, sla)y ~ T,,CFr(T,.‘) for each » e Ns;. And
since Fr(T,)— —C, o(a) i a)C Ty ~ X~ 0, s(a) s(@), because Fr(T,)CX, then the

set ) Ty ~n X—0, s(a) =X -0, s(a) is connected.
v €N,

there is at most one point a EZ::,c,o such that

( YEer

i
Vrgirs

k+p’

() Oype(@) might separate X, between, say, p and g without separating the
plane, but in such a case there exists continuum K separating plane between p and ¢
and such that K ~ X, c Oy s(a).
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(3) Bach of the sets C, s(a) and C, s(b) is, by 6.4, a finite union
of dises of chaplets of order <s, and then, if these 2 sets meet, there
exist 2 dises DyC 0, 4(a) and D, C 0, 4(b) such that D, ~ D, =0,
If these discs belong to the same chaplet, then D, ~ D, is a joint of thig
chaplet, and if they belong to different chaplets, then one of them hag
order inferior than the other (because no 2 dises of 2 chaplets of the
same order can meet), but since this other chaplet can meet the union
of chaplets of inferior orders in its extreme points only and no one of
its dise contains its final point, then D; ~ D, is an initial point of the
second chaplet. So, in any case,

D1f\Da€WsﬂlUVl-
=0

If the point p =D, ~.D, does not belong to Vy, then it belongs
to Z; and therefore Int(D;) v Int(D;) v (p) is a connected subset of Z,.
Since Int(D;)C C; s(a), Int(Dy)C 0,,s(b) and both Oy s(@) and Gy (b)
are components of Z;, then Int(D;) v Int(D,) u (p) is contaived in both
Oy.s(a) and C, «(b), which is a contradiction to hypothesis.
It means that each common point of Oys(a) and Cy,s(b) belongs
to V.

6.8. If aeZy and 0 <k <s, then
Cvo,&(a) = Cvo,k(a) v U U ka.8~k(x) .

v e Ny weCyi{a) ~ Ty,

In fact, by virtue of 6.1, Oy s(a) i3 obtained from Oy,sla) by sue-
cessive enlargement Oy x(a) to Oy x+1(a), next to O,.o,k“(a) and so on
until €, s(a). And we enlarge Oy .i(a) to 0y k+1(a) by joining to Oy i(a)
all the components of points z e C’,,Q,k(a) ~ T,.k in Zy 1, where e Ny.
And enlarging the last components to the components O, s(x) is Zy 2

we get O, xis(a), and so on until enlarging them to the components
Oys—il®) In Z, 5 ; we finally get G s(a).
69. If k>n and Bey o0, then for each r=0,1,... there ewists
- a connected set A, such that

{*) T’k A Fr(Xpyy)— ovk,r(m) CA4,C T”rp AFr( Xy i) — Owk,r-i-l(m) .

Proof. If z € Z, 3—V,, then by 6.1, Cp (@) =2 for r=0,1, ..
and therefore put_bing Ay =T, ~Fr(X;,,)—(2) we have 6.9 by (32).

And if =9, ; for some s = 0,1,.
then by 6.1, €, ,() = o for r = 0,1,

--;Wk-{-sENk-}-s and %’=1,2,3,
the sets (

--y 8 and therefore, in view of 2),

Ar =T, AFr(Xpy)— Gy ()
are connected and satisfy (x) for » = 0,1,..,s.

icm®
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The rest of the proof follows by induction. Supposing that there
exists a set 4, satisfying (x), we shall construct a set 4,.; satisfying (x)
for »+1 instead of ». For that purpose consider the set

By = T";; N Fr (X i) — C'x'k,rﬂ(-l’) .

By (%), 4:CB,s.

If B,.; is connected, then put A,.; =B,.;.

If B,;; is not connected, then first notice that .
(a) if component H of the set B, is disjoint with A4,, then

H=Fr(P,, )—(P, 1w, ) forsome v, eNp, and i=1,2,3.

Indeed, since B, —A4, C Ty, ~ [Fr(Xetrsn) —Fr(Xpsy)], then, by (25),

By —4,C u\ QPim and therefore each component H of B,.,,
Vitr €N gy 1=
which is disjoint+with Ay, is a subset of some chaplet Pf,k %.

Consider then an arbitrary chaplet Pﬁm of T, .

If its initial point 7::”’,1 does not belong to 0, .(x), then, by 6.4,
C',,k,,+1(w)n (me'“"’:mpw) = 0. And since the set Fr(wa)—vim,m is
connected and contains 'ufk .1y Which at the same belongs, by induction
hypothesis, to A, then A4, [Fr(F;, )—*,, . .] is connected subset
of Byyi. )

And if v, s € Gy +(z), then, by 6.3 and 6.4,

k+r)

Cypra(@) (P,

3 i
Vkir ’l)’lc+7¥m) =P

Erl

Now all depends on whether the final point vﬁw,m “belongs or not
to Oy (o). If it does not, then by induction hypothesis it belongs to 4,
and since the set Fr(PfW)-PprI is connected and - contains 'vfkwm,
then 4, v Fr(Pﬁw) _'P;:k+r71 is connected subset of B,;. But if it does,
then Fr(P;,)—(P),, 1w v, ) is connected and disjoint with €y, rs1()
subset of By.,.

Hence (a) is proved and for each such component H we shall now
eonstruct in the set B,.» and arc Ly joining H with A4,.

For that purpose consider triangle T,,, (see Big. _12) and first notice
that neither side of T,,,, countaining initial point y,,1 nor side con-
taining final point 'ufw,m of wa is a subset of a chaplet divoreing
triangle T,,,, from some other triangle of Xy.,. For if so, then by (20),
(42) and hypothesis k> 2 the extreme point of Pﬁw lying on such

a side could not belong to the first link of corresponding chaplet and

Fundamenta Mathematicae, T. LVII 4



GUEST


e ©
50 R. Duda Im

therefore, by 6.3 and 6.4, it could not belong to C,,+(2), but both ex-
treme points of Pf.kﬂ do.
Hence the third side of T, must be a subset of a chaplet divorcing
from some other tna.ngle of Xy.r and therefore the initial point
,,,,1 of the chaplet P., ., joining this side with initial of -Pw does not:
belong to C,,k,,(m), whence, in view of induction hypothesis,

(b) "L+r 1€ Ar.

Let now P}, be a chaplet of triangle T, ., the initial point

of which lies in P:__. From (b) and 6.4 we infer that (P, —t, o)

T

’Ic+

A Cpyria(@) = 0 and PiH  r+2(t) = 0. Then an are Ly C P, u Pi_,
of ends 1{,“, and 'u,,wo,l is a subset of B,;, and joins ”v;m:l e A, with
‘U,k+01 eH.
Hence A,.; = B,y vl )Ly, where H runs over all components of
B, disjoint with A,, satisfies (x).
6.10. If k> n, r=1,2,... and T,,HMCInt(T,‘k), then there exists
at most one point © €Z, o such that

T”la+r+1 ~ C”k""'l(m) #0.

Proof. Write #zy,11 more explicitly a8 wpye_14j (4,7=10,1,2,3)
and consider all possible cases.

1 If j=0, then, according to our notations, triangle T,

i 18

kr-1
divorced from the central triangle T, s by the chaplet PZ-H,__li-
Let us denote briefly the side of 7, ., common with P by 4,

the initial and final points of 1’7 i by a and ¢, respectively. Hence
a and ¢ are the ends of 4, and A is oriented from a to ¢. Next denote
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the third vertex of triangle T, 5 by b, its side of ends a and b by B,
and side of ends b and ¢ by C. Denote also shortly by P4, Pp and Pc¢
chaplets, the subsets of which sides 4, B and O respectively are (cf. (35)).
So, for instance, P4 = le,+f_1" and @ is neither initial nor final point
of Py, because B is a “half” of side of triangle T,,, s and this side
lies entirely in Pg (cf. (35)).

According to (36), b is initial or final point of one of the chaplets
Pp and Pc¢. By virtue of consistent orientation, b is initial of Pp or final

of Pc¢, and these cases do not exclude one another. (Indeed, if T i

¥,
is itself central, i.e. 4 = 0, then b, being one of its vertices, is sm&f{a.‘-

neously initial of Pz and final of Pe¢.)
(a) If b is final of P¢ (irrespective of whether it is initial of Pz or
not) (see Fig. 13), then by (20), (42) and h}rpot}lesis k = m, the closure

of first link of P¢ does mot contain ¢ and therefore does not meet C,
which means, in view of 6.4 that

[C— {1 A Cpria(@) =0 for all * zeFr(Ty).

Now, if A~ O, (@) #0 for some xeFr(T,), then ae 0, ()
and since a is not a final point of Pg, then a belongs to the closure of
first link of Pz. Hence, by 6.5, B n G,Wﬂ( ) % 0 iff y = a.

And if A~C,, ,,+1(m) =0 for each zeFr(T,), then only side B
remains “free” apd we simply apply 6.5 to Ps.

(b) If b is ppt final point of P, then b must be initial point of Pp
(see Fig. 14). By (20), (42) and hypothesis k > n, the closure of first
Iink of Pp dogs not contain a, and then, by 6.4

[A—{3]~ Cprra(w) =0 for each @eFr(T,).
4!‘
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Now, if Bn Cyk,,ﬂ( z) # 0 for some weFr(I,), then, by 6.4,
be O,k,r(w) But since in view of consistent orientation P¢ goes in di-
rection from ¢ through b, then, by 6.4 b is contained together with the
side C in the closure of first link of P¢ and therefore in 0, .(x). Henece
and from 6.5 we infer that C ~ O,,k,ﬂ( y) #0 iff y =am.

And if B C,,k,ﬂ( ) = 0 for each zeFr (L)), then only side € re-
mains “free” and we simply apply 6.5 to Pe.

2. If j =0, then also 2 cases are possible.
(a) If 4 # 0, then, according to our notations, T + i divorced

Pptr—a'
- by the chaplet Pz“,,lﬁ (see Tig. 15),

from the central triangle T

Let us denote the sides, vertices and corresponding chaplets for triangle
T,k ,# in the same way as we did for triangle T,,, 4 in 1. Denote
also the vertices of triangle T,  lying on PA,PB, Pc by ay, b1, 0
respectively, the sides of ends (al, b 1)s (Byy ¢0) and (¢, a;) by By, C; and 4,
respectively, and corresponding chaplets by Pg,, Poy; Pa.

Applying (20) and 6.4 to P4 we conclude that 4, does not belong
to Oy, +(x) for any @ ¢ Fr(1,) and, consequently, that

[Bi—{b:}1~ Oy rsa(®) =0  for each @ eFr(T, o)
Now, if b is a final point of P, then, similarly to 1(a), ¢, does not
belong to C,k,,( ) for any e Fr(T, »); and therefore
[4;—{a} ]~ (I,,k,rﬂ(m) =0 for each w®e Fr(T,,).

For one remaining “free” side (), we apply 6.5.

And if b is not a final point of Pg, then it must be
itial point
of Pg. Therefore, if ’ itial vl

[Ci—{a}]~ Oy ria(@) £ 0 for some o e Fr(T, W)
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then b, belongs to the closure of first link of Pp, this link is contained
in G,k,,ﬂ(ac) and, consequently, b belongs to the closure of first link
of P¢. But since P¢ goes in direction from ¢ through b (in view of con-

sistent orientation), then also ¢; e @H_l(m). In view of 6.4 it means that
[4 —{al}]mO,, ~(y) =0 if and only if y=wa=.

(b) The case ¢ =0 is simple, because, preserving notations of the
case (a) above, each vertex of T, pirgd 1S DOW simultaneously initial
and final of 2 of chaplets P4, Ps, P¢, which implies, by (20), (42) and
hypothesis & > n, that a,, b;, ¢, does not belong to the closures of first
links of chaplets P4, Pg, P¢ respectively, whence, in view of 6.4,

T,

Prtr-1

e G,.k,Hl(ac) =0 for each @eFr(T,).

A1l cases being considered, 6.10 is proved.

Let us pass now to another category of sets.

It xeZ,,, then O, «(z) is, by the definition, a component of z in
the set Z,, .. Tending with 7 to infinity let us denote by C, («) the union

(43) G @) = Un Cy,()
- r=
One can prove that the set C,,k(m) is ‘& component of @ in T, ~ Z.
For us, however, more important are other properties of if.
Since we get 0, (@) by suecessive enlarging of a point @ to C,,.(2),
next to G, (%), and 80 on, then obviously

6.11. If z € Z, 1, then for each r =0,1, ...
Ork(‘r) N Ly r = Ov,c,r<w) .

Similaxly, 6.3 and 6.6 are valid for (, () instead of O, (%), i.e.

6.12. If € Z,.0, then O, (%) is a union of some links of chaplets
contained in T, and each such chaplet has at most its first link common
with C, (@). More exactly,

G”k(w) ~ (P,I,‘ﬁ@ﬁs,w) is empty or equal to Pf,,l.

6.13. If o = vﬁk+p,1 for some p = 0,1, ..., vpip € Nprp and 1 =1,2,3,
then O,k(w) C (z) v Int(Ty,,,)
6.14. If k=n and x € Z, 0, then for each v =0,1, ...

T, A Fr(Xsr) — Op@) = Ty, Fr(Xir) = 0y, (@) -

Proof. Since O, (z)C (, () by (43), then it suffices to prove the
inclusion
Ty, A Fr(Xpr) — 0y (m)CT AFr(Xgi)—0,

2
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For that purpose let us take a point p e T.,knFr(Xk.H)—O,,k,,(m),
Three cases are possible:

(i) p is initial point ’1):',“,,1 of some chaplet Pik“, ‘where s <7 (see
Fig. 16). It means that p is a vertex of three triangles T,,k“” Tm
and T,,; and that these three triangles together with the first d.ls‘c
Qu .»1 Of chaplet P

Yk+s

o0 ;
containing p, and with the union |J @;,: of all dises, beginning

=pr1
from the second link, of chaplet P, , form a neighbourhood of p.
If p € 0, (2), then p is a cluster point of interiors of dises contained

in G, (), because the last form the dense subset of 0, (#). But Int(D) A

Ia) O,E,(a:) = 0 by hypothesis and therefore, by 6.11, Int (D) O, () =0,
whence, consequently, also Int(Q,H,,)m 0,, (®) = 0. And since O, () con-
tains, by 6.12, only some first links of chaplets contained in T, , then
also (},k(a:) U Int(Q,m 1) = 0. Hence if p ¢ ka(w), then p is a cluster

I=pn+1
point of interiors of dises contained in 0, (#) and lying in one of three
tmaa.zgles Ty, 00 Whe?'e‘ a=10, ¢ or . Take this triangle and congider
a triangle T, containing p, contained in Tm.u’ and such that ity sides
common with T, . were disjoint with O',,k, 2). They are then digjoint
with G, () and, in view of 6.11, also with 0, (@), Hence the end points
of the third side of T,, . 40 not belong to C, ( ) and, consequently, the
third side is also dlswmt with G, (@). It means tha.t Fr(T,,,) n G () =0
and since O, (x) is connected, then also Int(T,,k*n ~ O,,k(w) =0.
Hence p does not belong to C,, ().

, with some disc D of chaplet of order <%+

ot
[&14
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(i) p is & joint ”-’3“5,7' of some chaplet wa, where s <7 (see
Fig. 17). It means that p belongs to common part of triangles T, . and
Ty i (which chaplet P,,m divorces by its definition) and that these 2
triangles together with 2 dises Qi’”pj and ka .+ form its neighbourhood.

From 6.11 and 6.12 and hypothesis that p ¢ G, .(¢) we infer, as in
case (i), that [Int(QL,, ;) v Int(Qf,,,i+1)] ~ Oy () = 0. Then, if p < 0, (),
then p is a cluster point of interiors of dises contained in 0, (z) and
Iying in one of 2 triangles T,,,. (a= 0 or i). Take this triangle and,
applying (38), consider triangle T, containing p, contained in T, .,
and such that both ends of its side containing p lie in @, ;v @, 5+
and satisfy (38). Arguing as in the case (i) we find that Int(T,,, )~
~ G, () ) =

It means that also in this case p does not belong to C, (%) )

Fig. 17 ' Tig. 18

(iii) if p is neither initial point nor joint of any chaplet Pﬁk ey Where
s < r (see Fig.18), then there exists one only dise D and one only
triangle T, , containing p. .

Apply argumentation of case (ii) above.

615. If k=n, r=0,1,.. and T CInt(Ty), then there ewists

VE+r4l
at most one point «© € Zy, o such that

T,

Vpir+l

~ C,k(w) #0.
In particular, if x; € Zy 0y T2 € Ly and 1, 7~ 2y, then
Int(1,,) ~ G, (wl)mC (2s) = 0.

Indeed, if Ty, . ~ Cpral) = 0 for some e Z,,, then obviously
Fr(Ty,, ) n Oy, +1() = 0 and therefore, by 6.14, Fr( Ty, 0 (}',k( ) = 0.
And since C,k( ) is connected and @ € 0”;,( ) —Ty,,...0 Uhen finally T, ., ~

n C,,k(w) = 0. Now apply 6.10.


GUEST


56 R. Duda

6.16. If k= n and wsZW,, then X A W s boundary subset
of X T,,k.

For it peX T, and U is a neighbourhood of p, then by (13),
(17) and (18) there exists r such that peT,,, CU. At least one side,
denote it by 4, of T}, is oriented. Since 0, »(#) contains at most firgt
link of the chaplet, the subset of which A is, then A — Ow( ) 0,
Henece and from 6.14 we infer tha/c also 4 — O’ @) # 0.

6.17. If ACZ,, 0, then Int(T, U (J =Int(T,)~ UG, (x

Indeed, if @ eZ,—V,, then by 6.1 and (43) (w) =a. And if
@ =1}, 1 then, by 6.13,

(a) ka(w) C(z) v Int(T,,Hp) .

Since there is only finitely many chaplets of order <k-+p, the
initials of which lie in 4 ~ V, (because there is altogether only finitely
many chaplets of order <k-+-p), then for each ¢ >0 there is, in view
of (a), (18) and (19), only finitely many sets 0, () such that z ¢4 and
0[C, ()] > e. Each point p « Int (L), ) has then a neighbourhood U meeting
only finitely many sets 0, («) (where ze A) and therefore, if p ¢ Int(7T, Al
nILEJA(L,E(w), then p eInt (Ty,) ~ U O’

The inverse implication is obvmus.
As a simple consequence of 6.15 and 6.17 we have
618. If k=mn, A, u AﬁCZ,,k,o and 4;~ A, =0, then

Int(Ty) ~ 1 G (0) ~ U G, f) = 0.

6.19. If k=n and % € Z, o, then L)y~ X— 0, () (%) 98 @ connected and
dense subset of T, o X

oQ
By virtue of 6.9 the union UOAT of sets satisfying (%) is connected,
=
because obviously Ay CA4,;;. And in view of 6.14, lj Ar = U_’l’,,
_— =0 =i
A Pe(Xi)— O fa). Apply (27), .o
§7. Proof of the decomposition (2) of X. Now let us return
to the set Z. The aim which we follow is to represent Z as a union
(44) Z = U Dy
k=1
of sets Dy having the properties

(45) - H1l,m=1,2,.. and I s m, then DenDiCV,,

(46) for any 1=1,2,.. and any RCD; the set X—R is connected.
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We shall do it in the following way. Take a point a € Z. Then a ¢ Zx
for some k= 0,1, ... Now take a component C,,x(a) of & in Z; and join
to it all the sets G’,ﬁ(m), where % € Tvk ~ Oy ix{a). So we get a connected set
(47) dx(a) = Cpifa) v UJ U ka(m) -

V€N, a:eT n C’ k(a)

We shall show that these sets satisfy (44)-(46).

For that purpose notice first that in view of 6.8 the definition of
Ai(a) depends neither on % nor on v in the sense that if b e Ax(a) ~n Z;,
then dx(a) = 4i(b), and therefore we may, cancelling out some terms,
order all the sets {4k(a)}r=01,..aez, in & countable sequence of disjoint
sets {Drlr—1p,... So we have (44).

Now we show (43). Take two different sets D; and Dy, and, choosing
% such that Zx meets both D; and Dn, take points a e Zx ~ D: and
b e Zy n Dy,. Thus we have

DZ Cro, (a) ) U U Gvk(m)s
v, €Ny meTyknCyu’k(a)
D = Copifb) v U U 0,

€Ny ¥eT, 00, ,0)

whence in view of 6.14

D; = Crila)w | Int(T,) U O,

v €Ny e nC',u,k(a)
D =Cpr®) v U Inb(T,) A _D“”_CTJ)
€Ny, !IETVX: ”Cv.,.k(b)

Hence by virtue of 6.18 and 6.7 (3),
Di~DpnCC, ia)

(0

wa) o Gy (b)) C V.

Before proceeding to prove (46) we shall show three preliminary
lemmas.

71. If D is a disc of some chaplet and D; meets boundary of D in
more than one point, then DC Dy.

For if D is not contained in D;, then it is contained in some other
D, and since, by just proved (43), D; ~ Dm C Vi, then D ~ Dy is either
empty or consists of some points of ¥, belonging to D. But each disc
of any chaplet contains obviously at most one point of V,. (In fact,
each dise ka,,- contains one only joint vﬁk,Hl if § = 1 or two joints a)ﬁk 7 and

vf,,,j+1 if § >1, and has no other common points with ZU V).
=1

7.2. For each 1=1,2,..: Di~Fr(T) is emply or consists’ of one
point only.


GUEST


58 R. Duda

For let © ¢ Dy ~ Fr(T). In view of (47) we have then D; = O,)
and from 6.13 we infer that C, .(z) ~Fr(I) =@, because, by virtue
of (22) and (26), Fr(7)C {J Fr(T,). Now apply 6.14.

v, €N},

7.3. For each 1=1,2,..: if X —D; is not connected between P and q,
then Dy contains simple closed curve 8 separating plane between p and q.
For supposing that X—D;= M N, where MnN o M AN =y,
peM, geN, take a continnum @ disjoint with M « N and separating
the plane between p and ¢ (see [1], p. 233). Since X is connected, then
Q@ must meet D; and therefore @ w D; is continuum. And since @ sepa-
rates the plane between p and ¢, then continuum @ o D; does it too.
‘We shall show that

(a) D itself separates the plane between p and q.

Indeed, since X is continuum, @ may have common points with
those regions of E*—X only, the boundaries of which have common
points with D;. Take such a region H and suppose first that D; ~ Fr(H)
is one point @ only. In this case DivQ is a union of 2 continua
Div@Q—H and du @~ H joined by the point 4. Since point d does
not separate X (ef. (29)) and (dv @~ H)~ X =d, then continuum
du @~ H does not separate X and therefore does not separate plane
between p and g.

) Hence by the First Theorem of Janiszewski (see [4], p. 355) con-
tinuum D; ~ @ —H separates plane between p and ¢ and so we may
remove from ;o @ the part of @ lying in H.

Suppose now that Fr(H) ~ D; contains 2 or more points. In view
of 7.2 H cannot be unbounded region and therefore H is an interior
oi : fjsc of some chaplet. But, in this case, we have H C D; by virtue
of 7.1,

Hence we have proved (a).

Moreover,

(b) D is locally conmected continuwm,
Indeed, in view of its definition (cf. (47)) we have

Dy = Cyula) v | [T 7).
7o 1,551'%[ Ok stveru%’%’k(a) ka(m)}
for some aeZ, and each % > m. The set ¢ i
; k - vook(@) i3 locally connected
con‘mm}um a8, by 6.3, a union of finitely many topological discs. Each
such disc meets any of triangles T,, in an arc (or does not meet at all)
and therefore each of the sets 7T, ~ U G, (@) is 2 union of
- ) zeT, NC, (@) E
g._mtely many contmuums. (a.etgajlly, each o’if tﬂese sets is a continuum).
1;1];“%‘ ea.c.:h of these continua is a subset of triangle T, by definition,
en in view of (19) and theorem of Sierpirski (see [4], p. 113) we have (b)
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To finish the proof apply theorem of Wilder (see [4], p. 361).

Property (46) is a mere consequence of the two following lemmas:

7.4. For each 1=1,2,..: X—D; is connected.

For suppose that X —D; is not connected between p and ¢ and take,
applying 7.3, simple closed curve 8 separating the plane between p and g.
By the definition of D; we have

D=0l U U Cule)
v,‘,sN,,c xET’,knC',,n’k(a)
for some k=0,1,... and aeZ;. In view of 6.7 (2), § cannot be con-
tained in C\,x(a) and therefore § must separate one of the sets X ~ T\,,.
Tet ¢ be the component of § ~ Int(T,) separating X ~ Int(T,). In

view of 6.17
0 CInt(T,) ~ U G, (@),

zeT, NC, !k(a)
k 0
whence _
C= ] G, (@) v ey e,
stmnC’,n,k(a)
where ¢; and ¢, are ends of arc CCRif §—C 0. In view of 6.19 no
one of sets C ~ G, (2); & and ¢, separates X ~ T,, and therefore at least
two of them are non-empty. Bub it is a contradiction to Sierpinski theo-
rem (see [4], p. 113), because there are only countably many sommands.
7.5. For each 1 =1,2, ..., X ~ Dy is boundary in X.

By the definition of D; and 6.17 we have for some ¥ = 0,1, ... and

D, = Int(7, G,
@ Zk’ D Cv‘”k(a) un}GJV}a 1 ( k) ~ IeTyknc'7o’k(a) k(w)’
whence —
XnDi=XnCila)v U @] X0, ().

v, €Ny T€ T’uncwk(“)

In view of 6.1 only countably many sets X m differ from
the point @, and in view of 6.16 all of them are boundary in X. And
since, in view of 6.7 (1), also X ~ C,,x(a) is boundary in X, then X ~ D
28 2 union of countably many boundary subsets of X is itself boundary
in X.

Now we proceed to the proper proof of (2), which is based on the
two lemmas (compare 7.6 with (3)).

7.6. If continuum S C T separates X and for some natural n there is
SAVy=0, then S~ X contains a perfect set.

Proof. Since the set Z contains by its definition the complement
of X to T, then in view of (44) we can write S:SHXUHSA_D[,

whence obviously § =8~ X v 1U1 8~ D
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If § ~ X contains no perfect subset, then ([3], p. 355) it is finite
or countable and, a fortiori,

(a) SnX—HSﬁE=(P1:P2y )

=1
and (45) we infer that the sommands of § are pairwise disjoint. Angd
because by (46) and (29) no one of them separates X and S does, then
at least 2 of them are non-empty. But it is a contradiction to Sierpifnski’s
theorem ([4], p. 133). Hence S ~ X containg a perfect subgset.

So 8= Llj {piy v lj 8 ~D; and from (a), hypothesis 8~ 7V, =0,
i=1

7.9. If a st WCX—JV: meets each perfect subset D of X, then
=1

W oV, is connected for each n=1,2, ..

Proof. For supposing that for some natural = the set W oV, is
not connected, take (1*) a continuum § C T separating T between 2 points
of Wu 7V, and such that

(a) SA(WuT,) =0.

Since W w7V, CX, then S would separate also X and therefore.
by (a) and 7.6, § ~ X would contain a perfect set D. In view of the
assumed property of W it implies a contradiction

0 WADCWASAICWAS=0.1

TaEOREM 2. The continuum X is & wnion of a countable sequence of
its commected, dense, ponctiform and pairwise disjoint subsets.

Proof. Take a decomposition X —GV;an, where sets H, are
=1

pairwise‘ disjoint and each of them meets every perfect subset of X (2).
In particular, each H, is totally imperfect and

(a) Hy is dense in X for each n = 1,2,..

(1) We base 9urse14xres here on the following statement: if 4 is a not connected
subset of a topological disc 7, then there exists continwum & ¢ T such that S~ 4 =0
and § separates T between 2 points of A (cf. 1], p. 2383)

{(**) The proof of the existence of decomposition X —GV; = GHW into pair-
{=1 N
wise disjoint sets H,, each of which meets every perfect subset of ¥ — G V1, strictly
o . = '
follows the Kuratowski's proof of Bernstein theorem (see [3], p. 422). A:xc'[ since, in

. s, *x
view of countability of 1=U171’ each - perfect subset of X contains a perfect subset of

o
X -—IEJl Vi, then that decomposition has the Pproperty stated above in the proof of
theorem.
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We show that U (Hynw Vy) is the required decomposition of X.
n=1
First of all observe that

3

I(Hn V) =UHasv Lglrn = (X—lq i) v lelrl =X
n=1 n= = =

22

Now, by 7.6, each of the sets H, vV, is connected, and, by (a),
each of them is dense in X.

As a union of totally imperfect and countable sets, it is ponetiform
(see [3], p. 35b).

Finally, if m = n, then (HpuVp)n (How Vy)=Hpunn Hyw Hyp
NAVeuHy oV w VsV, where first and last sommands are empty,
because sets of sequences {Hmlm=1s,.. and {Vi}i—i1s,.. are respectively
pairwise disjoint, and also second and third sommands are empty because

HnoH,CX— T
1=1
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