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Coincidences of real-valued maps from the n-torus*

by
P. Bacon (Knoxville, Tenn.)

1. Introduction. Let E, denote euclidean n-space and suppose
that f: B, —E, is a continuous periodic function of period 1. In the
number interval [0, 1] there is a point p where f attains its maximum.
Suppose that A is a real number and let g denote the function from E,
such that gz = f(z+2)—fz. Then gp < 0 and g(p—21)> 0. By the inter-
mediate value theorem there is a point #* such that ga* = 0; f(#* 4 1)
= fo*. If we take 1=} and identify points in the domain of f with
coordinates congruent mod I, our result can be restated in the follow-
ing form:

(1.1) If f is a real-valued mapping from a circle C, there is a pair
(a*, y*) of diametrically opposite points of C such that fr* = fy*.

A generalization of (1.1) to higher dimensional spheres is commonly
known as the Borsuk-Ulam theorem. If f is a continuous function from
the n-sphere 8" into F,, there is a pair (2*, y*) of diametrically opposite
points of 8" such that fz* = fy* ([1], p. 178, Satz II(3)). A different
generalization of (1.1), applying to topological products of circles, has
been devised by W. Schmidt ([4], p. 86, Satz 1). The 2-dimensional
case of Schmidt’s theorem runs as follows:

Suppose that each of f, and f, is a real-valued mapping from #,
and for each number pair (2, )

fuly, 25) = Filawy+1, @) = ful@1, 22 +1/2),
fol@y, a) = fol @y, B 4-1) = fola +1/2, 2,) -
Then there is a number pair (#F, «%) such that fy(zf, of) = fi(af +1/2, =¥)
and fy(a¥, of) = fy(a¥, 24 +1/2). Thus there is a square in F,, with sides
of length 1/2, on the vertices of which each of f; and f, is constant.
We proved (1.1) by particularizing the parameter A that appears
in a more general theorem. This suggests a direction in which Schmidt’s
* This paper constitutes my doctor’s thesis, done at the University of Tennessee
under the direction of W. §. Mahavier, to whom I am indebted for aid in removing
errors and obscurities from an earlier version.

() The numbers which appear in brackets in this paper correspond to the num-
bers in the bibliography of this paper.
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theorem might be extended. This paper is devoted to a proof of such
an extension. A special case of the theorem proved here ((7.9) below)
reads:

(1.2) If p is a prime and each of f, and f, s a real-valued mapping
from By such that for any number pair (i, o)

Tulwy, ) = filwy +1, ) = fuln, 2, +1/p)
and
Fol @1y @) = folr, 2 +1) = foly +1[p, @),

then there is a number pair (x¥, ) such that fi(a¥, ©f) = fi(af +1/p, o})
and foa¥, af) = folat, 25 +1/p). Thus there is a square in B, with sides
of length 1/p on the wertices of which each of f, and f, is constant.

The compact space obtained from E, by identifying points with
coordinates congruent (mod 1) will be called the n-torus T". T" is a simple
closed curve; T? is an ordinary torus. Our principal theorem can be
formulated as a statement about coincidences of real-valued maps from
T" and can be deduced from a theorem about the incidence relations
in certain finite closed covers of 7™ The latter is deducible by a con-
tinuity argument from a theorem about intersections of subecomplexes
of & complex K whose polyhedron is homeomorphic to T". We construct
a homology theory on K and & homomorphism »x from the homology
groups on K into a ring Z,. To know that the intersection of two sub-
complexes of K is nonempty, it suffices to show that their intersection
carries & nonzero element of a homology group; to know that an ele-
ment of a homology group is nonzero, it suffices to show that its image
under vk is nonzero. We take advantage of the fact that 7™ is a topo-
logical product by expressing K as a product of complexes Hy, ..., Hy,
each with a polyhedron homeomorphic to the circle 7%, by defining a prod-
et €1y .oey n—>6; X ... X 65 from the chains on H;. ..., H, into the chains
on K, and by showing that if 2; is a cycle in the homology theory for Hj,
te{l,..,n}, then

(va121) (VEra®o) o (PH,20) = ¥E(#% X 22 X oo X 20) ,

where juxtaposition indicates the ring product in Z,. To know that
v&(2, X ... X2a) # 0 it suffices to prove that wme;=1, ¢ € {1, ..., n}. Such
2y exist.

The general method, then, is the same as that used by Schmidt;
the proof that follows may be regarded as a refinement and completion
of Schmidt’s argument ([4], pp. 88-91).

2. Some definitions. Definitions of technical terms not defined
in this paper may be found in [2] or [3].

If n is a nonnegative integer, the statement that S is an n-simpler
means that there is a set {49 ..., A"} of n+1 objects such that § is the

©
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set of all functions a from {49, ..., 4™} into the positive real numbers
3

such that > od’=1. Bach of 4% ..., A™ is called a verfex of §. Each

i=0
member of § is called a point of S.

A compler K is a finite collection of one or more simplexes such
that, if § is a simplex of K with vertex set T" and L is a nonempty sub-
set of 7 then, the simplex with vertex set L is in K.

If H is a finite collection of one or more nonempty sets, the nerve
of H is defined to be the simplex collection to which § belongs if each
vertex of § is in H and, if § has more than one vertex, the vertices
of § have an element in common. The nerve of a finite collection of
sets is a complex.

If » is a nonnegative integer and § is an x-simplex with vertex
set {4°, ..., A"}, an orientation of § is a function j into {—1,1} from
the set of simple orders for {4° ..., A"} such that, if (4%, ..., A™) is an
odd permutation of (4% .., 4™, then f(4", ..., 4™) = —f(4" ..., A"
A simplex has two orientations, one the negative of the other. The orien-
tation of § whose value at (4°, ..., 4™) is 1 will be denoted by <4°, ..., A™>.
It w is a simplicial map which is 1-1 on {4° ..., 4™, w4’ ..., wd™)
will be denoted by w{4’, ..., A™>.

If » is a nonnegative integer, X is a complex, and @ is an abelian
group, then a @-valued n-chain on X is a function ¢ from the orienta-
tions of n-simplexes of X into @ such that, if ¥ is an orientation of an
n-simplex of X, ¢(—E) = —cE. The G-valued n-chains on X form,
under functional addition, an abelian group which will be denoted by
(X, G). )

Suppose that each of X and Y is a complex and f: X ¥ is a sim-
plicial map. Let f be the function from C,(X, §) into Cy(T¥, @) such that, if
¢ e 0n(X, @) and F is an orientation of an n-simplex of ¥, (fe)F =E2Q cE,

€
where @ is the set of orienfations of simplexes of X to which ¥ belongs
iff fE=1F. f is a chain map, i.e., is & homomorphism that commutes

with the boundary operator 2. Hereafter § will be denoted by f. A si-
milar convention holds for any other letter of the alphabet.

(2.1) Notice that, if w is a 1-1 simplicial map from X onto X and ¢
is am - chain on X, then (we) E = c(w—1E) for each orientation E of an n-sim-
plex of X.

Suppose that (4° ..., A®> is an orientation of an #-simplex § of X,
g €@ and ¢ is an n-chain on X such that
(a) <4’ ..., 4™ =g and

(b) if F is an orientation of a n-simplex of X different from § then
ckE = 0. ]

Fundamenta Mathematicae, T. LVII 5
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I @ = Z, thé additive group of the integers, and ¢ =1 then ¢ is
called an elementary chain and is denoted by A°... A", Whether ¢ = 7
or not, ¢ is denoted by gd’... A". Every member of Cu(X, @) may he
represented in the form ;' gAY ... A,

If » is an integer and ¢ is a chain, then nc is uniquely defined by
the equations
0c=0 and (n-+l)e=mnc+e.

Suppose that ¢ « G, {A? veo ATYieq is & finite collection of elementary

-

. . ] .

chains and each of my,..,7n, is an integer. Then ¢2 nig A7 ... A} will
=1

r
sometimes be denoted by ¢ Z; ni AS ... A%,
&

The support of an n-chain ¢ is the set of n-simplexes on whose
orientations ¢ does not assume the value 0.

3, The cartesian product of chains. Definitions for the
simplicial product K, AK, of complexes K, and K,, an order for a com-
plex and the cartesian product of ordered complexes are given in [2],
pp. 66-67. (If < is an order for a complex, the pair (K, <) will be called
an ordered complex.)

Remark. Any complex can be ordered by assigning a simple order
to the vertices of the complex and then deleting from that order each
vertex pair not connected by a 1-simplex. On the other hand there
is a complex for which there is an order that cannot be imbedded in
a simple order.

If each of @G, H and J is an abelian group, a binary composition
g: (G, H)—J is called a multiplication, if

{9y bytho) = o(g, b)) +o(g, k)
and

g+ 92y B) = @{g1, B) + (¢, 1)
whenever ¢, g;, .G and h, hy, hy e H.

(3.1) Suppose that each of G, H and J is abelian group, ¢: (G, H)—>J
18 & mulliplication, geG and heH. Then ¢(g,0) = ¢(0,h) =0 and
¢{—g, h) = —p(g, ) = ¢(g, —h). (Proof omitted.)

Suppose that X is a complex, 4°... 4% is an a-dimensional elemen-
tary chain on X, B'.. B is a b-dimensional elementary chain on X,
and {4°% ..., 4% B’ .., B’} is the vertex set of an (@ -+ b+1)-simplex
of X. Then the elementary chain A°.. A®B".., B® iy called the join of
A°.. A" and B"..B" and is denoted by 4°.. A%B"... B Tt each of
{47 ... AfYioy and {B} ... BY_, is a finite collection of elementary chains,
each of ny, ..., 0, my, ..., m; i3 an integer and AJ.. A% B!... B} is de-
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r 8
fined wheni e {1,...,7}andje{l,...,s}, then Yn; my4}... 4% o BY ... BY)
i=1 F=1

r §
will sometimes be denoted by (3'nsAf ... AF) o Ym;BY ... BY).
1 j=1

' If each of (K, <) and K,, <) is an ordered complex, there is a semi-
linear homeomorphism from |[K; xK,| onto the topological product of
| K| and |K,| ([2], p. 68). We wish to define a “‘cartesian” product of
chains on K, and K, into those on K, x K, which is the algebraic counter-
part of the carfesian product of complexes and the topological product
of spaces. For %e{1,2}, suppose that'S; is a d;-dimensional simplex
in the complex K;, H; is the subcomplex of K; consisting of §; and all
its faces and ¢; is an elementary d;-chain with support S;. The cartesian
chain product of ¢, and ¢, should be a chain whose dimension is d,+d,,
whose support is the set of (d;+d,)-simplexes in H; xH, and whose
boundary is 0 on any (d,+d,—1)-simplex of H, xH, which is a com-
mon face of two (d, 4 d.)-simplexes in H, xH,. We now give a defini-
tion having these properties.

Suppose that each of (K, <;) and K,, <,) is an ordered complex,
If A is a vertex of K, and B is a vertex of K,, the carlesian chain prod-
uct of the elementary 0-chains A and B is defined to be the elementary
0-chain (4, B). For products of elementary chains the definition pro-
ceeds by induction on the dimensions. Suppose A° ... A%is an elementary
a-chain of K;, A° < ... < A% B ... B® is an elementary b-chain of K,
and B' <, ... <, B".Tfa >0, 4°... 4% x B means (4°... 4% x B) - (4% BY).
(Thus A°... A*xB® = (4° B°) (4", B")...(4% B%).) If b>0, A°xB".. B
means (A°xB°...B" ™M o (4 B). If a,b>0, A%... A°xB° ... B® means

1=

(A% A% B ... B 4+ (—1)%(4°... A" xB° ... BY)]- (4% BY).

(Since the join composition is applicable, these are genuinely defini-
tions.) Suppose that each of Gy, G, and G, is an abelian group and
@: (Gh, @) >G4 is a multiplication. Then we define
Xz (C"a(xu G1),y Oo(X,, Gz)) > Carp(Xy X X, Gy)
by the equation
?
(X gid? ... A9 x(3 48] ... BY) = 2 p(gt, (A7 ... AZxB?...BY).
1 7 1,
The definition of cartesian chain produet given here, unlike the one

given in [3], p. 138, is suitable for use in Cech homology theory.

The proofs of (3.2), (3.3), and (3.6) below are lengthy but routine
and are omitted.

(3.2) The cartesian chain product is a multiplication.

5*
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(8.3) Suppose that each of (Ky, <) and (Kg., <) is an ordered com-
plex, ¢ is an a-chain on K; and ¢, is a b-chain on K,.

86, X €y if a>0and b=0,
o6, X ) = . e, xoc if a=0and b>0,
80, X e+ (—1)%, x8¢; it a>0and b>0.

(3.4) COROLLARY. If (6 =0 or 8¢, =0) and (b =0 or de, = 0), then
(a+b =10 or d(c, X ¢c3) = 0).

Suppose that each of (K, <) and (K', <) is an ordered complex
and f is a simplicial map from K into K'. f will be said to be order pre-
serving if A° < A implies fA°<'fA* whenever A% A! are vertices of
a 1-simplex of K.

(8.8) If (K', <') s an ordered complex and f is a simplicial map
from the complex K into K', then there is an order < for K such that f is
order preserving. (Such an assertion would have been false if order for
a complex had been defined as a partial order.)

Construction. For each vertex v of K’ let <, be an order on the
subcomplex of K whose points are f‘l v. Define the relation < as follows.
Suppose that each of A and B is a vertex of K. If fA4 = fB, 4 < B iff
A< B . If fA=fB, A<Biff A and B are vertices of a simplex of K
and f4 <'fB.

(8.6) Suppose that each of (K, <), (Ki, <), (K, <) and (K3, <)
s am ordered complex, fi is an order preserving simplicial map of Ky into
Ki, ie{l,2}, Gi is an abelian group, ie{l, 2,3}, and @: (Gi, ) >G4
is a multiplication. Let the chain multiplications

X (OG(KI! Gy), Cy(K,, Gz)) =>Cup(Hy X Ky, Gy)
x': (OalEi, G1), Ob(E3, Ga)) >Coss( K1 x 'K, Gy)

be defined using  as the underlying group multiplication. (Note that each
of x and x’is used in two ways here, to indicate a product of com-
plexes and to indicate a product of chains.) Let (f,,f,) denote the vertex
map of K, x K, into Ky x'K; .such that (f,,1) (4, B) = (f,4, f,B) when-
ever A i3 a vertex of K, and B is a vertex of K. Then (f,1,) defines
o simplicial map which will also be denoted by (f,, 1) and (f., f,)(ey X &)
= fres %X 'fo0, for chains ¢, and ¢, on Ky and K,, respectively.

4. Homology groups for actions. An action is an ordered

triple (W, X, *) such that W is a group under multiplication, X is a topo-
logical space and * is a function from W such that

(1) if weW, then w* is a homeomorphism of X onto X
and
2) if w,ze W and #¢X, then (wz)*z = w¥(e*x) .

Note that 1* =1 and w*—1 = wp—1*,
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Throughout the remainder of this paper the conventions listed in
the paragraphs (4.1) and (4.2) below will be observed except when ex-
plicitly suspended.

(41) If W is a group and X is a space, there will be under con-
sideration at most one function * such that (W, X, *) is an action. In
particular if Y is a subspace of X and (W, ¥, *) is an action, w* = w*|¥
for each w in W. Accordingly an action (W, X, *) will be denoted by
(W, X), {w*: we W} will be denoted by W and, for each w in W, w* will
be denoted by .

(4.2) If (W, X) is an action, W is finite, X is a bicompact Hausdorft
space and for each two different members w; and w, of W and each
point 2 of X, w s 5= wyx.

An example of an action satisfying our conditions is provided by
(W, 8") where 8™ is the n-dimensional sphere, W is a group whose only

- elements are 1 and T, 1 is the identity map on 8" and 7 maps each
" point of S onto its antipode.

An action (W, X) is simplicial if X is a complex and each map in W
is simplicial. We require in addition that, if v is a vertex of X and w e W,
w 7 1, then no simplex has both v and wv as faces. Consequently, Sto
and Stwv are disjoint and (4.2) holds. If 8 is a simplex and w e W, w 5= 1,
then § = wS. Any complex X may be regarded as a simplicial action
({1}, X), where {1} is the degenerate group.

(4.3) Suppose that (W, X) is a simplicial action, F is a subcomplex

of X such that | ] wF = X and n is a nonnegative integer. There is a sub-
wew .

st Y of the set of n-simpleses of F such that | w¥ is the set Xy, of n-sim-
wew

plexzes of X and w,Y ~w,Y =@ for w,, w, in W, w, % w,.

Construection. If each of H and K is in X,, write H~K if there
is a w in W such that H = wK. Corresponding to the equivalence rela-
tion ~ there is a partition of X, into equivalence classes, each of which
intersects F. Let ¥ be a subset of the m-simplexes of F consisting of
just one simplex from each equivalence class.

An ordered simplicial action is a triple (W, X, <) such that (W, X)
is a simplicial action, (X, <) is an ordered complex and each w in W
is order preserving.

(44) If (W, X) is a simplicial action there is an order < for X such
that (W, X, <) is an ordered simplicial action.

Proof. Let X/W denote the simplicial complex obtained from X
by identifying each point of the polyhedron |X| of X with all its images
under W. Assign an order <’ to X/W. By (3.5) there is an order < for X
such that the natural map of X into X/W is order preserving. < has
the desired properties.
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If each of (W, X;,*) and (W, Xy, %) iy an action, their product
(W4, X1) x(W,, X,) is the action (Wyx Wy, Xy x Xy, *), where W, xW,
is the direct product, X; x X, is the topological product and * is de-
fined by (wy, w)* (@y, ) = (whay, wi,) .

It ean be shown that if each of (W, X;) and (W,, X,) is an action satis-
fying (4.2) then their product is an action satisfying (4.2).

1f each of (Wi, X;,*) and (W,, X,,*) is a simplicial action their
simplicial product (Wy, X;)A (W, X,) is the simplicial action (W, x W,,
X,4X,,*), where W, x W, is the direct product, X,4 X, is the simyplicial
product and, for w; e W, and wye W,

- (wy, wy)*: XA X, X AKX,
is the unique simplicial map such that
(15, w5)* (4, B) = (wi 4, wiB)

whenever 4 is a vertex of X; and B is a vertex of X,.

If each of (W,, X;, <;) and (W,, X,, <;) is an ordered simplicial
action, their cartesion’ product is the simplicial action (Wyx W, X; xX,),
where X, xX, is the subcomplex of X,;AX, associated with the orders
<, and <, and the simplicial maps in W, x W, are the restrictions to
X, xX, of the corresponding simplicial maps for (W, X;)4(W,, X,).

The elements (wy,1) and (1, w,) of the direct product W, x W, of
groups W, and W, will sometimes be denoted by w, and w,, respectively.

Suppose that (W, X) is a simplicial action, G is an abelian group
and B: C(X, @)->Cy(X, @) is a chain map. A g-chain ¢ on X is called
an (R, g)-chain if there is a chain d such that ¢ = Rd. The group of
G-valued (R, q)-chains is denoted by Gy(X,R, ). Thus CyX, R, G)
= RC(X, @). If ¢ >0, the boundary operator & is a homomeorphism
from Cy(X, R, @) into Cy1(X, R, @). Define

X R;G)ZCO(-XaR:G)J
X,B, @) ={c: ceCX,R, &),0c=0}, ¢>0,
X, B, G} =00g2(X, B, &),

If each of (W, X) and (W, ¥) is a simplicial action and f: XY
is a simplicial map, f is said to be equivariant if fwp = wfp for each w
in W and each point p in X.

(4.5) Suppose that each of (W, X) and (W, ¥) is a simplicial action,
G is an abelion group, for each w in W, ny, is an integer, and R is used
to denote botli the chain map from Cy(X, Gy into Cf( X, @) such that

Re = 2 Ny WEC
wew
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and the chain map from Co(Y, @) into CAY, G) defined by the same for-
mula. Then, if f: X =Y is an equivariant simplicial map, the chain map f
maps CoX, R, Q) into (Y, R, R), Z{X,R, Q) into Zo(Y, R, G and
By X, R, @) info By(Y, R, Q) and induces a homomorphism

Jst Ho(X, R, G)»Hy(T, R, G).

Proof. Since f is equivariant, it commutes with R. Suppose that
ce (f(X, R, G). Thereis a d such that e = Rd. fe = fRd = Rfd ¢ C{( Y, R, G).
Suppose ¢ >0 and z e Z,(X, R, G). Since 2 = 0, éf2 = 0. fr e Z( Y, R, Q).
Suppose 2 € By(X, R, ). There is a u in C,(X, R, &) such that z = éu.
Since fue Coqi( Y, R, @), efueBy(Y, R, G). fz = feu =¢fu e B(Y, R, G).

The noun ‘“cover’” will be used in its usual sense: a collection of
sets is a cover of any subset of the union of its members. The noun
“covering” will be used in a more restricted sense. A covering of an
action (W, X) is a finite open cover 4 of X such that

(a) if Uei and weW, wlU el,
and

(b) if Ued, wy,w,eW and w, 5 w,, then w0, U ~nw,U = O.

If 1 is a covering of (W, X), its nerve will be denoted by X;. (W, X;)
is a simplicial action, where the simplicial maps in W are defined by
the vertex maps w: A—=>4, we W.

(4.6) If a is an open cover of X, there is a covering of (W, X) that
refines a. '

Proof. For each p in X there is an open set U, containing p whose
closure Cl1U, does not intersect the finite point set {wp: we W, w = 1}
and i3 a subset of a member of a. Let 7, denote Up— |J wClUy.

w,wis1
Vyp is an open set containing p that is a subset of a member of « and

does not intersect wVp, if w e W and w = 1. Let 8, denote () 10 Wy,
wew
Sp is an open set containing p such that

(a) w;8p~wySp =0 if wy, w,e W and w, 3 w,
and

(b) w8p is a subset of a member of a, if weW.

Since X is bicompact, some finite subeollection

[ U wSp: te{l,..,n}} of {J wSp: peX}
wew welW

covers X. {wSp: we W, ie{l,..,n}} is a covering of (W, X) that re-
fines a. .

Suppose that each of « and g is a finite cover of the space X, § re-
fines ¢ and =: f—+a is a function such that, for all U in 8, UC =U.
The unique extension of z to a simplicial map from X, into X, is called
a projection and will be denoted by =.
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(4.7) If each of A and p is a covering of the action (W, X) and u re-
fines 2, there is an equivariont projection m from X, into X,.

Construction. By an argument similar to the one given for (4.3)
there is a subset ¥ of u such that u =wL€_¥V'wY and @Y ~w,Y = @ it

wy, w, ¢ W and 0, # w,. For each member V' of u there is just one pair
(w, U) such that we W, Ue X and V' =wU. For each U in ¥, let zU
be a member of A that contains U. Extend z to all of x by the rule.

awl =wal, Uel.

(4.8) Suppose that each of A and u is a covering of the action (W, X),
u rvefines 1, R is a chain map of the form anww, each of =, and m is an
wew

equivariant projection of X, into X; and my 48 the homomorphism of
HyX,, R, &) into Hf(X,;, R, @) induced by i, ©e{0,1}. Then my, = my,.

Proof. We construct a chain homotopy in the sense of [2], p. 129,
or [3], p. 154. Let (I, <;) be an ordered 1-complex consisting of a 1-sim-
plex and its vertices P° and P' and the relations P0<; Po, Po Pt
and P! <, P'. By (4.4) there is an order <, for X, such that (W, X, <,)
is an ordered simplicial action. Let I XX, be the product complex de-
fined by the orders <; and <. (W, I xX,) is a simplicial action where,
for w in W, w: IxX,»IxX, is defined to be (1,w). Let 6 be the
unique simplicial map from I xX, into X, such that (P, U) = n U,
for Uep, ie{0,1}. Let the cartesian chain product

X (Oa(I, Zy, Ob(Xm G))—>Oa+b(I XXIH G)

be defined using the multiplication @: (Z, @)@ such that ¢(1,¢) =g,
g G. (Z is the additive group of the integers.) Let D denote the chain
homomorphism from Cy( X, @) into Cyy1(X;, @) such that De = (PPt xc).
By (3.6) and the equivariance of 6, wD¢ = wf(P'Plx¢) = Ow (POP X ¢)
= 6(1, w)(P'PL x ¢) = O(P'P* x we) = Dwe for all chains ¢ on X, and
all w in W. Hence D commutes with R. It can be shown by induetion
of the dimension of ¢ that 6(P"x Re) = mRe, i¢{0,1}. A calculation
using (3.3) and the formulas 86 = 69, RD = DR and 0(P* x Re) = mRe
shows that 7 Re —ay R0 = 0RDe € By(X;, R, &) whenever Rc « Z( X, R, ).

In view of (4.6) a covering of (W, X) exists and the coverings form
a system directed by refinement. By (4.7) and (4.8) the homomorphisms

st Hy( Xy, B, G) >Hy(X;, R, @)
induced by the equivariant projections w,;: X,—»X, form an inverse

homomorphisx.n system, whose limit, the ¢-dimensional Cech-Smith homo-
logy group, will be denoted by Hy(X, R, ).

& ©
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For the purposes of this paper it is not necessary to know whether
the homology group of a complex is isomorphic to the corresponding
Cech-Smith homology group of its polyhedron.

5. L-systems. To say that (4, B, C)is an L-triple for (X, @) means
that X is a complex, G is an abelian group, each of A,B and C is
a chain map from the groups Cf(X, @) into the groups CyX, @) and,
it ¢ is a chain such that Cec = 0, there is a chain d such that Bc = Ad.

Exaveres. If X is a complex, 7: X -+X is a fixed-point free sim-
plicial involution and Z, is the group of order 2, then (1+7,1,1+7T)
is an L-triple for (X, Z;) which plays a fundamental role in [6], [7].

“and [8]. If ¢ and & are defined as in [5], p. 35D, each of (o,1,d) and
(6,1, 0) i3 an L-triple. See also (6.3) below.
If X is a complex and @ is an abelian group, we define a homo-

morphism In: Co(X, @)@ by the rule In(YgVy) = Jg: where the Vs
are the vertices of X and the gis are in G. The properties of In used
in the sequel are:

(@) In is & homomorphism,

(b) Inge =0 if ¢ e Oy(X, G),

(c) Infe = Ine, if ¥ is a complex and f: X =Y is a simplicial mayp,

(d) In(e, X 6) = p(Ine, Ine,) if each of G, G, and G, is an abelian
group, @: (G, Gy)—>G; i3 a multiplication, each of (X;, <) and (X,, <)
is an ordered complex, X is the cartesian chain product using ¢ as the
underlying multiplication, and e; e Cy( X, G4), 7€ {1, 2}.

To say that a is an L-sysiem of depth = for (X, &) means that X
is a complex, & is an abelian group, n is a nonnegative integer and a is
a sequence

(Agy 81y A1y ey Say An)
of chain maps from Ci(X, G) into Cyi(X, @) such that

(a) if ceCy(X, @) and Ay,c =0 then Inc =0, and

(b) if 0 < g <n then (4,1, 8y, 4,) is an L-triple for (X, ).

(5.1) Suppose that (4A,) is an L-sysiem of depth 0 for (X, &). Let »,
be the relation to which (2, g) belongs iff there 48 a chain ¢ such that 2 = Ay¢
eZyX, Ay, @) and g = Inc. Then v, is a homomorphism from Z|X, 4,, G)
into @ and v By(X, 4,, G) = 0.

Proof. (a) If z e Zy(X, Ay, G), there is a g such that (2, g) € v,.

Suppose that 2 eZ,(X, 4,, G). There is a ¢ such that 2= A,c.

(2, Ino) €.

(b) v, 28 a function.
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Suppose (2, ¢1)y (2, ga) €%, For kefl, 2}, there is a ¢ such that
2= Ager and gr = Ince. Agley—6) = Ao, —Agey = 2—2 = 0. In{c;—q,)
=0. In¢; =Ine,. ¢ = fo.

(¢) ¥, 15 a homomorphism.

Suppose 4,6, Ayd e Z( X, A, G). n(do0+dod) = v doc+ @) = In(e+d)
=Tne+Tnd =v(4y0) +rl4ed).

(d) wBo(X, Ay, G) =0 .

Suppose 2 e By(X, 4y, @). There is a « in Oy(X, 4,, @) such that
2 — 2u. There is a ¢ in Cy(X, @) such that w = dge. vy = »du = y,84,0
=y, 4,8¢ = Indec = 0.

(5.2) Suppose that q is a positive inleger, (Ag1, Sy, Ag) 18 an L-triple
jor (X, @), w1 is a homomorphism from Zy (X, Ay1, G) nto G such
that vg1Be—1(X, g1, &) =0 and vy s the relation to which (z, ¢) belongs
iff there is a ¢ in Cy( X, @) such that z = Age e ZY{ X, Agy G) and g = vy_ Sydc.
Then v is @ homomorphism from Zy(X , 4, @) into GandvgBy(X, Aq, G) = 0.

Proof. (a) If ze Zy( X, Ag, G) there is a g such that (2, () ¢ v.

Suppose 2z € Z,(X, Ag, @). There is a ¢ such that z = Age. Agoc = 8440
— gz = 0. Since (d;_y, Sg, 4g) is an L-triple, Sydc ¢ Cpi(X, 441, G).
Sinee 88,8¢ = 88,6 = 0, Sg0¢ € Zg (X, Aga, G). v-18,8¢c is defined.
(2, vg—1848¢) € vg. )

(b) v is a funetion.

Suppose (2, gy), (2, a) €7 For ke {1,2} there is a ¢ such that #= 4,0
and gy = vg_1 Sp8ck. Agt(;— ) = Ag0,—Aye,=2—2=0. Since (4,1, ¢, 4q)
is an L-triple, Syle,—¢,) € Oy X, Ago1, &). 88y(¢,—6) € By X, Ay, G).
Gi— G = vg—18480, — vq—18486, = v3-1084(¢,— ) = 0. g1 = g,

(¢) v 18 a homomorphism.

Suppose 4dqc, Agd € Zy( X, 44, G).

v Age -+ A, @) = vy Ag(c+ d) = v4-180(¢ + d) = v5-18406 + v4—1 8,04
=y Agetrgdqd.

{(d) 7 Bo(X, Aq, @) =0.

Suppose z € By(X, 4q4, &). There is a w in Cp4i(X, 4q, &) such thab
2= ¢u. Thereis a ¢ in Cy1(X, @) such that u = dgc. y2 = »Ou = 0440
= vy A8 = vy, 8,00¢ = 0.

In the light of (5.1) and (5.2) we make the following definitions.

o= (Af,, 81y Ay, ooy 8y An) is an L-system of depth » for (X, ),
to say that » is ¢’s homomorphism means that v is the functiton defined
_recursively by the rule

vAqc = {

whenever AjceZ)(X, 4,4, ).

Ine if =0,
w0 it 1l<g<n
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Sinee w2, = », whenever z, and 2, are in the same element of

Hy(X, Aq, G), we can also define a homomorphism
v: Hy(X, 4¢, §) G, qe{0,...,n}

by the rule »[2] = »2. (Here [¢] denotes the homology class containing 2.)

Remark. Up to this point the discussion of L-triples and their
associated homomorphisms can be interpreted even in the abstract con-
text of chain complexes ([2], p.124). But in concrete applications an
L-system o will be defined just for simplicial actions (W, X) and the

terms of a will be of the form E Nwpw, where the N,’s are integers.
well

(5.3) Suppose that each of (W, X) and (W, X) is o simplicial action,
o= (Ro, 81y Rey vy Sny Ra) is an L-system of depth n for each of (X, &)
and (Y, @), each term of a is of the form 3 N, where each Ny, is an

wel

integer, §: X Y is an equivariant simplicial map and » is a’s homo-
morphism. Then for each ¢ in {0,..,n} and each z in ZdX, Ry, G),
vz =vfz (and, for { e Ho(X, Ry, @), & = vfil)-

Proof. Induection on ¢. Suppose Ry¢e Zy(X, Ry, G). v/Ryc = vRofe
= Infe = Inc¢ = vRyc. Suppose 0 < g <n and Rgc e Z(X, Ry, @).

vfRqe = vRyfe = v8zefe = vf(Sqte) = »(88c) = vERqe.

Remark. It can be shown that if @ is an abelian group, each of
(W, X) and (W, ¥) is a simplicial action, each of a, § and y is a fune-
tion from W into the integers and

( 2 Ayl Zﬁww, wg;yw’w)

wew welr
is an L-triple for (X, @) then it is also an L-triple for (¥, ¢). This fact
does not contribute to the proof of our principal theorem and so is not
proved here. I mention it only in order to remder more palatable the
following curious definition.
If (W, X) is an action or a simplicial action and, for every sim-
plicial action (W, ¥), a = (R, S1, By, -vy Sn, By) 18 an a-system of depth

» for (Y, @) and each term of « is of the form > N,w, where each Ny
wew

is an integer, then we shall say that « is an L-system of depth n for
(W, X, G).

Suppose that each of (Wy, X;) and (W,, X3) is an ordered simplicial
action, each of G;, G, and G is an abelian group,

Az Cf Xy, Gy) >0yl Xy, Gh)

is a chain map of the form 2 N,w and
7

wew

B: Gy X,, Gy) >0y X3, &)
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is a chain map of the form _Z Myw, where each of the Ny's and M,’s

is an integer. Then 4 will f\lso be used to denote the chain map

2 Nufw,1): Co( Xy X X, G5) >0g( Xy % Xy, Gs)

weWy
and B will be used to denote the chain map

N M1, w0): Oy Xy x Xy, 6) >0 Xy X Xy, Gs) .
weW,

Note that the composite map
AB: Cy(X, x Xy, Gg) >0y Xy x Xy, Gy)

(B followed by A) can be expressed in the form > Juw, where
we(W1x 1)

each of the J,'s is an integer.

(5.4) Suppose that each of (Wy, X} and (Wy, X,) is an ordered sim-
plicial action, ¢ = (Ayy Sy, Ayy .oy Sa, Aa) 98 an L-system of depth a for
(W1, Xy, Gh), @ = (By, @y, By, ... @, Bo) is an L-system of depth b for
(Wy, Xy, Go),

ay = (AoBy, 4,Q1, A¢By, ..., AoQp, 4,Bs, $1Bv, 4, Bs, ..., SaBy, 44By)

is an L-system of depth a-+b for (WyxXWy, X; XX, Gy), ¢: (61, () >Gy
18 a multiplication and
X (Gi(Xn @), Oi(Xs, Gz)) >0y (Xy x Xy, Gy)

is the cariesian chain product defined wusing ¢ as the underlying multi-
plication. Let v denote ax’s homomorphism, ke {1,2,3}. If i¢{0,..,a},
Je{0,..,0), J=0 4f i>0, 2 eZX;, 4i, Gy) and 2 e Zy(X,, Ay, Gy),
then 2 X 2y € Zi(X; X Xy, AiBj, @) and vy(2y X 25) = @(v121, ¥22,)-

Proof. Suppose AiceZyX,, A:, Gy) and Bjd e Zy(X,, B;, &). If
i+j >0, 8(AdiexB;d) =0 by (3.4). Suppose

Ai= Y apw and B; = 2 Buw .

Led
weWy wely

With the aid of (3.2) and (3.6) we caleulate:

ABioxd) = D am(w,1) 3 Bull, w)(exd)

wi€ W1 ’ll)g €Wy

= ( Z 2 awlﬁwz) (wy, wy) (¢ X &)

WiEW weeWy

= ( Z Z awlﬁw,) (wy6 X w,d)

W EWL weeWsy

= (wg awl'wla) ( Z Buwad )

weeWy
= Ase XBjd .
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Thus Aic%B;id e Zip (X xX,, A;B;, G3). To show that w(d;e ¢B;d)
= ¢(nAic, »B;d) we use induction on i.
(I) Suppose %= 0. Induction on j.
(L.I) Suppose j =0.

v5( Aot X Byd) = vg Ay By(c < d) (3.2) and (3.6)

=1In(exd) definition of »,
= ¢(Ine, Ind)
= g(n.d.c, v,Byd) definitions of », »,.

(I.IT) Suppose 0 < j < b. The proof consists of a caleulation similar
to, but simpler than, the one given for case (II) below.

(IT) Suppose 0 <i < a. j=Db. Suppose b > 0.

vy Ase < Bydd) = v As Bole X d) {3.2) and (3.6),

= 1,8;Byé(c X d) definition of ,,

= 1308 By(c x d) SiBp is a chain map,
= »30(8Si¢ x Byd) (3.2) and (3.6)

= 2, (8816 x Bod -+ (—1)'Ste < EBpd)  (3.3)

= vy(881¢ % Bpd) (3.1) and (3.2)

= @(néfic, »,Bpd) inductive hypothesis
= @(ndic, »,Bpd). definition of »,.

In case b =0 the calculation is similar but simpler.

Suppose that (W, X) is an action and a = (Ry, S, By, ..., Su, Ba)
is an L-system of depth = for (W, X, &). By (5.3) all of the coordinates
of an element of Hy(X, Ry, @), q €{0, ..., n}, have the same value under
s homomorphism ». A homomorphism

v: Hy(X, Ry, G)>G

is defined by taking the value of an element of Hy(X, Ry, G) under » to
be the common value of its coordinates under ».

If (W, X)is a simplicial action {action} and a = (44, 8, Ay, .., S, 4n)
is an L-system of depth » for (W, X, &), (W, X) will be said to be
a-admissible if there is an element [ of Hn(X, An, G) {Hu(X, 44, &)}
such that ¥ % 0, where » is o’s homomorphism.

Suppose that K is a complex, SAK is its first baryeentric sub-
division and @ is an abelian group. Define a homomorphism

Sd: CE, @) >Cy(SIK, G)
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as follows. If ce Oy(K, @), let Sde be i¢c where ¢ is the inclusion map
of the vertices of K into those of Sd K. Suppose that ¢ > 0 and Sd has
been defined on Cpi(K, &) and Coa(X, 2). 1t ¢ = A% A% is an ele-
mentary g-chain in ((K,Z) and B is the barycenter of the simplex
with vertices A% ..., A% define Sde to be BoSdde. If d = {Z‘giA'Z?_,‘Ag

e C(E, &) or K, Z), define Sdd to be D48 4; ... AY.
3
(5.5) Sd 4s a chain map ([2], D. 177 ) such that, if = is a projection
of SAK into K, aSd =1 ([21, Remark, p. 178).

(5.6) Suppose that (W, X) is a simplicial action, G 1is an abelion
group, ¢ € C( X, &) and weW. Then wSdc = Sdwe.

Proof. Induction on ¢. Obvious if g = 0. Suppose that ¢ >0 and
¢ is elementary. Let B be the barycenter of the support: of c.
wSde = w(B o Sdde)
= (wB) o (wSdac)
= (wB) o (Sdwic)
= (wB) = (Sdowe)
= Sdwe. definition of Sd

definition of Sd

inductive hypothesis

Since each of w and Sd is a homomorphism, the result extends to arbi-
trary c.

(5.7) If (W, X) is & simplicial action, a is an L-system for (W, X, &
and (W, X) is a-admissible, then (W, |X|) is a-admissible.

Proof. Suppose a= (Ry, S, Ri; ) Sny Bn)y §oe Hy{X, Rn, @) and
v}, == 0. For each positive integer j let z; denote an equivariant pro-
jection from the jth barycentric subdivision (8dYX of X into (Sd)’'x.
By (5.5) and (5.6), z; maps Z,((SA)"X, Bn, G) onto Z,((84) X, Rn, G)-
Consequently,

Ayt Hal(SAYX, Ry, G) >Ha((SAY "X, R, 6)

is an onto function. There is a sequence {&}7=0 such that, for each po-
sitive integer j, {5 eHn((Sd)’X, Ry, G) and 75,0 = {j—;. For each covering
1 of (W,]X]) there is a non-negative integer m(A) such that the stars
of the vertices of (3d)™PX form a covering of (W, |X|) that refines 1.
In particular, let m((Sd)’X) =4 for each nonnegative integer j. For
each covering 1 of (W, |X|) let F, denote the image of {mp under an
equivariant projection from Hy,((SA)""X, Ry, 6) into Ha(X;, Ba, &.
F is a member of H,(X,R,, @) that has {, as a representative.
P = v, # 0.

icm®
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6. The admissibility of the n«torus.

(6.1) Suppose that (W, X) is a simplicial action, G is an abelian
group and ¢ a chain in Cyl X, @) such that > we = 0. Then Inc = 0.
we
Proof. By an argument similar to the one used for (4.3) there is
a subset ¥ of the set 7 of 0-simplexes of X such that ) w¥ =¥ and

well”
w, ¥ ~w,Y = O whenever w;, w, ¢ W and w; 7 w,. With the aid of (2.1)
we have:

Tne= ) ey =D D odwvy =D > wiecvy = D 0> =0.

vel veY well veY wel vel

The statements in (6.2) below will be hypotheses in (6.3) and (6.4).

(6.2) (W, X) is a simplicial action,

p is an integer >1, m is a positive integer, e = mp,

W is the (internal) direct product of a subgroup H and a cyclic
subgroup W, of order e with generator T,

7 is a nonnegative integer.

Y’ is a subset of the set X, of ¢-simplexes of X such that

(i) hY' =Y for each & in H,
e—1
(i) U I'Y = Xa,
a=0
(iid) TT ~AT'T" 0 it 4is£j (mode),

Ny is an integer for each & in H,
M denotes the chain map hZH Nuh: C( X, Zp)>Cy X, Z,y),

Z, is the cyclic group of order p,
e—1

A denotes the chain map > T'M: CyfX, Zp)>CoX, Zy),
i=0

e—1
S denotes the chain map 2 jT°M: CGX, Zp)~Cy(X, Zy).
i=0
(6.3) Suppose (6.2), ce Cu(X, Zp) and Ac=0. Let d be the unigue
chain such that, if E is an orientation of an n-simplex in Y,

©

-1
AT°B) = (Yiree i a=o,

7=0

0 if aeil,.. e—1}.

Then S¢ = Ad. (Thus, (4,8, 4) is an L-iriple for (X, Zp).)
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+ F is an orientation of an #-simplex in ¥’ . . L.
R f“gf- S‘;lff’f}“ T“]}ll:n . Bquations (b), (£) and (j) are justified by (2.1); (a) and (g), by the
and be {0, ..., ) definition of AM; (c) and (g), by the fact that 7 commutes with each
member of H; (d) and (e), by the definition of d; (h), by the fact that
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( X rma)(r°B) the order of Z, divides the period of T'; and (i), by the fact that de = 0
a=0 - (6.4) Suppose (6.2) and b e Cu(X, Zy). There is a chain d with sup-
() _ ( E 8 ENu%d) (T°E) port in X' such that Ab = Ad.
a=0  ueH Proof. Let ¢ denote the chain (1—7)b. Since 4 (1 —T) is the 0 oper-
o1 ator, A¢= 0. Let d be defined as in the hypothesis of (6.3). The sup-
- 2" ZNu[(T“ud)(TbE)] port of d is a subset of ¥'. By (6.3), Sc = Ad. Since §(1—-T) = A4, we
a=0 ueH have Ab = Ad.
o1 (6.5) Suppose that:
Al —1mb—a . . . . .
(b) = Z ZNu[d(u T "E)] m is a positive inieger, p is an integer >1, e = pm,
a=0 ueH X is a 1-complex consisting of the 2e¢ vertices vy, ..., v2.—1 and, the 2e
e—1 1-simplexes Sy, ..., Sso_1
b—a —1 .p 0 b) 7
© = Y| Y ur-un) the 0-faces of s; are v; and vy, if i€ {0, ..., 26—1} (addition in the
ueH a=° subseripts is modulo 2e),
4 k is an integer in {1, ..,e—1} such that the greatest common divisor
(@) = ZH Ni[a(uRB)] of & and e is 1,
e ‘ T: X X is the simplicial map such that
(e) = > Zm ) (w™B)| Tv; = vpgon, 3f  Ge{0,...,2e—1}.
"
S " Let W denote the group of homeomorphisms generated by T, A denole the
Td ) ] e=1 e—1
6] = ZH N u[ (2 ¢ chain map D) T': OfX, Zy) >Cy X, Zy), 8 denote the chain map 3 jT°:
ue€ F=1 i=1
o1 CfX, Zp)>CyX, Zp), and a denote the triple (4,8,4). Then T s
() Z(Z’ﬂrf Mo) E periodic of period ¢, (W, X) is a simplicial action, a is an L-system
i=0 of depth 1 for (W, X, Z,) and, if v is o’s homomorphism and the members
e—1+b of Zy are denoted by 0,1, ..,p—1, there is a 2z in Z(X, A, Zy) such
(h) = ( Z jTjMG) B that vz = 1.
b Proof. That (4, 8, 4) is an L-system follows from (6.1) and (6.3).
e=1+b e—1+b : 2k
) =( N Mc) Bt b( 3 g _Mc) B Let ¢ denote the 1-chain: — Y v;1v; and let @ denote the 0-chain:
== i=1
7=0 = 1v,. A2¢ = 0. Let ¥’ denote {v,, ;). By (6.4), Sd¢ = Ad. vAc = vSée
e ; =yAd=Ind =1,
:( & G+hT MC)E (6.6) Suppose that p is an integer >1, n is a positive integer and, jor
ie{l,...,n},
s ms S a Positive integer
- spi—b ’
_(goﬂ Mo)B ¢ = pm,
ki is an integer in {1, ..., e4—1} relatively prime to e,
) g T T"->T" is the onto homeomorphism defined
) =( 3 ir'ue) (1*m). o ? finsd by
=0 Ti(@sy ooy Bn) = (Byy oony D1, Lo+ Kif€iy Big1y cuey Bn)

Fundamenta Mathematicae, T, LVIL 6
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Lei W denote the group of homeomorphisms generated by {Ty, .., Ty},
A denote the chain map Z w: O X, Zp) ~C X, Zp) and, fo-r te{l, ..., n}

let H; denote the subgwup of W generated by {T1, .., Ticty Ty, oy Ty}
and S; denote the chain map

e

1—1
N i X X, Z) 0o X, Zy)-
=0 heHy
Them a = (4,8, A, ..., Su, A) is an L-sysiem of depth n for (W, T", Z,)
and (W, T") is a- adm'l,sszble -
Proof. That (W, T™) is an action satisfying (4.2) may be verified
by the reader. That o is an L-system of depth = for (W, T", Z;) is a con-
sequence of (6.1) and (6.3).
Suppose ie {1, ..., n}. The collection of points and segments in the
real numbers

{il2es, (if2e:, (j +1)/261): § € {0, ..., 261 —1}}

defines a simplicial decomposition of T which will be denoted by K;.
There is an order <; for K; such that §/2¢; < (j+1)/2ec1f § € {0, ..., 2¢,—2}
and (2e;—1)[2e; <; 0. Let Ty: Ki—K; denote the simplicial map sueh
that Tix = x+kie; and let W: denote the group generated by T;.
(Wi, K4y <4) is an ordered gimplicial action. Let K denote K X ... < Ky.
(W, E) = (Wy, Ey) X .o X (Wa, Ky) and (W, I") = (W, |K]) (2], p- 68).

By {5.7), to prove the a-admissibility of (W, I") it will suffice to prove
the a-admissibility of (W, K). An induction on n will show that there
is a 2 in Z,(K, A, Zy) such that vz =1. In case n =1, (6.5) disposes
of the question. Suppose n >1, By the inductive hypothesis there is
a2 in Zp-alK; X . X Enoa, w, Zp) such that »z = 1. By (6.5)

WEW 1K aue X Wit

there is a w in Zl(Kﬂ, 2 w,Z,,) such that »u = 1. A chain product
weWn

% (Cl By X oo X Konay Zp)y O Ky X)) > Cirs (K, Z3)

can be defined using the usual ring product (Z,, Zp) >7Z, as the under-
lying multiplication. Then by (5.4) v(#x u) = (ve)(»u) = 1.1 = 1.

7. The principal theorem. Throughout this section we will use
the fact, that if X is a set with subsets A and B and 7: X -»X is 1-1
and onto, then T(AwB)=TA v TB and T(A~ B)=TA~ TB.

(7.1a) {(7.1b)} Suppose that

p 18 an integer >1, Zp s the cyclic group of order p,

(W, Z) is (a) a simplictal action {(b) an action},

m 18 a positive inieger, 6 = pm,
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W is the (internal) direct product of a subgroup H and a cyclic sub-
group W, of order e with generator T,
T is a (a) subcompler {(b) closed subset} of X such that

o
(i) x="0rn,

<o
(i) WF=F—1T°F, heH,

o _ .
K denotes \J ) (T'F ~ T'F),

F=1 4=7+1

a=(Ayy Syy Ayy ooy Sny Ag) 48 an L-sysiem of depth n (n > 0) for
both (W, X, Zp) and (W, K, Z,),

v i8 a's homomorphism,

there is a function N from H into the integers such that

e—1 n— m—1
A=Ay =2 T NN, 2 i T > Nk
j=1 heH F=1 J:»O heH

Then (a) if A is the relation to which (I, w) belongs iff there is a chain ¢
such that

the support of ¢ is a subset of F,

¢ 18 a homology class in Hu(X, An, Zp) that contains Age,

w 48 a homology class in H, (K, An, Zp) that contains the restriction
of Snéc to K,

then A is a homomorphism from Hu(X, Ay, Zp) into Hy (K, Ay, Zyp)
such that v{ = vAL for each ¢ in Hp(X, Ay, Zp);

{(b) there is a homomorphism A from Hy(X, An, Zp) into H, (K,
An—1, Zp) such that v = vAL for each & in Hy(X, An, Zp)}

Proof. Notice first that K is invariant under W, so that (W, K)
is (a) a simplicial action {(b) an action}. Let 4 denote 4, = A,_; and 8
denote . S,. We now restrict our attention to (7.1a).

(A) If g is a nonnegative integer, ¢ e Co(X, Zp), Ac =0 and the
support of ¢ is a subset of F, then the support of S¢ is a subset of K
and (8c)|K e Oy K, A, Zp).

m—1
Let b denote > T > Nphe. Since the support of ¢ is a subset
heH

of F and F is inva,r?:;lt under both H and T%, the support of b iy a sub-
set of F. Since 8¢ = _pjle"b, the support J of Sc is & subset of pol TP.
Since (4, 8, 4) is :z.lzloL-triple for (W, X, Zp) (see (6.3)), and jllzcl= 0,
there is a chain @ such that S¢ = Ad. Since Ad = TAd JC TJ Hence,
for any integer 4, J C T C T U T'F. Therefore J C ﬂ T‘ U TF)CR.

j=1 =0 j=1
6*
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Since K is W-invariant, we have (4d)|K = A(d|K). Thus (Aayx
c C(K, A, Zy).
(B) If ¢ eHu(X, A, Zp), then there is an o such that ({, w)e4
By (4.3) there is a subset ¥ of the m-simplexes of F' such that

U wY is the set of n-simplexes of X and w,Y nwY =0 if w, £
weW

and wy, w, e W. Let ¥’ denote ’thY. Suppose e Hy(X, 4, Zp). Let

2 be in . By (6.4) there is a chain ¢ with support in ¥’ such that z = Ae.
Since F is closed and ¥’ CF, the support of d¢ is a subset of P. Since
2eZuX, A, Zp), A2c =02 =0. By (A) the support of Sdc¢ is a subset
of K and (80c)|K ¢ Cn-1(K, A, Zp). Since &(88c) =0 and the support
of S2c is a subset of K, 2((S2)|K) = 0. Thus (80¢)|K ¢ Zno(K, A, Zy).
Let o be the homology class in H,_(K, A, Zp) that contains (Soc)|K.
(£, w) ed.

(C) 4 is a function.

Suppose that (¢, o), (£, ws) € 4. By (B), for ke {1, 2}, there is an
n-chain ¢ with support in # such that Aex e and wz is the member
of H,1(K, A, Zp) that containg (Soc;)| K. Since Ae,, Ac, €, there is
a chain Ad in Ch.(X, A, Zp) such that Ac,—Ae, =0A4d. By (6.4) there
is an (n-+41)-chain % with support in F such that Ad = Au. The sup-
port of c;—¢;—du is a subset of F and A(c,—¢, —ou) = 0. By (A), K con-
tains the support of S(c,—o¢,—du) and (S(c,— e, —8w))\K € Cu(E, A, Zp).

(8205)|.K — (88e,)| K = (68¢,)| K — (68¢,)| K — (880u)| K = (B;S’(o2 — 6, —ou)) | K
=6((S(cg—cl—3u))[K) eB, 1(K, A, Zy). 0, = w,.

(D) A routine calculation shows that 4 is a homomorphism.

(B) I ¢ eHu(X, A, Z,), then vAZ =9C.

Adopt the following convention: if z is a cycle, [¢] denotes the homo-
logy class containing 2. Suppose { e Hu(X, 4, Z,) and let ¢ be an n-chain
with support in F such that Ace(. Since the inclusion map i: KX
is equivariant, (5.3) justifies the starred equation: 9»4¢ = vA[Ac]
= v[(826)|K] = »((88¢)|E) = ,i((82¢)|K) = v82c = vAe = v[Ac] = oL.

We now turn o the proof of (7.1b). For each covering A of (W, X)
let X, denote the nerve of 2 and let F,{K;} denote the subcomplex
of X; to which a simplex belongs iff the common part of its vertices

intersects F{K}. Let D denote the collection of coverings of (W, X)
to which A belongs iff

-1 P
K= () (T'F~ T'F) .
i=14=j41
It can be shown that D is cofinal in the collection of all coverings of
(W, X). For each 2 in D define

ViE H‘n(xll A> Zp) ”’Hnml(Kh Ay Zp)
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as in (7.1a). Suppose that each of 4 and y is in D, u refines 1, n: X, X,
is an equivariant projection and Ae¢ e Zn(X,, 4, Z,), where the support
of ¢ is a subset of F,. Then the support of ¢ is a subset of 7, and nde
€ Zn(Xy, A, Z3) (see (4.5)). Let o’ denote the restriction of = to K,.
Ayme[Ae] = AifmAc] = A[ Anc] = [(Sonc)| K,] = [(#S9¢)| K]
= ['((8ee)|K,)| = #,[(S2e)| K] = w4, [Ac].
Thus Ay = 7, 4,. It is now clear that
A: Hy( X, A, Zp)>H, (K, A, Zy)

can be defined thus: if e H,(X, A, Z,), AeD and ; is the member
of Hy(X,, A, Zp) that is the A-coordinate of { then AZ is the member
of H, +(K, A, Zp) whose p-coordinate is A;{;, where g = {U ~ K: U € A}.
Suppose [ e H(X, A, Zyp), AeD, {; is the A-coordinate of {, 4cef; and
the support of ¢ is a subset of Fy. o0 = »[; = vdc = »(4o|K;) = »{(S0c)|K)
= v[(SEc)]K;] = WA{A = yAL.

The statements in (7.2) below will be hypotheses for some -defi-
nitions and theorems.

(7.2) W is a finite group, p is an integer greater than 1, n is a pos-
itive integer and for each ¢ in {1, ..., n}

m; is a positive integer,

€i = Py,

W is the internal direct product of a subgroup H; and a cyclic sub-
group W; of order e; with generator 7.

(7.3) DEFINITION. Suppose (7.2) and that (W, X) is an action, not
necessarily bicompact Hausdorff. We define sentences 4(X), ¢ € {0, ..., n}
as follows:

A(X). X = 0.
AiX), 0 <i<<n If F is a closed subset of X such that
(a) P =hF, heH;,
{b) T?F=F,
-1
(e) U IiF = X,
j=0
then !

A | T O rira TF)) .
j=1 k=7+1
(7.4) Suppose (7.2), that (W, X) is anacti on and let a = (4, 8, 4
s 8y A) be the L-system of depth n (n >0) for (W, X, Zp) such that

= 2 w and
G4
mi-—1

5‘71”2 ™ N'h, ied{l,.., n}.

hEHt
If (W, X) is a- admwszble, then An(X).
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Proof. Suppose F is a closed subset of X such that f=hF for

all b in Hyp, THF = F and U TiF = X. Let K denote fU” U+1 (Th A ThH
e=7

and let » be a's homomorphlsm Since (W, X) is «-admissible, there
is a ¢ in Hy(X, A, Zyp) such that #f # 0. By (7.1b), »4{ 5 0, where
At eH, (K, A, Zy). The remainder of the argument is an induction
on n I n=1 vA{#0=4;%#0=>K # O =A,(w). Suppose that n>1
and let B denote the L-system (4,8, .., Sqn-1,4) of depth n—1 for
(W, K, Zy). Since v47 #0, (W, K) is B-admissible. By the inductive
hypothesis Ay-1(K). An(X).

(7.5) COROLLARY. If n > 0 and (W, I™) is the action specified in the
hypothesis of (6.5), then An(T").

(7.6) Suppose that

(a) p t8 a prime number,

b) w is a positive integer and e = p*,
) m = ep,

(d) the group W is the internal divect product of a subgroup H and
a cyclic subgrowp W' of order e with generator T,

(
{

¢

(e) (W, X) is an action, not necessarily bicompact Hausdorff,

) f is a continuous function from X into the real numbers such that,
if #eX and heH, fr=fhe.

Then there is a closed subset F' of X such that
(h) F = T"F,
(i) F =hF for each h in H,
. p-1 .
6)] ?L=JU T'F=2X,
. -1 P 7 k
k)yifeel) U (I"'F~I°F),
F=1 k=7+1
then there is an integer a such that fT% = fT° .

* Proof. For each ¢ in the integers Z define B(i,1) to be {x: # ¢ X,
#T'% < fT" &} and B(i, —1) to be {@: xeX,{T% > fT""'2}. Notice that

(m) B(i, -1)UB(i,1) =X, icZ,
(@ (1Bl ~1) = (\BE, ) CBG, ), je2, de, 1),

(0) Th(j,8) =B(j—1,6), jeZ, de{—1,1}
(p) if heH, hB(j,8) =B(j,8), j €%, 8¢ {—1,1}.
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Let C be the set of functions from the integers Z onto {—1,1} such
that, if ce C and neZ, en = ¢(n+e). C has 2°—2 members. As a con-
sequence of (m) and (n) we have

QX =dL€Jm(le(¢, i),
Let t denote the function from € into C such that, if d 0,
(td)yi =d(i+1), ieZ.
¥ d;,d, e C write d,~d, if there is an integer ¢ such that d, = .

Associated with the equivalence relation ~ is a partition of ¢ into
equivalence classes. Let M be a subset of ¢ containing just one mem-

m—1
ber of each equivalence class and let N denote [J ™" M.

=0

Suppose d e 0, a ¢ Z and d = t"d. Since a is a period of d and e is
a period of d, the greatest common divisor (a, e) of & and e is a period
of d. (a,¢) divides e and is >1. Since ¢ = p*% (a,e) is a power of p.
p divides a. Thus, for any d in C and « in Z, d = #°d implies that p di-
vides a. This enables us to show that

() {°N, ..., 1’ "N} is a partitioning of C into p disjoint sels.

Let 8 be the function from {{N°, ..., "N} such that, if 5 € {0, ..., p —1},

IN U ﬂB?,d]

By using (o) above it can be shown that
() TB('N) = Bt(fN), ie{0,..,p—1}
Let F denote N. By (q), (r), and (s),
-1 . p—1 . e . . .
U T'F = UQT‘ﬁN= ,L;Lﬁt’N:dLEJCiQB(},dJ) =X,

i=0

—~1 N -
which proves (j). Suppose =z spU ij (T'F ~ T'F). There are two
i=1 f=i+1
integers + and k in {0, ..., p—1} such that
€ (T°BN) ~ (T*BN) = (BIN) ~ (8N)

[y ﬂBhdJ]f\[ U ﬂBhd?)]

d(t”\/
There is a @ in T°N such that e () B(j,dj) and there is a ¢ in T*N'
j=1

such that = e (8“] B(j, ¢j). Since #*N and t*N are disjoint, ¢ = d. There

is an @ in {1 ..; ¢} such that da # ca, in fact da = —ca. z<B(a,da)~
~ B(a, ca) = B(u, —1)~ B(a,1). Hence 177z < fT™' and 1% > f*"'Iw,
which proves (k); (h) and (i) follow from the definition of F' and from (p).
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(7.7) DeFINITION. Suppose (7.2) and that (W, X) is an action, not
necessarily bicompact Hausdorff. We define sentences @x(X), ke {1, ..., n},
as follows:

Qx(X). If each of f, ..., fx is a continuous function from X into the
real numbers and.

LiTiw=frm, weX, ie{l, ., n}, je{l, ., k},

then there is an #* in X such that fio* = fiTha* for e {1, .., k.
(7.8) Suppose (7.2), p is prime, ug 18 a positive integer and ¢; = p¥,
ie{l,..,n), and (W, X) is an action, not necessarily bicompact Hausdorff,
For each i in {1, ..., n}, Ai(X) implies Qi(X).
Proof. Induction on ¢ Suppose ¢=1. By (7.6) there is a cloged

-1 .
subset F of X such that F = T0F, F = h¥ for each hin H;, |J T1F =X
=0

-1 .
and if weK=pU ij (TiF ~ TEF) then there is an integer 4 such
F=1k=7+1

that f, T5e = £ TV 'w. Since A,(X), K # 0. Let x be a point of K, let
a be an integer such that f, T a°=f, Ttz and let o* be T7.
Suppose 1< ¢ < n By (7.6) there is a closed subset I of X such

that F = TZF, F = AF for each b in Hi, U 2P =X and it a<X
i=

-1
U 0

721 k=741
= fi Ttz Since A«(X), 4;-+(K) and, by the inductive hypothesis, Q;_,(K).
Let 2’ be a point of K such that fiz' =f;Ti0’ for §e{l,..,i—1}
By (7.6) there is an integer a such that f;T7a = £;T¢™ 2. Let o* de-
note Tia'.

From (7.5) and (7.8) we have our principal theorem:

TiF A T.f-‘l?’) then there is an integer a such that f;Tiz

(7.9) Suppose that m is a positive integer, p is a prime and, for each is
in {1, ...y m}, ui is a positive integer and ki is a positive integer not divisible
by p. Let Ty, ie{1,...,n}, denote the function from T" into T™ such that

Ti(myy ooy Tn) = (ml, very Lgty w¢+(kalp“‘), Li1y ooy .’IJ,L) .

If each of fiy .., fn 48 & continuous function from T" indo the real num-
bers and '
hTw=Ffe, @I i,je{l,..,n}, ji,

then there is an o* in T such that fia* = f; Tsw* for i in {1,...,n}.

Remark. Taking p=2 and u;=..=u, =1 yields Schmidt's
Satz 1 ([4], D. 86).

icm
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