

Coincidences of real-valued maps from the n-torus*

by

P. Bacon (Knoxville, Tenn.)

- 1. Introduction. Let E_n denote euclidean n-space and suppose that $f\colon E_1\to E_1$ is a continuous periodic function of period 1. In the number interval [0,1] there is a point p where f attains its maximum. Suppose that λ is a real number and let g denote the function from E_1 such that $gx=f(x+\lambda)-fx$. Then $gp\leqslant 0$ and $g(p-\lambda)\geqslant 0$. By the intermediate value theorem there is a point x^* such that $gx^*=0$; $f(x^*+\lambda)=fx^*$. If we take $\lambda=\frac{1}{2}$ and identify points in the domain of f with coordinates congruent mod f, our result can be restated in the following form:
- (1.1) If f is a real-valued mapping from a circle C, there is a pair (x^*, y^*) of diametrically opposite points of C such that $fx^* = fy^*$.

A generalization of (1.1) to higher dimensional spheres is commonly known as the Borsuk-Ulam theorem. If f is a continuous function from the n-sphere S^n into E_n , there is a pair (x^*, y^*) of diametrically opposite points of S^n such that $fx^* = fy^*$ ([1], p. 178, Satz II (1)). A different generalization of (1.1), applying to topological products of circles, has been devised by W. Schmidt ([4], p. 86, Satz 1). The 2-dimensional case of Schmidt's theorem runs as follows:

Suppose that each of f_1 and f_2 is a real-valued mapping from E_2 and for each number pair (x_1, x_2)

$$f_1(x_1, x_2) = f_1(x_1 + 1, x_2) = f_1(x_1, x_2 + 1/2),$$

 $f_2(x_1, x_2) = f_2(x_1, x_2 + 1) = f_2(x_1 + 1/2, x_2).$

Then there is a number pair (x_1^*, x_2^*) such that $f_1(x_1^*, x_2^*) = f_1(x_1^* + 1/2, x_2^*)$ and $f_2(x_1^*, x_2^*) = f_2(x_1^*, x_2^* + 1/2)$. Thus there is a square in E_2 , with sides of length 1/2, on the vertices of which each of f_1 and f_2 is constant.

We proved (1.1) by particularizing the parameter λ that appears in a more general theorem. This suggests a direction in which Schmidt's

^{*} This paper constitutes my doctor's thesis, done at the University of Tennessee under the direction of W. S. Mahavier, to whom I am indebted for aid in removing errors and obscurities from an earlier version.

⁽¹⁾ The numbers which appear in brackets in this paper correspond to the numbers in the bibliography of this paper.

theorem might be extended. This paper is devoted to a proof of such an extension. A special case of the theorem proved here ((7.9) below) reads:

(1.2) If p is a prime and each of f_1 and f_2 is a real-valued mapping from E_2 such that for any number pair (x_1, x_2)

$$f_1(x_1, x_2) = f_1(x_1 + 1, x_2) = f_1(x_1, x_2 + 1/p)$$

and

$$f_2(x_1, x_2) = f_2(x_1, x_2 + 1) = f_2(x_1 + 1/p, x_2)$$

then there is a number pair (x_1^*, x_2^*) such that $f_1(x_1^*, x_2^*) = f_1(x_1^* + 1/p, x_2^*)$ and $f_2(x_1^*, x_2^*) = f_2(x_1^*, x_2^* + 1/p)$. Thus there is a square in E_2 with sides of length 1/p on the vertices of which each of f_1 and f_2 is constant.

The compact space obtained from E_n by identifying points with coordinates congruent (mod 1) will be called the *n*-torus T^n . T^1 is a simple closed curve; T2 is an ordinary torus. Our principal theorem can be formulated as a statement about coincidences of real-valued maps from Tⁿ and can be deduced from a theorem about the incidence relations in certain finite closed covers of T^n . The latter is deducible by a continuity argument from a theorem about intersections of subcomplexes of a complex K whose polyhedron is homeomorphic to T^n . We construct a homology theory on K and a homomorphism ν_K from the homology groups on K into a ring Z_{ν} . To know that the intersection of two subcomplexes of K is nonempty, it suffices to show that their intersection carries a nonzero element of a homology group; to know that an element of a homology group is nonzero, it suffices to show that its image under ν_K is nonzero. We take advantage of the fact that T^n is a topological product by expressing K as a product of complexes H_1, \ldots, H_n , each with a polyhedron homeomorphic to the circle T^1 , by defining a product $c_1, \ldots, c_n \rightarrow c_1 \times \ldots \times c_n$ from the chains on H_1, \ldots, H_n into the chains on K, and by showing that if z_i is a cycle in the homology theory for H_i , $i \in \{1, ..., n\}$, then

$$(\nu_{H_1}z_1)(\nu_{H_2}z_2)...(\nu_{H_n}z_n) = \nu_K(z_1 \times z_2 \times ... \times z_n)$$

where juxtaposition indicates the ring product in Z_p . To know that $r_{\mathbb{R}}(z_1 \times ... \times z_n) \neq 0$ it suffices to prove that $r_{\mathbb{R}_i}z_i = 1$, $i \in \{1, ..., n\}$. Such z_i exist.

The general method, then, is the same as that used by Schmidt; the proof that follows may be regarded as a refinement and completion of Schmidt's argument ([4], pp. 88-91).

2. Some definitions. Definitions of technical terms not defined in this paper may be found in [2] or [3].

If n is a nonnegative integer, the statement that S is an n-simplex means that there is a set $\{A^0, ..., A^n\}$ of n+1 objects such that S is the

set of all functions α from $\{A^0, \dots, A^n\}$ into the positive real numbers such that $\sum_{i=0}^n \alpha A^i = 1$. Each of A^0, \dots, A^n is called a *vertex* of S. Each member of S is called a *point* of S.

A complex K is a finite collection of one or more simplexes such that, if S is a simplex of K with vertex set V and L is a nonempty subset of V then, the simplex with vertex set L is in K.

If H is a finite collection of one or more nonempty sets, the *nerve* of H is defined to be the simplex collection to which S belongs if each vertex of S is in H and, if S has more than one vertex, the vertices of S have an element in common. The nerve of a finite collection of sets is a complex.

If n is a nonnegative integer and S is an n-simplex with vertex set $\{A^0, \ldots, A^n\}$, an orientation of S is a function f into $\{-1, 1\}$ from the set of simple orders for $\{A^0, \ldots, A^n\}$ such that, if $(A^{i_0}, \ldots, A^{i_n})$ is an odd permutation of (A^0, \ldots, A^n) , then $f(A^{i_0}, \ldots, A^{i_n}) = -f(A^0, \ldots, A^n)$. A simplex has two orientations, one the negative of the other. The orientation of S whose value at (A^0, \ldots, A^n) is 1 will be denoted by (A^0, \ldots, A^n) . If w is a simplicial map which is 1-1 on (A^0, \ldots, A^n) , (wA^0, \ldots, wA^n) will be denoted by (A^0, \ldots, A^n) .

If n is a nonnegative integer, X is a complex, and G is an abelian group, then a G-valued n-chain on X is a function c from the orientations of n-simplexes of X into G such that, if E is an orientation of an n-simplex of X, c(-E) = -cE. The G-valued n-chains on X form, under functional addition, an abelian group which will be denoted by $C_n(X, G)$.

Suppose that each of X and Y is a complex and $f\colon X\to Y$ is a simplicial map. Let \check{f} be the function from $C_n(X,G)$ into $C_n(Y,G)$ such that, if $c\in C_n(X,G)$ and F is an orientation of an n-simplex of Y, $(\check{f}e)F=\sum_{E\in Q}cE$, where Q is the set of orientations of simplexes of X to which E belongs iff fE=F. \check{f} is a chain map, i.e., is a homomorphism that commutes with the boundary operator \hat{e} . Hereafter \check{f} will be denoted by f. A similar convention holds for any other letter of the alphabet.

(2.1) Notice that, if w is a 1-1 simplicial map from X onto X and c is an n-chain on X, then $(wc)E = c(w^{-1}E)$ for each orientation E of an n-simplex of X.

Suppose that $\langle A^0, ..., A^n \rangle$ is an orientation of an *n*-simplex *S* of *X*, $g \in G$ and *c* is an *n*-chain on *X* such that

(a)
$$c\langle A^0, ..., A^n \rangle = g$$
 and

(b) if E is an orientation of a n-simplex of X different from S then cE=0.

If G=Z, the additive group of the integers, and g=1 then c is called an *elementary chain* and is denoted by $A^0 \dots A^n$. Whether G=Z or not, c is denoted by $gA^0 \dots A^n$. Every member of $C_n(X,G)$ may be represented in the form $\sum g_iA_i^0 \dots A_i^n$.

If n is an integer and c is a chain, then nc is uniquely defined by the equations

$$0c = 0$$
 and $(n+1)c = nc + c$.

Suppose that $g \in G$, $\{A_i^0 \dots A_i^n\}_{i=1}^r$ is a finite collection of elementary chains and each of n_1, \dots, n_r is an integer. Then $\sum_{i=1}^r n_i g A_i^0 \dots A_i^n$ will sometimes be denoted by $g \sum_{i=1}^r n_i A_i^0 \dots A_i^n$.

The support of an n-chain c is the set of n-simplexes on whose orientations c does not assume the value 0.

3. The cartesian product of chains. Definitions for the simplicial product $K_1 \triangle K_2$ of complexes K_1 and K_2 , an order for a complex and the cartesian product of ordered complexes are given in [2], pp. 66-67. (If \leq is an order for a complex, the pair (K, \leq) will be called an ordered complex.)

Remark. Any complex can be ordered by assigning a simple order to the vertices of the complex and then deleting from that order each vertex pair not connected by a 1-simplex. On the other hand there is a complex for which there is an order that cannot be imbedded in a simple order.

If each of G, H and J is an abelian group, a binary composition $\varphi \colon (G,H) \to J$ is called a *multiplication*, if

$$\varphi(g, h_1 + h_2) = \varphi(g, h_1) + \varphi(g, h_2)$$

and

66

$$\varphi(g_1+g_2, h) = \varphi(g_1, h) + \varphi(g_2, h)$$

whenever $g, g_1, g_2 \in G$ and $h, h_1, h_2 \in H$.

(3.1) Suppose that each of G, H and J is abelian group, $\varphi \colon (G,H) \to J$ is a multiplication, $g \in G$ and $h \in H$. Then $\varphi(g,0) = \varphi(0,h) = 0$ and $\varphi(-g,h) = -\varphi(g,h) = \varphi(g,-h)$. (Proof omitted.)

Suppose that X is a complex, $A^0 \dots A^a$ is an a-dimensional elementary chain on X, $B^0 \dots B^b$ is a b-dimensional elementary chain on X, and $\{A^0, \dots, A^a, B^0, \dots, B^b\}$ is the vertex set of an (a+b+1)-simplex of X. Then the elementary chain $A^0 \dots A^a B^0 \dots B^b$ is called the *join* of $A^0 \dots A^a$ and $B^0 \dots B^b$ and is denoted by $A^0 \dots A^a B^b \dots B^b$. If each of $\{A^0_i \dots A^a_i\}_{i=1}^r$ and $\{B^0_j \dots B^b_j\}_{j=1}^r$ is a finite collection of elementary chains, each of $n_1, \dots, n_r, m_1, \dots, m_s$ is an integer and $A^0_i \dots A^a_i \otimes B^b_j \dots B^b_j$ is de-

 $\text{fined when } i \in \{1,\dots,r\} \text{ and } j \in \{1,\dots,s\}, \text{ then } \sum_{i=1}^r n_i \sum_{j=1}^s m_j (A_i^0 \dots A_i^\alpha \circ B_j^0 \dots B_j^b)$

will sometimes be denoted by $(\sum_{i=1}^r n_i A_i^0 \dots A_i^a) \circ (\sum_{j=1}^s m_j B_j^0 \dots B_j^b).$

If each of (K_1, \leqslant) and $K_2, \leqslant)$ is an ordered complex, there is a semilinear homeomorphism from $|K_1 \times K_2|$ onto the topological product of $|K_1|$ and $|K_2|$ ([2], p. 68). We wish to define a "cartesian" product of chains on K_1 and K_2 into those on $K_1 \times K_2$ which is the algebraic counterpart of the cartesian product of complexes and the topological product of spaces. For $i \in \{1, 2\}$, suppose that S_i is a d_i -dimensional simplex in the complex K_i , H_i is the subcomplex of K_i consisting of S_i and all its faces and c_i is an elementary d_i -chain with support S_i . The cartesian chain product of c_1 and c_2 should be a chain whose dimension is $d_1 + d_2$, whose support is the set of $(d_1 + d_2)$ -simplexes in $H_1 \times H_2$ and whose boundary is 0 on any $(d_1 + d_2 - 1)$ -simplex of $H_1 \times H_2$ which is a common face of two $(d_1 + d_2)$ -simplexes in $H_1 \times H_2$. We now give a definition having these properties.

Suppose that each of (K_1,\leqslant_1) and $K_2,\leqslant_2)$ is an ordered complex. If A is a vertex of K_1 and B is a vertex of K_2 , the cartesian chain product of the elementary 0-chains A and B is defined to be the elementary 0-chain (A,B). For products of elementary chains the definition proceeds by induction on the dimensions. Suppose $A^0 \dots A^a$ is an elementary a-chain of K_1 , $A^0 \leqslant_1 \dots \leqslant_1 A^a$, $B^0 \dots B^b$ is an elementary b-chain of K_2 and $B^0 \leqslant_2 \dots \leqslant_2 B^b$. If a > 0, $A^0 \dots A^a \times B^0$ means $(A^0 \dots A^{a-1} \times B^0) \circ (A^a, B^0)$. (Thus $A^0 \dots A^a \times B^0 = (A^0, B^0)(A^1, B^0) \dots (A^a, B^0)$.) If b > 0, $A^0 \times B^0 \dots B^b$ means $(A^0 \times B^0 \dots B^{b-1}) \circ (A^0, B^b)$. If a, b > 0, $A^0 \dots A^a \times B^0 \dots B^b$ means

$$[(A^0 \dots A^a \times B^0 \dots B^{b-1}) + (-1)^b (A^0 \dots A^{a-1} \times B^0 \dots B^b)] \circ (A^a, B^b).$$

(Since the join composition is applicable, these are genuinely definitions.) Suppose that each of G_1 , G_2 and G_3 is an abelian group and $\varphi \colon (G_1, G_2) \to G_3$ is a multiplication. Then we define

$$\times : (C_a(X_1, G_1), C_b(X_2, G_2)) \to C_{a+b}(X_1 \times X_2, G_3)$$

by the equation

$$(\sum_i g_1^i A_i^0 \dots A_i^a) \times (\sum_j g_2^j B_j^0 \dots B_j^b) = \sum_{i,j} \varphi(g_1^i, g_2^i) (A_i^0 \dots A_i^a \times B_j^0 \dots B_j^b) \ .$$

The definition of cartesian chain product given here, unlike the one given in [3], p. 138, is suitable for use in Čech homology theory.

The proofs of (3.2), (3.3), and (3.6) below are lengthy but routine and are omitted.

(3.2) The cartesian chain product is a multiplication.

(3.3) Suppose that each of (K_1, \leq) and (K_2, \leq) is an ordered complex, c_1 is an a-chain on K_1 and c_2 is a b-chain on K_2 .

$$\partial (c_1 imes c_2) = \left\{ egin{array}{lll} \partial c_1 imes c_2 & ext{if} & a > 0 ext{ and } b = 0 \,, \\ c_1 imes \partial c_2 & ext{if} & a = 0 ext{ and } b > 0 \,, \\ \partial c_1 imes c_2 + (-1)^a c_1 imes \partial c_2 & ext{if} & a > 0 ext{ and } b > 0 \,. \end{array}
ight.$$

(3.4) COROLLARY. If $(a=0 \text{ or } \partial c_1=0)$ and $(b=0 \text{ or } dc_1=0)$, then $(a+b=0 \text{ or } \partial (c_1\times c_2)=0)$.

Suppose that each of (K, \leqslant) and (K', \leqslant') is an ordered complex and f is a simplicial map from K into K'. f will be said to be order preserving if $A^0 \leqslant A^1$ implies $fA^0 \leqslant' fA^1$ whenever A^0, A^1 are vertices of a 1-simplex of K.

(3.5) If (K', \leq') is an ordered complex and f is a simplicial map from the complex K into K', then there is an order \leq for K such that f is order preserving. (Such an assertion would have been false if order for a complex had been defined as a partial order.)

Construction. For each vertex v of K' let \leqslant_v be an order on the subcomplex of K whose points are $f^{-1}v$. Define the relation \leqslant as follows. Suppose that each of A and B is a vertex of K. If fA = fB, $A \leqslant B$ iff $A \leqslant_{fA}B$. If $fA \neq fB$, $A \leqslant B$ iff A and B are vertices of a simplex of K and $A \leqslant_{fA}B$ iff $A \leqslant_{fA}B$.

(3.6) Suppose that each of (K_1, \leqslant) , (K_1', \leqslant) , (K_2, \leqslant) and (K_2', \leqslant) is an ordered complex, f_i is an order preserving simplicial map of K_i into K_i' , $i \in \{1, 2\}$, G_i is an abelian group, $i \in \{1, 2, 3\}$, and $\varphi \colon (G_1, G_2) \to G_3$ is a multiplication. Let the chain multiplications

$$\times : (C_a(K_1, G_1), C_b(K_2, G_2)) \to C_{a+b}(K_1 \times K_2, G_3) ,$$

$$\times ' : (C_a(K_1', G_1), C_b(K_2', G_2)) \to C_{a+b}(K_1' \times 'K_2', G_3)$$

be defined using φ as the underlying group multiplication. (Note that each of \times and \times' is used in two ways here, to indicate a product of complexes and to indicate a product of chains.) Let (f_1,f_2) denote the vertex map of $K_1 \times K_2$ into $K_1' \times 'K_2'$ such that (f_1,f_2) $(A,B)=(f_1A,f_2B)$ whenever A is a vertex of K_1 and B is a vertex of K_2 . Then (f_1,f_2) defines a simplicial map which will also be denoted by (f_1,f_2) and $(f_1,f_2)(c_1 \times c_2)=f_1c_1 \times' f_2c_2$ for chains c_1 and c_2 on K_1 and K_2 , respectively.

- **4.** Homology groups for actions. An action is an ordered triple (W, X, *) such that W is a group under multiplication, X is a topological space and * is a function from W such that
- (1) if $w \in W$, then w^* is a homeomorphism of X onto X and
- (2) if $w, z \in W$ and $x \in X$, then $(wz)^*x = w^*(z^*x)$.

Note that $1^* = 1$ and $w^{*-1} = w^{-1*}$.

Throughout the remainder of this paper the conventions listed in the paragraphs (4.1) and (4.2) below will be observed except when explicitly suspended.

(4.1) If W is a group and X is a space, there will be under consideration at most one function * such that (W, X, *) is an action. In particular if Y is a subspace of X and (W, Y, *) is an action, $w^* = w^* | Y$ for each w in W. Accordingly an action (W, X, *) will be denoted by (W, X), $\{w^*: w \in W\}$ will be denoted by W and, for each w in W, w^* will be denoted by w.

(4.2) If (W, X) is an action, W is finite, X is a bicompact Hausdorff space and for each two different members w_1 and w_2 of W and each point x of X, $w_1x \neq w_2x$.

An example of an action satisfying our conditions is provided by (W, S^n) where S^n is the *n*-dimensional sphere, W is a group whose only elements are 1 and T, 1 is the identity map on S^n and T maps each point of S^n onto its antipode.

An action (W,X) is simplicial if X is a complex and each map in W is simplicial. We require in addition that, if v is a vertex of X and $w \in W$, $w \neq 1$, then no simplex has both v and wv as faces. Consequently, Stv and Stwv are disjoint and (4.2) holds. If S is a simplex and $w \in W$, $w \neq 1$, then $S \neq wS$. Any complex X may be regarded as a simplicial action $(\{1\},X)$, where $\{1\}$ is the degenerate group.

(4.3) Suppose that (W,X) is a simplicial action, F is a subcomplex of X such that $\bigcup_{w \in W} wF = X$ and n is a nonnegative integer. There is a subset Y of the set of n-simplexes of F such that $\bigcup_{w \in W} wY$ is the set X_n of n-simplexes of X and $w_1Y \cap w_2Y = \emptyset$ for w_1, w_2 in $W, w_1 \neq w_2$.

Construction. If each of H and K is in X_n , write $H \sim K$ if there is a w in W such that H = wK. Corresponding to the equivalence relation \sim there is a partition of X_n into equivalence classes, each of which intersects F. Let Y be a subset of the n-simplexes of F consisting of just one simplex from each equivalence class.

An ordered simplicial action is a triple (W, X, \leq) such that (W, X) is a simplicial action, (X, \leq) is an ordered complex and each w in W is order preserving.

(4.4) If (W, X) is a simplicial action there is an order \leq for X such that (W, X, \leq) is an ordered simplicial action.

Proof. Let X/W denote the simplicial complex obtained from X by identifying each point of the polyhedron |X| of X with all its images under W. Assign an order \leqslant' to X/W. By (3.5) there is an order \leqslant for X such that the natural map of X into X/W is order preserving. \leqslant has the desired properties.

If each of $(W_1,X_1,*)$ and $(W_2,X_2,*)$ is an action, their product $(W_1,X_1)\times (W_2,X_2)$ is the action $(W_1\times W_2,X_1\times X_2,*)$, where $W_1\times W_2$ is the direct product, $X_1\times X_2$ is the topological product and * is defined by

$$(w_1, w_2)^*(x_1, x_2) = (w_1^* x_1, w_2^* x_2).$$

It can be shown that if each of (W_1, X_1) and (W_2, X_2) is an action satisfying (4.2) then their product is an action satisfying (4.2).

If each of $(W_1, X_1, *)$ and $(W_2, X_2, *)$ is a simplicial action their simplicial product $(W_1, X_1) \Delta(W_2, X_2)$ is the simplicial action $(W_1 \times W_2, X_1 \Delta X_2, *)$, where $W_1 \times W_2$ is the direct product, $X_1 \Delta X_2$ is the simplicial product and, for $w_1 \in W_1$ and $w_2 \in W_2$,

$$(w_1, w_2)^*: X_1 \triangle X_2 \rightarrow X_1 \triangle X_2$$

is the unique simplicial map such that

$$(w_1, w_2)^* (A, B) = (w_1^* A, w_1^* B)$$

whenever A is a vertex of X_1 and B is a vertex of X_2 .

If each of (W_1, X_1, \leqslant_1) and (W_2, X_2, \leqslant_2) is an ordered simplicial action, their cartesian product is the simplicial action $(W_1 \times W_2, X_1 \times X_2)$, where $X_1 \times X_2$ is the subcomplex of $X_1 \triangle X_2$ associated with the orders \leqslant_1 and \leqslant_2 and the simplicial maps in $W_1 \times W_2$ are the restrictions to $X_1 \times X_2$ of the corresponding simplicial maps for $(W_1, X_1) \triangle (W_2, X_2)$.

The elements $(u_1, 1)$ and $(1, w_2)$ of the direct product $W_1 \times W_2$ of groups W_1 and W_2 will sometimes be denoted by w_1 and w_2 , respectively.

Suppose that (W, X) is a simplicial action, G is an abelian group and $R: C_q(X, G) \rightarrow C_q(X, G)$ is a chain map. A q-chain c on X is called an (R, q)-chain if there is a chain d such that c = Rd. The group of G-valued (R, q)-chains is denoted by $C_q(X, R, G)$. Thus $C_q(X, R, G) = RC_q(X, G)$. If q > 0, the boundary operator ∂ is a homomorphism from $C_q(X, R, G)$ into $C_{q-1}(X, R, G)$. Define

$$\begin{split} &Z_{0}(X,\,R,\,G) = \mathit{C}_{0}(X,\,R,\,G)\,,\\ &Z_{q}(X,\,R,\,G) = \{c\colon \,c \in \mathit{C}_{q}(X,\,R,\,G)\,,\,\partial c = 0\}, \qquad q > 0\,,\\ &B_{q}(X,\,R,\,G) = \partial \mathit{C}_{q+1}(X,\,R,\,G)\,,\\ &H_{d}(X,\,R,\,G) = Z_{q}(X,\,R,\,G)|\mathit{B}_{q}(X,\,R,\,G)\,. \end{split}$$

If each of (W, X) and (W, Y) is a simplicial action and $f: X \rightarrow Y$ is a simplicial map, f is said to be equivariant if fwp = wfp for each w in W and each point p in X.

(4.5) Suppose that each of (W, X) and (W, Y) is a simplicial action, G is an abelian group, for each w in W, n_w is an integer, and R is used to denote both the chain map from $C_q(X, G)$ into $C_q(X, G)$ such that

$$Rc = \sum_{w \in W} n_w wc$$

and the chain map from $C_q(Y,G)$ into $C_q(Y,G)$ defined by the same formula. Then, if $f\colon X\to Y$ is an equivariant simplicial map, the chain map f maps $C_q(X,R,G)$ into $C_q(Y,R,G)$, $Z_q(X,R,G)$ into $Z_q(Y,R,G)$ and $B_q(X,R,G)$ into $B_q(Y,R,G)$ and induces a homomorphism

$$f_*: H_q(X, R, G) \rightarrow H_q(Y, R, G)$$
.

Proof. Since f is equivariant, it commutes with R. Suppose that $c \in C_q(X, R, G)$. There is a d such that c = Rd. $fc = fRd = Rfd \in C_q(X, R, G)$. Suppose q > 0 and $z \in Z_q(X, R, G)$. Since $\hat{c}z = 0$, $\hat{c}fz = 0$. $fz \in Z_q(Y, R, G)$. Suppose $z \in B_q(X, R, G)$. There is a u in $C_{q+1}(X, R, G)$ such that $z = \hat{c}u$. Since $fu \in C_{q+1}(Y, R, G)$, $\hat{c}fu \in B_q(Y, R, G)$. $fz = fcu = \hat{c}fu \in B_q(Y, R, G)$.

The noun "cover" will be used in its usual sense: a collection of sets is a cover of any subset of the union of its members. The noun "covering" will be used in a more restricted sense. A covering of an action (W, X) is a finite open cover λ of X such that

(a) if $U \in \lambda$ and $w \in W$, $wU \in \lambda$, and

(b) if $U \in \lambda$, $w_1, w_2 \in W$ and $w_1 \neq w_2$, then $w_1 U \cap w_2 U = \emptyset$.

If λ is a covering of (W, X), its nerve will be denoted by X_{λ} . (W, X_{λ}) is a simplicial action, where the simplicial maps in W are defined by the vertex maps $w: \lambda \to \lambda$, $w \in W$.

(4.6) If a is an open cover of X, there is a covering of (W, X) that refines a.

Proof. For each p in X there is an open set U_p containing p whose closure $\operatorname{Cl} U_p$ does not intersect the finite point set $\{wp\colon w\in W,\ w\neq 1\}$ and is a subset of a member of α . Let V_p denote $U_p-\bigcup_{v,w\neq 1}w\operatorname{Cl} U_p$. V_p is an open set containing p that is a subset of a member of α and does not intersect wV_p , if $w\in W$ and $w\neq 1$. Let S_p denote $\bigcap_{w\in W}w^{-1}V_{wp}$. S_p is an open set containing p such that

- (a) $w_1S_p \cap w_2S_p = O$ if $w_1, w_2 \in W$ and $w_1 \neq w_2$ and
 - (b) wS_p is a subset of a member of α , if $w \in W$. Since X is bicompact, some finite subcollection

$$\left\{ \bigcup_{w \in W} \{wS_{p_i}: \ i \in \{1, \dots, n\} \right\} \quad \text{ of } \quad \left\{ \bigcup_{w \in W} wS_p: \ p \in X \right\}$$

covers X. $\{wS_{p_i}: w \in W, i \in \{1, ..., n\}\}$ is a covering of (W, X) that refines a.

Suppose that each of α and β is a finite cover of the space X, β refines α and π : $\beta \to \alpha$ is a function such that, for all U in β , $U \subseteq \pi U$. The unique extension of π to a simplicial map from X_{β} into X_{α} is called a *projection* and will be denoted by π .

(4.7) If each of λ and μ is a covering of the action (W, X) and μ refines λ , there is an equivariant projection π from X_{μ} into X_{λ} .

Construction. By an argument similar to the one given for (4.3) there is a subset Y of μ such that $\mu = \bigcup_{w \in W} wY$ and $w_1Y \cap w_2Y = \emptyset$ if $w_1, w_2 \in W$ and $w_1 \neq w_2$. For each member V of μ there is just one pair (w, U) such that $w \in W$, $U \in Y$ and V = wU. For each U in Y, let πU be a member of λ that contains U. Extend π to all of μ by the rule.

$$\pi w U = w \pi U, \quad U \in Y.$$

(4.8) Suppose that each of λ and μ is a covering of the action (W,X), μ refines λ , R is a chain map of the form $\sum_{w \in W} n_w w$, each of π_0 and π_1 is an equivariant projection of X_μ into X_λ and π_{i*} is the homomorphism of $H_q(X_\mu,R,G)$ into $H_q(X_\lambda,R,G)$ induced by π_i , $i \in \{0,1\}$. Then $\pi_{0*}=\pi_{1*}$.

Proof. We construct a chain homotopy in the sense of [2], p. 129, or [3], p. 154. Let (I, \leqslant_1) be an ordered 1-complex consisting of a 1-simplex and its vertices P^0 and P^1 and the relations $P^0 \leqslant_1 P^0$, $P^0 \leqslant_1 P^1$ and $P^1 \leqslant_1 P^1$. By (4.4) there is an order \leqslant_2 for X_μ such that (W, X_μ, \leqslant_2) is an ordered simplicial action. Let $I \times X_\mu$ be the product complex defined by the orders \leqslant_1 and \leqslant_2 . $(W, I \times X_\mu)$ is a simplicial action where, for w in W, w: $I \times X_\mu \to I \times X_\mu$ is defined to be (1, w). Let θ be the unique simplicial map from $I \times X_\mu$ into X_λ such that $\theta(P^i, U) = \pi_i U$, for $U \in \mu$, $i \in \{0, 1\}$. Let the cartesian chain product

$$\times: (C_a(I, Z), C_b(X_\mu, G)) \rightarrow C_{a+b}(I \times X_\mu, G)$$

be defined using the multiplication $\varphi\colon (Z,G)\to G$ such that $\varphi(1,g)=g,g\in G.$ (Z is the additive group of the integers.) Let D denote the chain homomorphism from $C_q(X_\mu,G)$ into $C_{q+1}(X_\lambda,G)$ such that $Dc=\theta(P^0P^1\times c)$. By (3.6) and the equivariance of θ , $wDc=w\theta(P^0P^1\times c)=\theta w(P^0P^1\times c)$ = $\theta(1,w)(P^0P^1\times c)=\theta(P^0P^1\times wc)=Dwc$ for all chains c on X_μ and all w in W. Hence D commutes with R. It can be shown by induction of the dimension of c that $\theta(P^i\times Rc)=\pi_iRc,\ i\in\{0,1\}$. A calculation using (3.3) and the formulas $\partial\theta=\partial\theta,\ RD=DR$ and $\theta(P^i\times Rc)=\pi_iRc$ shows that $\pi_1Rc-\pi_0RC=\partial RDc\in B_q(X_\lambda,R,G)$ whenever $Rc\in Z_q(X_\mu,R,G)$.

In view of (4.6) a covering of (W, X) exists and the coverings form a system directed by refinement. By (4.7) and (4.8) the homomorphisms

$$\pi_{\mu,\lambda}: H_q(X_\mu, R, G) \rightarrow H_q(X_\lambda, R, G)$$

induced by the equivariant projections $\pi_{\mu\lambda}$: $X_{\mu} \rightarrow X_{\lambda}$ form an inverse homomorphism system, whose limit, the q-dimensional Cech-Smith homology group, will be denoted by $H_0(X, R, G)$.

For the purposes of this paper it is not necessary to know whether the homology group of a complex is isomorphic to the corresponding Čech-Smith homology group of its polyhedron.

5. L-systems. To say that (A, B, C) is an L-triple for (X, G) means that X is a complex, G is an abelian group, each of A, B and C is a chain map from the groups $C_q(X, G)$ into the groups $C_q(X, G)$ and, if c is a chain such that Cc = 0, there is a chain d such that Bc = Ad.

EXAMPLES. If X is a complex, $T: X \rightarrow X$ is a fixed-point free simplicial involution and Z_2 is the group of order 2, then (1+T,1,1+T) is an L-triple for (X,Z_2) which plays a fundamental role in [6], [7], and [8]. If σ and δ are defined as in [5], p. 355, each of $(\sigma,1,\delta)$ and $(\delta,1,\sigma)$ is an L-triple. See also (6.3) below.

If X is a complex and G is an abelian group, we define a homomorphism In: $C_0(X, G) \to G$ by the rule $\operatorname{In}(\sum_i g_i V_i) = \sum_i g_i$ where the V_i 's are the vertices of X and the g_i 's are in G. The properties of In used in the sequel are:

- (a) In is a homomorphism,
- (b) $\operatorname{In} \partial c = 0$ if $c \in C_1(X, G)$,
- (c) In fc = In c, if Y is a complex and $f: X \to Y$ is a simplicial map,
- (d) In $(c_1 \times c_2) = \varphi(\operatorname{In} c_1, \operatorname{In} c_2)$ if each of G_1 , G_2 and G_3 is an abelian group, $\varphi \colon (G_1, G_2) \to G_3$ is a multiplication, each of (X_1, \leqslant) and (X_2, \leqslant) is an ordered complex, \times is the cartesian chain product using φ as the underlying multiplication, and $c_i \in C_0(X_i, G_i)$, $i \in \{1, 2\}$.

To say that α is an L-system of depth n for (X,G) means that X is a complex, G is an abelian group, n is a nonnegative integer and α is a sequence

$$(A_0, S_1, A_1, ..., S_n, A_n)$$

of chain maps from $C_q(X, G)$ into $C_q(X, G)$ such that

- (a) if $c \in C_0(X, G)$ and $A_0c = 0$ then In c = 0, and
- (b) if $0 < q \le n$ then (A_{q-1}, S_q, A_q) is an L-triple for (X, G).
- (5.1) Suppose that (A_0) is an L-system of depth 0 for (X,G). Let v_0 be the relation to which (z,g) belongs iff there is a chain c such that $z=A_0c$ $\in Z_0(X,A_0,G)$ and $g=\mathrm{In}\,c$. Then v_0 is a homomorphism from $Z_0(X,A_0,G)$ into G and $v_0B_0(X,A_0,G)=0$.

Proof. (a) If $z \in Z_0(X, A_0, G)$, there is a g such that $(z, g) \in r_0$. Suppose that $z \in Z_0(X, A_0, G)$. There is a c such that $z = A_0 c$. $(z, \operatorname{In} c) \in r_0$.

(b) v_0 is a function.

Suppose (z, g_1) , $(z, g_2) \in v_0$. For $k \in \{1, 2\}$, there is a c_k such that $z = A_0 c_k$ and $g_k = \operatorname{In} c_k$. $A_0 (c_1 - c_2) = A_0 c_1 - A_0 c_2 = z - z = 0$. $\operatorname{In} (c_1 - c_2) = 0$. $\operatorname{In} c_1 = \operatorname{In} c_2$. $g_1 = g_2$.

(c) vo is a homomorphism.

Suppose A_0c , $A_0d \in \hat{Z_0}(X, A, G)$. $v_0(A_0c + A_0d) = v_0(A_0(c+d)) = \text{In}(c+d)$ = $\text{In} c + \text{In} d = v_0(A_0c) + v_0(A_0d)$.

(d) $\nu_0 B_0(X, A_0, G) = 0$.

Suppose $z \in B_0(X, A_0, G)$. There is a u in $C_1(X, A_0, G)$ such that $z = \partial u$. There is a c in $C_1(X, G)$ such that $u = A_0c$. $v_0z = v_0\partial u = v_0\partial A_0c = v_0A_0\partial c = \operatorname{In}\partial c = 0$.

(5.2) Suppose that q is a positive integer, (A_{q-1}, S_q, A_q) is an L-triple for (X, G), v_{q-1} is a homomorphism from $Z_{q-1}(X, A_{q-1}, G)$ into G such that $v_{q-1}B_{q-1}(X, A_{q-1}, G) = 0$ and v_q is the relation to which (z, g) belongs iff there is a c in $C_q(X, G)$ such that $z = A_q c \in Z_q(X, A_q, G)$ and $g = v_{q-1}S_q \partial c$. Then v_q is a homomorphism from $Z_q(X, A_q, G)$ into G and $v_q B_q(X, A_q, G) = 0$.

Proof. (a) If $z \in Z_q(X, A_q, G)$ there is a g such that $(z, y) \in \gamma_q$.

Suppose $z \in Z_q(X, A_q, G)$. There is a c such that $z = A_q c$. $A_q \partial c = \partial A_q c$ $= \partial z = 0$. Since (A_{q-1}, S_q, A_q) is an L-triple, $S_q \partial c \in C_{q-1}(X, A_{q-1}, G)$. Since $\partial S_q \partial c = \partial \partial S_q c = 0$, $S_q \partial c \in Z_{q-1}(X, A_{q-1}, G)$. $r_{q-1} S_q \partial c$ is defined. $(z, r_{q-1} S_q \partial c) \in r_q$.

(b) vq is a function.

 $\begin{array}{ll} \text{Suppose}\ (z,g_1),\,(z,g_2)\;\epsilon\; v_q\,.\; \text{For}\ k\;\epsilon\;\{1,2\}\;\text{there is a}\;c_k\;\text{such that}\; z=A_qc_k\\ \text{and}\ g_k=\;v_{q-1}S_q\partial c_k\,.\; A_qc_{(1}-c_2)=A_qc_{1}-A_qc_{2}=z-z=0.\;\text{Since}\;\;(A_{q-1},\,S_q,\,A_q)\\ \text{is an}\ L\text{-triple},\;\; S_q(c_1-c_2)\;\epsilon\;C_q(X,\,A_{q-1},\,G).\;\;\partial S_q(c_1-c_2)\;\epsilon\;B_{q-1}(X,\,A_{q-1},\,G).\\ g_1-g_2=\;v_{q-1}S_q\partial c_1-v_{q-1}S_q\partial c_2=\;v_{q-1}\partial S_q(c_1-c_2)=0.\;\;g_1=g_2. \end{array}$

(c) vg is a homomorphism.

Suppose $A_q c$, $A_q d \in Z_q(X, A_q, G)$.

$$\begin{split} \nu_q(A_q\,c + A_q\,d) &= \nu_q\,A_q(c+d) = \nu_{q-1}\,S_q\,\partial(c+d) = \nu_{q-1}\,S_q\,\partial c + \nu_{q-1}\,S_q\,\partial d \\ &= \nu_q\,A_q\,c + \nu_q\,A_q\,d\;. \end{split}$$

(d) $v_q B_q(X, A_q, G) = 0$.

Suppose $z \in B_q(X,A_q,G)$. There is a u in $C_{q+1}(X,A_q,G)$ such that $z=\partial u$. There is a c in $C_{q+1}(X,G)$ such that $u=A_qc$. $v_qz=v_q\partial u=v_q\partial A_qc=v_qA_q\partial c=v_{q-1}S_q\partial c=0$.

In the light of (5.1) and (5.2) we make the following definitions.

If $\alpha = (A_0, S_1, A_1, ..., S_n, A_n)$ is an *L*-system of depth *n* for (X, G), to say that ν is a's homomorphism means that ν is the function defined recursively by the rule

$$u A_q c = egin{cases} \operatorname{In} c & ext{if} & q = 0 \
u S_q \partial c & ext{if} & 1 < q \leqslant n \end{cases}$$

whenever $A_q c \in Z_q(X, A_q, G)$.

Since $vz_1 = vz_2$ whenever z_1 and z_2 are in the same element of $H_q(X, A_q, G)$, we can also define a homomorphism

$$v: H_q(X, A_q, G) \rightarrow G, \quad q \in \{0, ..., n\}$$

by the rule $\nu[z] = \nu z$. (Here [z] denotes the homology class containing z.)

Remark. Up to this point the discussion of L-triples and their associated homomorphisms can be interpreted even in the abstract context of chain complexes ([2], p. 124). But in concrete applications an L-system α will be defined just for simplicial actions (W, X) and the terms of α will be of the form $\sum_{w \in W} N_w w$, where the N_w 's are integers.

(5.3) Suppose that each of (W,X) and (W,Y) is a simplicial action, $a=(R_0,S_1,R_1,...,S_n,R_n)$ is an L-system of depth n for each of (X,G) and (Y,G), each term of a is of the form $\sum_{w\in W} N_w$ where each N_w is an integer, $f\colon X\to Y$ is an equivariant simplicial map and v is a's homomorphism. Then for each q in $\{0,...,n\}$ and each z in $Z_q(X,R_q,G)$, vz=vjz (and, for $\zeta\in H_q(X,R_q,G)$, $v\zeta=vj_*\zeta$).

Proof. Induction on q. Suppose $R_0c \in Z_0(X, R_0, G)$. $v f R_0c = v R_0 f c = \text{In} f c = \text{In} c = v R_0c$. Suppose $0 < q \leqslant n$ and $R_qc \in Z_q(X, R_q, G)$.

$$\nu f R_q c = \nu R_q f c = \nu S_q \partial f c = \nu f (S_q \partial c) = \nu (S_q \partial c) = \nu R_q c$$
.

Remark. It can be shown that if G is an abelian group, each of (W,X) and (W,Y) is a simplicial action, each of α , β and γ is a function from W into the integers and

$$\left(\sum_{w\in W} a_w w, \sum_{w\in W} \beta_w w, \sum_{w\in W} \gamma_w w\right)$$

is an L-triple for (X, G) then it is also an L-triple for (Y, G). This fact does not contribute to the proof of our principal theorem and so is not proved here. I mention it only in order to render more palatable the following curious definition.

If (W, X) is an action or a simplicial action and, for every simplicial action (W, Y), $\alpha = (R_0, S_1, R_1, ..., S_n, R_n)$ is an α -system of depth n for (Y, G) and each term of α is of the form $\sum_{w \in W} N_w w$, where each N_w is an integer, then we shall say that α is an L-system of depth n for (W, X, G).

Suppose that each of (W_1, X_1) and (W_2, X_2) is an ordered simplicial action, each of G_1 , G_2 and G_3 is an abelian group,

$$A: C_q(X_1, G_1) \to C_q(X_1, G_1)$$

is a chain map of the form $\sum_{w \in W} N_w w$ and

$$B: C_q(X_2, G_2) \to C_q(X_2, G_2)$$

is a chain map of the form $\sum_{w \in W_2} M_w w$, where each of the N_w 's and M_w 's is an integer. Then A will also be used to denote the chain map

$$\sum_{w \in W_1} N_w(w, 1) \colon \ C_q(X_1 \times X_2, \ G_3) \to C_q(X_1 \times X_2, \ G_3)$$

and B will be used to denote the chain map

$$\sum_{w \in W_2} M_w(1, w) \colon \ C_q(X_1 \times X_2, G_3) \to C_q(X_1 \times X_2, G_3) \ .$$

Note that the composite map

AB:
$$C_q(X_1 \times X_2, G_3) \rightarrow C_q(X_1 \times X_2, G_3)$$

(B followed by A) can be expressed in the form $\sum_{w \in (W_1 \times W_2)} J_w w$, where each of the J_w 's is an integer.

(5.4) Suppose that each of (W_1, X_1) and (W_2, X_2) is an ordered simplicial action, $a_1 = (A_0, S_1, A_1, ..., S_a, A_a)$ is an L-system of depth a for (W_1, X_1, G_1) , $a_2 = (B_0, Q_1, B_1, ..., Q_b, B_b)$ is an L-system of depth b for (W_2, X_2, G_2) ,

$$\begin{array}{lll} a_3 = (A_0B_0,\, A_0Q_1,\, A_0B_1,\, \dots,\, A_0Q_b,\, A_0B_b,\, S_1B_b,\, A_1B_b,\, \dots,\, S_aB_b,\, A_aB_b) \\ is \ an \ L\text{-system of depth } a+b \ for \ (W_1\times W_2,\, X_1\times X_2,\, G_3), \ \varphi\colon \ (G_1,\, G_2)\to G_3 \\ is \ a \ multiplication \ and \end{array}$$

$$\times: (C_i(X_1, G_1), C_j(X_2, G_2)) \to C_{i+j}(X_1 \times X_2, G_3)$$

is the cartesian chain product defined using φ as the underlying multiplication. Let v_k denote a_k 's homomorphism, $k \in \{1, 2, 3\}$. If $i \in \{0, ..., a\}$, $j \in \{0, ..., b\}$, j = b if i > 0, $z_1 \in Z_i(X_1, A_i, G_1)$ and $z_2 \in Z_j(X_2, A_j, G_2)$, then $z_1 \times z_2 \in Z_{i+j}(X_1 \times X_2, A_iB_j, G_3)$ and $v_3(z_1 \times z_2) = \varphi(v_1z_1, v_2z_2)$.

Proof. Suppose $A_i c \in Z_i(X_1, A_i, G_1)$ and $B_j d \in Z_j(X_2, B_j, G_2)$. If i+j>0, $\partial(A_i c \times B_j d)=0$ by (3.4). Suppose

$$A_i = \sum_{w \in W_1} a_w w$$
 and $B_j = \sum_{w \in W_2} \beta_w w$.

With the aid of (3.2) and (3.6) we calculate:

$$\begin{split} A_i B_f(c \times d) &= \sum_{w_1 \in \mathcal{W}_1} a_{w_1}(w_1, 1) \sum_{w_2 \in \mathcal{W}_2} \beta_{w_2}(1, w_2)(c \times d) \\ &= \Big(\sum_{w_1 \in \mathcal{W}_1} \sum_{w_2 \in \mathcal{W}_2} a_{w_1} \beta_{w_2}\Big)(w_1, w_2)(c \times d) \\ &= \Big(\sum_{w_1 \in \mathcal{W}_1} \sum_{w_2 \in \mathcal{W}_2} a_{w_1} \beta_{w_2}\Big)(w_1 c \times w_2 d) \\ &= \Big(\sum_{w_1 \in \mathcal{W}} a_{w_1} w_1 c\Big) \times \Big(\sum_{w_1 \in \mathcal{W}_2} \beta_{w_2} w_2 d\Big) \\ &= A_i c \times B_i d. \end{split}$$

Thus $A_i c \times B_j d \in Z_{i+j}(X_1 \times X_2, A_i B_j, G_3)$. To show that $v_3(A_i c \times B_j d) = \varphi(v_1 A_i c, v_2 B_j d)$ we use induction on i.

(I) Suppose i = 0. Induction on j.

(I.I) Suppose j = 0.

$$v_3(A_0c \times B_0d) = v_3A_0B_0(c \times d)$$
 (3.2) and (3.6)
 $= \operatorname{In}(c \times d)$ definition of v_3
 $= \varphi(\operatorname{In}c, \operatorname{In}d)$
 $= \varphi(v_1A_0c, v_2B_0d)$ definitions of v_1, v_2 .

(I.II) Suppose $0 < j \le b$. The proof consists of a calculation similar to, but simpler than, the one given for case (II) below.

(II) Suppose $0 < i \le a$. j = b. Suppose b > 0.

$$\begin{split} v_3(A_1c \times B_bd) &= v_3A_1B_b(c \times d) & (3.2) \text{ and } (3.6), \\ &= v_3S_1B_b\partial(c \times d) & \text{definition of } v_3, \\ &= v_3\partial S_1B_b(c \times d) & S_1B_b \text{ is a chain map,} \\ &= v_3\partial(S_1c \times B_bd) & (3.2) \text{ and } (3.6) \\ &= v_3(\partial S_1c \times B_bd + (-1)^iS_1c \times \partial B_bd) & (3.3) \\ &= v_3(\partial S_1c \times B_bd) & (3.1) \text{ and } (3.2) \\ &= \varphi(v_1\partial S_1c, v_2B_bd) & \text{inductive hypothesis} \\ &= \varphi(v_1A_1c, v_2B_bd). & \text{definition of } v_1. \end{split}$$

In case b = 0 the calculation is similar but simpler.

Suppose that (W,X) is an action and $\alpha=(R_0,S_1,R_1,...,S_n,R_n)$ is an L-system of depth n for (W,X,G). By (5.3) all of the coordinates of an element of $H_q(X,R_q,G),\ q\in\{0,...,n\}$, have the same value under α 's homomorphism ν . A homomorphism

$$\nu: H_q(X, R_q, G) \rightarrow G$$

is defined by taking the value of an element of $H_q(X, R_q, G)$ under ν to be the common value of its coordinates under ν .

If (W,X) is a simplicial action {action} and $\alpha=(A_0,S_1,A_1,...,S_n,A_n)$ is an L-system of depth n for (W,X,G), (W,X) will be said to be a-admissible if there is an element ζ of $H_n(X,A_n,G)$ { $H_n(X,A_n,G)$ } such that $v\zeta \neq 0$, where v is a's homomorphism.

Suppose that K is a complex, SdK is its first barycentric subdivision and G is an abelian group. Define a homomorphism

Sd:
$$C_q(K, G) \rightarrow C_q(\operatorname{Sd} K, G)$$

as follows. If $c \in C_0(K,G)$, let $\operatorname{Sd} c$ be ic where i is the inclusion map of the vertices of K into those of $\operatorname{Sd} K$. Suppose that q>0 and Sd has been defined on $C_{q-1}(K,G)$ and $C_{q-1}(K,Z)$. If $c=A^0$... A^q is an elementary q-chain in $C_q(K,Z)$ and B is the barycenter of the simplex with vertices A^0,\ldots,A^q , define $\operatorname{Sd} c$ to be $B\circ\operatorname{Sd} c$. If $d=\sum_i g_iA_i^0\ldots A_i^q$ $\in C_q(K,G)$ or $C_q(K,Z)$, define $\operatorname{Sd} d$ to be $\sum_i g_i\operatorname{Sd} A_i^0\ldots A_i^q$.

(5.5) Sd is a chain map ([2], p. 177) such that, if π is a projection of SdK into K, π Sd = 1 ([2], Remark, p. 178).

(5.6) Suppose that (W,X) is a simplicial action, G is an abelian group, $c \in C_q(X,G)$ and $w \in W$. Then $w \operatorname{Sd} c = \operatorname{Sd} wc$.

Proof. Induction on q. Obvious if g=0. Suppose that q>0 and c is elementary. Let B be the barycenter of the support of c.

$$w\operatorname{Sd} e = w(B \circ \operatorname{Sd} \partial e)$$
 definition of Sd
 $= (wB) \circ (w\operatorname{Sd} \partial e)$
 $= (wB) \circ (\operatorname{Sd} w\partial e)$ inductive hypothesis
 $= (wB) \circ (\operatorname{Sd} \partial we)$
 $= \operatorname{Sd} we$ definition of Sd

Since each of w and Sd is a homomorphism, the result extends to arbitrary c.

(5.7) If (W, X) is a simplicial action, α is an L-system for (W, X, G) and (W, X) is α -admissible, then (W, |X|) is α -admissible.

Proof. Suppose $a=(R_0,S_1,R_1,...,S_n,R_n)$, $\zeta_0\in H_n(X,R_n,G)$ and $r\zeta_0\neq 0$. For each positive integer j let π_j denote an equivariant projection from the jth barycentric subdivision $(\operatorname{Sd})^jX$ of X into $(\operatorname{Sd})^{j-1}X$. By (5.5) and (5.6), π_j maps $Z_n((\operatorname{Sd})^nX,R_n,G)$ onto $Z_n((\operatorname{Sd})^{j-1}X,R_n,G)$. Consequently,

$$\pi_{j_*}$$
: $H_n((\operatorname{Sd})^j X, R_n, G) \to H_n((\operatorname{Sd})^{j-x} X, R_n, G)$

is an onto function. There is a sequence $\{\zeta_j\}_{j=0}^{\infty}$ such that, for each positive integer j, $\zeta_j \in H_n((\operatorname{Sd}^j X, R_n, G))$ and $\pi_{j_k}\zeta = \zeta_{j-1}$. For each covering λ of (W, |X|) there is a non-negative integer $m(\lambda)$ such that the stars of the vertices of $(\operatorname{Sd})^{m(\lambda)}X$ form a covering of (W, |X|) that refines λ . In particular, let $m((\operatorname{Sd})^j X) = j$ for each nonnegative integer j. For each covering λ of (W, |X|) let F_{λ} denote the image of $\zeta_{m(\lambda)}$ under an equivariant projection from $H_n((\operatorname{Sd})^{m(\lambda)}X, R_n, G)$ into $H_n(X_{\lambda}, R_n, G)$. F is a member of $H_n(X, R_n, G)$ that has ζ_0 as a representative $\nu F = \nu \zeta_0 \neq 0$.

6. The admissibility of the n-torus.

(6.1) Suppose that (W,X) is a simplicial action, G is an abelian group and c a chain in $C_0(X,G)$ such that $\sum_{w \in W} wc = 0$. Then $\operatorname{In} c = 0$.

Proof. By an argument similar to the one used for (4.3) there is a subset Y of the set V of 0-simplexes of X such that $\sum_{w \in W} wY = V$ and $w_1Y \cap w_2Y = \emptyset$ whenever $w_1, w_2 \in W$ and $w_1 \neq w_2$. With the aid of (2.1) we have:

$$\operatorname{In} c = \sum_{v \in V} c \langle v \rangle = \sum_{v \in V} \sum_{w \in W} c \langle wv \rangle = \sum_{v \in V} \sum_{w \in W} w^{-1} c \langle v \rangle = \sum_{v \in V} 0 \langle v \rangle = 0.$$

The statements in (6.2) below will be hypotheses in (6.3) and (6.4). (6.2) (W, X) is a simplicial action,

p is an integer >1, m is a positive integer, e=mp,

W is the (internal) direct product of a subgroup H and a cyclic subgroup W_e of order e with generator T,

n is a nonnegative integer.

Y' is a subset of the set X_n of n-simplexes of X such that

(i)
$$hY' = Y'$$
 for each h in H ,

(ii)
$$\bigcup_{a=0}^{e-1} T^a Y' = X_n,$$

(iii)
$$T^iY' \cap T^jY' \neq \emptyset$$
 if $i \not\equiv j \pmod{e}$,

 N_h is an integer for each h in H,

M denotes the chain map $\sum_{h \in H} N_h h$: $C_q(X, Z_p) \rightarrow C_q(X, Z_\rho)$,

 Z_p is the cyclic group of order p,

A denotes the chain map $\sum_{\substack{j=0\\e-1}}^{e-1} T^j M: C_q(X, Z_p) \rightarrow C_q(X, Z_p),$

S denotes the chain map $\sum_{j=0}^{e-1} jT^jM \colon C_q(X, Z_{\mathcal{D}}) \to C_q(X, Z_{\mathcal{D}}).$

(6.3) Suppose (6.2), $c \in C_n(X, \mathbb{Z}_p)$ and Ac = 0. Let d be the unique chain such that, if E is an orientation of an n-simplex in Y',

$$d(T^aE) = egin{cases} \left(\sum\limits_{j=0}^{e-1} jT^je
ight)E & if & a=0\ ,\ 0 & if & a \in \{1,\,...,\,e-1\}\ . \end{cases}$$

Then Sc = Ad. (Thus, (A, S, A) is an L-triple for (X, Z_p) .)

Proof. Suppose that E is an orientation of an n-simplex in Y' and $b \in \{0, ..., e-1\}$. Then

$$\Big(\sum_{a=0}^{e-1} T^a M d\Big) (T^b E)$$

(a)
$$= \left(\sum_{a=0}^{e-1} T^a \sum_{u \in H} N_u u d\right) (T^b E)$$

$$=\sum_{a=0}^{e-1}\sum_{u\in H}N_u[(T^aud)(T^bE)]$$

(b)
$$= \sum_{a=0}^{e-1} \sum_{u \in H} N_u [d(u^{-1} T^{b-a} E)]$$

(c)
$$= \sum_{u \in H} N_u \left[\sum_{a=0}^{e-1} d(T^{b-a} u^{-1} E) \right]$$

$$= \sum_{u \in H} N_u[d(u^{-1}E)]$$

(e)
$$= \sum_{u \in H} N_u \left[\left(\sum_{j=1}^{e-1} j T^j c \right) (u^{-1} E) \right]$$

(f)
$$= \sum_{u \in H} N_u \Big[u \Big(\sum_{j=0}^{e-1} T^j e \Big) E \Big]$$

$$= \left(\sum_{j=0}^{e-1} jT^{j}Mc\right)E$$

(h)
$$= \Big(\sum_{j=b}^{e-1+b} j T^j Mc\Big) E$$

(i)
$$= \left(\sum_{j=b}^{e-1+b} jT^{j}Mc\right)E + b\left(\sum_{j=b}^{e-1+b} T^{j}Mc\right)E$$

$$= \left(\sum_{j=b}^{e-1+b} (j+b)T^{j}Mc\right)E$$

$$= \left(\sum_{j=0}^{e-1} jT^{j-b}Mc\right)E$$

$$= \Big(\sum_{j=0}^{e-1} jT^j M_o\Big) (T^b E).$$

Equations (b), (f) and (j) are justified by (2.1); (a) and (g), by the definition of M; (c) and (g), by the fact that T commutes with each member of H; (d) and (e), by the definition of d; (h), by the fact that the order of Z_p divides the period of T; and (i), by the fact that Ac = 0.

(6.4) Suppose (6.2) and $b \in C_n(X, \mathbb{Z}_p)$. There is a chain d with support in Y' such that Ab = Ad.

Proof. Let c denote the chain (1-T)b. Since A(1-T) is the 0 operator, Ac = 0. Let d be defined as in the hypothesis of (6.3). The support of d is a subset of Y'. By (6.3), Sc = Ad. Since S(1-T) = A, we have Ab = Ad.

(6.5) Suppose that:

m is a positive integer, p is an integer >1, e=pm,

X is a 1-complex consisting of the 2e vertices $v_0,\,...,\,v_{2e-1}$ and the 2e 1-simplexes $s_0,\,...,\,s_{2e-1},$

the 0-faces of s_i are v_i and v_{i-1} , if $i \in \{0, ..., 2e-1\}$ (addition in the subscripts is modulo 2e),

k is an integer in $\{1, \ldots, e-1\}$ such that the greatest common divisor of k and e is 1,

T: $X \rightarrow X$ is the simplicial map such that

$$Tv_j = v_{j+2k}, \quad if \quad j \in \{0, \ldots, 2e-1\}.$$

Let W denote the group of homeomorphisms generated by T, A denote the chain map $\sum\limits_{j=1}^{e-1} T^j\colon C_q(X,Z_p)\to C_q(X,Z_p), S$ denote the chain map $\sum\limits_{j=1}^{e-1} jT^j\colon C_q(X,Z_p)\to C_q(X,Z_p)$, and a denote the triple (A,S,A). Then T is periodic of period e, (W,X) is a simplicial action, a is an L-system of depth 1 for (W,X,Z_p) and, if v is a's homomorphism and the members of Z_p are denoted by $0,1,\ldots,p-1$, there is a z in $Z_1(X,A,Z_p)$ such that vz=1.

Proof. That (A, S, A) is an L-system follows from (6.1) and (6.3). Let c denote the 1-chain: $-\sum_{i=1}^{2k} v_{i-1}v_i$ and let d denote the 0-chain: $1v_0$. $A\partial c = 0$. Let Y' denote $\{v_0, v_1\}$. By (6.4), $S\partial c = Ad$. $vAc = vS\partial c = vAd = \operatorname{In} d = 1$.

(6.6) Suppose that p is an integer >1, n is a positive integer and, for $i \in \{1, ..., n\}$,

mi is a positive integer,

 $e_i = pm_i$,

 k_i is an integer in $\{1, ..., e_i-1\}$ relatively prime to e_i , T_i : $T^n \to T^n$ is the onto homeomorphism defined by

$$T_i(x_i, \ldots, x_n) = (x_1, \ldots, x_{i-1}, x_i + k_i/e_i, x_{i+1}, \ldots, x_n).$$

Let W denote the group of homeomorphisms generated by $\{T_1, ..., T_n\}$, A denote the chain map $\sum_{w \in x} w \colon C_q(X, Z_p) \to C_q(X, Z_p)$ and, for $i \in \{1, ..., n\}$

let H_i denote the subgroup of W generated by $\{T_1, ..., T_{i-1}, T_{i+1}, ..., T_n\}$ and S_i denote the chain map

$$\sum_{j=0}^{e_i-1} j \, T_i^j \sum_{h \in H_i} h \colon \ C_q(X \, , \, Z_p) \, {\to} \, C_q(X \, , \, Z_p) \, .$$

Then $\alpha = (A, S_1, A, ..., S_n, A)$ is an L-system of depth n for (W, T^n, Z_p) and (W, T^n) is α -admissible.

Proof. That (W, T^n) is an action satisfying (4.2) may be verified by the reader. That α is an L-system of depth n for (W, T^n, Z_p) is a consequence of (6.1) and (6.3).

Suppose $i \in \{1, ..., n\}$. The collection of points and segments in the real numbers

$$\{j/2e_i, (j/2e_i, (j+1)/2e_i): j \in \{0, ..., 2e_i-1\}\}$$

defines a simplicial decomposition of T^1 which will be denoted by K_t . There is an order \leq_i for K_i such that $j/2e_i \leq_i (j+1)/2e_i$ if $j \in \{0, \ldots, 2e_i-2\}$ and $(2e_i-1)/2e_i \leq_i 0$. Let T_i : $K_i \rightarrow K_i$ denote the simplicial map such that $T_i x = x + k_i/e_i$ and let W_i denote the group generated by T_i . (W_i, K_i, \leq_i) is an ordered simplicial action. Let K denote $K_1 \times \ldots \times K_n$. $(W, K) = (W_1, K_1) \times \ldots \times (W_n, K_n)$ and $(W, T^n) = (W, |K|)$ ([2], p. 68). By (5.7), to prove the a-admissibility of (W, T^n) it will suffice to prove the a-admissibility of (W, K). An induction on n will show that there is a z in $Z_n(K, A, Z_p)$ such that vz = 1. In case n = 1, (6.5) disposes of the question. Suppose n > 1, By the inductive hypothesis there is a z in $Z_{n-1}(K_1 \times \ldots \times K_{n-1}, \sum_{w \in W_1 \times \ldots \times W_{n-1}} w, Z_p)$ such that vz = 1. By (6.5)

there is a u in $Z_1(K_n, \sum_{w \in W_n} w, Z_p)$ such that $\nu u = 1$. A chain product

$$\times$$
: $(C_i(K_1 \times ... \times K_{n-1}, Z_p), C_j(K_n, X_p)) \rightarrow C_{i+j}(K, Z_p)$

can be defined using the usual ring product $(Z_p, Z_p) \to Z_p$ as the underlying multiplication. Then by $(5.4) \ \nu(z \times u) = (\nu z) (\nu u) = 1 \cdot 1 = 1$.

7. The principal theorem. Throughout this section we will use the fact, that if X is a set with subsets A and B and T: $X \to X$ is 1-1 and onto, then $T(A \cup B) = TA \cup TB$ and $T(A \cap B) = TA \cap TB$.

(7.1a) {(7.1b)} Suppose that

p is an integer >1, Z_p is the cyclic group of order p, (W, Z) is (a) a simplicial action $\{(b) \text{ an action}\}$,

m is a positive integer, e = pm,

W is the (internal) direct product of a subgroup H and a cyclic subgroup W_e of order e with generator T,

F is a (a) subcomplex {(b) closed subset} of X such that

$$X = \bigcup_{j=0}^{p-1} T^j F,$$

(ii)
$$hF = F = T^p F, \quad h \in H,$$

 $K \text{ denotes } \bigcup_{j=1}^{p-1} \bigcup_{i=j+1}^{p} (T^{i}F \cap T^{i}F),$

 $a = (A_0, S_1, A_1, ..., S_n, A_n)$ is an L-system of depth n (n > 0) for both (W, X, Z_p) and (W, K, Z_p) ,

v is a's homomorphism,

there is a function N from H into the integers such that

$$A_n = A_{n-1} = \sum_{j=1}^{e-1} T^j \sum_{h \in H} N_h h, \quad S_n = \sum_{j=1}^{p-1} j T^j \sum_{x=0}^{m-1} T^{px} \sum_{h \in H} N_h h.$$

Then (a) if Δ is the relation to which (ζ, ω) belongs iff there is a chain c such that

the support of c is a subset of F,

 ζ is a homology class in $H_n(X, A_n, Z_p)$ that contains $A_n c$,

 ω is a homology class in $H_{n-1}(K, A_n, Z_p)$ that contains the restriction of $S_n \partial c$ to K,

then Δ is a homomorphism from $H_n(X, A_n, Z_p)$ into $H_{n-1}(K, A_{n-1}, Z_p)$ such that $v\zeta = v\Delta\zeta$ for each ζ in $H_n(X, A_n, Z_p)$;

{(b) there is a homomorphism Δ from $H_n(X, A_n, Z_p)$ into $H_{n-1}(K, A_{n-1}, Z_p)$ such that $v\zeta = v\Delta \zeta$ for each ζ in $H_n(X, A_n, Z_p)$ }.

Proof. Notice first that K is invariant under W, so that (W, K) is (a) a simplicial action $\{(b) \text{ an action}\}$. Let A denote $A_n = A_{n-1}$ and S denote S_n . We now restrict our attention to (7.1a).

(A) If q is a nonnegative integer, $c \in C_q(X, Z_p)$, Ac = 0 and the support of c is a subset of F, then the support of Sc is a subset of K and $(Sc)|K \in C_q(K, A, Z_p)$.

Let b denote $\sum_{x=0}^{m-1} T^{px} \sum_{h \in H} N_h hc$. Since the support of c is a subset of F and F is invariant under both H and T^p , the support of b is a subset of F. Since $Sc = \sum_{j=0}^{p-1} jT^jb$, the support J of Sc is a subset of $\bigcup_{j=1}^{p-1} T^jF$. Since (A, S, A) is an L-triple for (W, X, Z_p) (see (6.3)), and Ac = 0, there is a chain d such that Sc = Ad. Since Ad = TAd, $J \subseteq TJ$. Hence, for any integer i, $J \subseteq T^iJ \subseteq T^i$ T^jF . Therefore $J \subseteq \bigcap_{j=0}^{p-1} (T^i\bigcup_{j=1}^{p-1} T^jF) \subseteq K$.

Since K is W-invariant, we have (Ad)|K = A(d|K). Thus $(Ad)|K \in C_q(K, A, Z_p)$.

(B) If $\zeta \in H_n(X, A, Z_p)$, then there is an ω such that $(\zeta, \omega) \in A$. By (4.3) there is a subset Y of the n-simplexes of F such that $\bigcup_{w \in W} wY$ is the set of n-simplexes of X and $w_1Y \cap w_2Y = \emptyset$ if $w_1 \neq w$ and $w_1, w_2 \in W$. Let Y' denote $\bigcup_{h \in H} hY$. Suppose $\zeta \in H_n(X, A, Z_p)$. Let z be in ζ . By (6.4) there is a chain c with support in Y' such that z = Ac. Since F is closed and $Y' \subseteq F$, the support of ∂c is a subset of F. Since $z \in Z_n(X, A, Z_p)$, $A\partial c = \partial z = 0$. By (A) the support of $\partial \partial c$ is a subset of K and $(S\partial c)|K \in C_{n-1}(K, A, Z_p)$. Since $\partial (S\partial c) = 0$ and the support of $\partial \partial c$ is a subset of K as subset of K, $\partial ((S\partial c)|K) = 0$. Thus $(S\partial c)|K \in Z_{n-1}(K, A, Z_p)$. Let ω be the homology class in $H_{n-1}(K, A, Z_p)$ that contains $(S\partial c)|K$. $(\zeta, \omega) \in \Delta$.

(C) \(\Delta \) is a function.

Suppose that (ζ, ω_1) , $(\zeta, \omega_2) \in A$. By (B), for $k \in \{1, 2\}$, there is an n-chain c_k with support in F such that $Ac_k \in \zeta$ and ω_k is the member of $H_{n-1}(K, A, Z_p)$ that contains $(S\partial c_k)|K$. Since Ac_1 , $Ac_2 \in \zeta$, there is a chain Ad in $C_{n+1}(X, A, Z_p)$ such that $Ac_2 - Ac_1 = \partial Ad$. By (6.4) there is an (n+1)-chain u with support in F such that Ad = Au. The support of $c_2 - c_1 - \partial u$ is a subset of F and $A(c_2 - c_1 - \partial u) = 0$. By (A), K contains the support of $S(c_2 - c_1 - \partial u)$ and $S(c_2 - c_1 - \partial u) \in C_n(K, A, Z_p)$.

$$\begin{split} (S\partial c_2)|K-(S\partial c_1)|K&=(\partial Sc_2)|K-(\partial Sc_1)|K-(\partial S\partial u)|K&=\left(\partial S\left(c_2-c_1-\partial u\right)\right)|K\\ &=\partial\left(\left(S\left(c_2-c_1-\partial u\right)\right)|K\right)\,\epsilon\,B_{n-1}(K,\,A\,,\,Z_{\mathcal{D}}).\ \, \omega_1=\omega_2\,. \end{split}$$

- (D) A routine calculation shows that Δ is a homomorphism.
- (E) If $\zeta \in H_n(X, A, Z_p)$, then $\nu \Delta \zeta = \nu \zeta$.

Adopt the following convention: if z is a cycle, [z] denotes the homology class containing z. Suppose $\zeta \in H_n(X, A, Z_p)$ and let c be an n-chain with support in F such that $Ac \in \zeta$. Since the inclusion map $i: K \to X$ is equivariant, (5.3) justifies the starred equation: $\nu \Delta \zeta = \nu \Delta [Ac] = \nu [(S\partial c)|K] = \nu ((S\partial c)|K] = \nu ((S\partial c)|K] = \nu (S\partial c) = \nu (Ac) = \nu \zeta$.

We now turn to the proof of (7.1b). For each covering λ of (W, X) let X_{λ} denote the nerve of λ and let $F_{\lambda}\{K_{\lambda}\}$ denote the subcomplex of X_{λ} to which a simplex belongs iff the common part of its vertices intersects $F\{K\}$. Let D denote the collection of coverings of (W, X) to which λ belongs iff

$$K_{\lambda} = \bigcap_{j=1}^{p-1} \bigcap_{i=j+1}^{p} (T^{j}F_{\lambda} \cap T^{i}F_{\lambda}) .$$

It can be shown that D is cofinal in the collection of all coverings of (W, X). For each λ in D define

$$\Delta: H_n(X_{\lambda}, A, Z_p) \rightarrow H_{n-1}(K_{\lambda}, A, Z_p)$$

as in (7.1a). Suppose that each of λ and μ is in D, μ refines λ , $\pi\colon X_{\mu}\to X_{\lambda}$ is an equivariant projection and $Ac\in Z_n(X_{\mu},A,Z_p)$, where the support of c is a subset of F_{μ} . Then the support of πc is a subset of F_{λ} and $\pi Ac\in Z_n(X_{\lambda},A,Z_p)$ (see (4.5)). Let π' denote the restriction of π to K_{μ} .

$$\begin{split} \varDelta_{\lambda}\pi_{*}[Ac] &= \varDelta_{\lambda}[\pi Ac] = \varDelta_{\lambda}[A\pi c] = [(S\partial\pi c)|K_{\lambda}] = [(\pi S\partial c)|K_{\lambda}] \\ &= \left[\pi'\big((S\partial c)|K_{\mu}\big)\right] = \pi'_{*}[(S\partial c)|K_{\mu}] = \pi'_{*}\varDelta_{\mu}[Ac] \,. \end{split}$$

Thus $\Delta_{\lambda} \pi_* = \pi'_* \Delta_{\mu}$. It is now clear that

$$\Delta: H_n(X, A, Z_p) \rightarrow H_{n-1}(K, A, Z_p)$$

can be defined thus: if $\zeta \in H_n(X, A, Z_p)$, $\lambda \in D$ and ζ_λ is the member of $H_n(X_\lambda, A, Z_p)$ that is the λ -coordinate of ζ then $\Delta \zeta$ is the member of $H_{n-1}(K, A, Z_p)$ whose μ -coordinate is $\Delta_\lambda \zeta_\lambda$, where $\mu = \{U \cap K \colon U \in \lambda\}$. Suppose $\zeta \in H(X, A, Z_p)$, $\lambda \in D$, ζ_λ is the λ -coordinate of ζ , $Ac \in \zeta_\lambda$ and the support of c is a subset of F_λ . $v\zeta = v\zeta_\lambda = vAc = v(Ac|K_\lambda) = v((S\partial c)|K_\lambda) = v[(S\partial c)|K_\lambda] = v\Delta \zeta_\lambda = v\Delta \zeta_\lambda$.

The statements in (7.2) below will be hypotheses for some definitions and theorems.

(7.2) W is a finite group, p is an integer greater than 1, n is a positive integer and for each i in $\{1, ..., n\}$

 m_i is a positive integer,

 $e_i = pm_i$

W is the internal direct product of a subgroup H_i and a cyclic subgroup W_i of order e_i with generator T_i .

(7.3) DEFINITION. Suppose (7.2) and that (W, X) is an action, not necessarily bicompact Hausdorff. We define sentences $A_i(X)$, $i \in \{0, ..., n\}$ as follows:

 $A_0(X)$. $X \neq \emptyset$.

 $A_i(X)$, $0 < i \le n$. If F is a closed subset of X such that

(a)
$$F = hF, \quad h \in H_i,$$

$$T_i^p F = F,$$

$$(e) \qquad \qquad \bigcup_{i=0}^{p-1} T_i^j F = X,$$

then

$$A_{i-1}\left(\bigcup_{j=1}^{p-1}\bigcup_{k=j+1}^{p}\left(T_{i}^{j}F \cap T_{i}^{k}F\right)\right).$$

(7.4) Suppose (7.2), that (W, X) is anacti on and let $\alpha = (A, S_1, A, ..., S_n, A)$ be the L-system of depth n (n > 0) for (W, X, Z_p) such that $A = \sum_{v \in W} w$ and

$$S_i = \sum_{j=1}^{p-1} j T_i^j \sum_{x=0}^{m_i-1} T_i^{px} \sum_{h \in \mathcal{H}_i} h, \quad i \in \{1, ..., n\}.$$

If (W, X) is a-admissible, then $A_n(X)$.

Proof. Suppose F is a closed subset of X such that f=hF for all h in H_n , $T_n^pF=F$ and $\bigcup_{j=0}^{p-1}T_n^jF=X$. Let K denote $\bigcup_{j=1}^{p-1}\bigcup_{k=j+1}^p(T_n^j\cap T_n^k)$ and let v be a's homomorphism. Since (W,X) is a-admissible, there is a ζ in $H_n(X,A,Z_p)$ such that $v\zeta\neq 0$. By (7.1b), $v\Delta\zeta\neq 0$, where $\Delta\zeta\in H_{n-1}(K,A,Z_p)$. The remainder of the argument is an induction on n. If n=1, $v\Delta\zeta\neq 0\Rightarrow \Delta\zeta\neq 0\Rightarrow K\neq\emptyset\Rightarrow A_1(x)$. Suppose that n>1 and let β denote the L-system (A,S_1,\ldots,S_{n-1},A) of depth n-1 for (W,K,Z_p) . Since $v\Delta\zeta\neq 0$, (W,K) is β -admissible. By the inductive hypothesis $A_{n-1}(K)$. $A_n(X)$.

(7.5) COROLLARY. If n > 0 and (W, T^n) is the action specified in the hypothesis of (6.5), then $A_n(T^n)$.

- (7.6) Suppose that
- (a) p is a prime number,
- (b) u is a positive integer and $e = p^u$,
- (c) m = e/p,
- (d) the group W is the internal direct product of a subgroup H and a cyclic subgroup W' of order e with generator T,
 - (e) (W, X) is an action, not necessarily bicompact Hausdorff,
- (f) f is a continuous function from X into the real numbers such that, if $x \in X$ and $h \in H$, fx = fhx.

Then there is a closed subset F of X such that

- (h) $F = T^p F$,
- (i) F = hF for each h in H,
- $(j) \bigcup_{j=0}^{p-1} T^j F = X,$

(k) if
$$x \in \bigcup_{j=1}^{p-1} \bigcup_{k=j+1}^{p} (T^{j}F \cap T^{k}F)$$
,

then there is an integer a such that $fT^ax = fT^{a+1}x$.

Proof. For each i in the integers Z define B(i,1) to be $\{x: x \in X, fT^ix \leq fT^{i+1}x\}$ and B(i,-1) to be $\{x: x \in X, fT^ix \geq fT^{i+1}x\}$. Notice that

$$\text{(m)}\ \ B(i,-1) \cup B(i,1) = X, \quad \ i \in Z,$$

$$\text{(n)}\ \bigcap_{i=1}^e B(i,-1) = \bigcap_{i=1}^e B(i,1) \subseteq B(j,\delta),\ j \in Z,\ \delta \in \{1,\ -1\},$$

- $({\bf 0})\ \, Tb\,(j\,,\,\delta)=B\,(j\,-1\,,\,\delta),\,\,j\,\,\epsilon\,Z,\,\,\delta\,\,\epsilon\,\,\{-1\,,\,1\},$
- (p) if $h \in H$, $hB(j, \delta) = B(j, \delta)$, $j \in Z$, $\delta \in \{-1, 1\}$.

Let C be the set of functions from the integers Z onto $\{-1,1\}$ such that, if $c \in C$ and $n \in Z$, cn = c(n+e). C has 2^e-2 members. As a consequence of (m) and (n) we have

(q)
$$X = \bigcup_{d \in C} \bigcap_{i=1}^{e} B(i, di)$$
.

Let t denote the function from C into C such that, if $d \in C$,

$$(td)i = d(i+1), \quad i \in Z.$$

If $d_1, d_2 \in C$ write $d_1 \sim d_2$ if there is an integer i such that $d_1 = t^i d_2$. Associated with the equivalence relation \sim is a partition of C into equivalence classes. Let M be a subset of C containing just one member of each equivalence class and let N denote $\bigcup_{i=1}^{m-1} t^{px} M$.

Suppose $d \in C$, $\alpha \in Z$ and $d = t^a d$. Since α is a period of d and e is a period of d, the greatest common divisor (α, e) of α and e is a period of d. (α, e) divides e and is >1. Since $e = p^u$, (α, e) is a power of p. p divides a. Thus, for any d in C and a in C, $d = t^a d$ implies that p divides a. This enables us to show that

(r) $\{t^0N, ..., t^{p-1}N\}$ is a partitioning of C into p disjoint sets. Let β be the function from $\{tN^0, ..., t^{p-1}N\}$ such that, if $i \in \{0, ..., p-1\}$,

$$\beta(t^iN) = \bigcup_{d \in t^iN} \bigcap_{n=1}^{c} B(j, dj).$$

By using (o) above it can be shown that

(s) $TB(t^iN) = \beta t(t^iN)$, $i \in \{0, ..., p-1\}$. Let F denote βN . By (q), (r), and (s),

$$\bigcup_{i=0}^{p-1} T^i F = \bigcup_{i=0}^{p-1} T^i \beta N = \bigcup_{i=0}^{p-1} \beta t^i N = \bigcup_{d \in C} \bigcap_{j=1}^c B\left(j, \, dj\right) = X \; ,$$

which proves (j). Suppose $x \in \bigcup_{i=1}^{p-1} \bigcup_{j=i+1}^{p} (T^i F \cap T^j F)$. There are two integers i and k in $\{0, \dots, p-1\}$ such that

$$\begin{split} x &\in (T^i \beta N) \smallfrown (T^k \beta N) = (\beta t^i N) \smallfrown (\beta^k t N) \\ &= [\bigcup_{d \in \mathcal{U}_N} \bigcap_{j=1}^c B(j,\, dj)] \smallfrown [\bigcup_{c \in \mathcal{D}^k N} \bigcap_{j=1}^c B(j,\, dj)] \,. \end{split}$$

There is a d in T^iN such that $x \in \bigcap_{j=1}^e B(j,dj)$ and there is a c in T^kN such that $x \in \bigcap_{j=1}^e B(j,cj)$. Since t^iN and t^kN are disjoint, $c \neq d$. There is an a in $\{1,\ldots,e\}$ such that $da \neq ca$, in fact da = -ca. $x \in B(a,da) \cap B(a,ca) = B(a,-1) \cap B(a,1)$. Hence $fT^nx \leq fT^{n+1}x$ and $fT^nx \geq f^{n+1}Tx$, which proves (k); (h) and (i) follow from the definition of F and from (p).

(7.7) DEFINITION. Suppose (7.2) and that (W, X) is an action, not necessarily bicompact Hausdorff. We define sentences $Q_k(X)$, $k \in \{1, ..., n\}$, as follows:

 $Q_k(X)$. If each of f_1, \ldots, f_k is a continuous function from X into the real numbers and

$$f_j T_i x = f_j x, \quad x \in X, \ i \in \{1, ..., n\}, \ j \in \{1, ..., k\},$$

then there is an x^* in X such that $f_i x^* = f_i T_i x^*$ for $i \in \{1, ..., k\}$.

(7.8) Suppose (7.2), p is prime, u_i is a positive integer and $e_i = p^{u_i}$, $i \in \{1, ..., n\}$, and (W, X) is an action, not necessarily bicompact Hausdorff. For each i in $\{1, ..., n\}$, $A_i(X)$ implies $Q_i(X)$.

Proof. Induction on *i*. Suppose i=1. By (7.6) there is a closed subset F of X such that $F=T_1^pF$, F=hF for each h in H_1 , $\bigcup_{j=0}^{p-1}T_1^jF=X$ and if $x \in K=\bigcup_{j=1}^{p-1}\bigcup_{k=j+1}^p(T_1^jF\cap T_1^kF)$ then there is an integer a such that $f_1T_1^ax=f_1T_1^{a+1}x$. Since $A_1(X)$, $K\neq\emptyset$. Let x be a point of K, let a be an integer such that f_1T $x^a=f_1T_1^{a+1}x$ and let x^* be T^ax .

Suppose $1 < i \le n$. By (7.6) there is a closed subset F of X such that $F = T_i^p F$, F = h F for each h in H_i , $\bigcup_{j=0}^{p-1} T_i^j F = X$ and if $x \in K$ = $\bigcup_{j=1}^{p-1} \bigcup_{k=j+1}^{p} (T_i^j F \cap T_i^k F)$ then there is an integer a such that $f_i T_i^a x = f_i T_i^{a+1} x$. Since $A_i(X)$, $A_{i-1}(K)$ and, by the inductive hypothesis, $Q_{i-1}(K)$. Let x' be a point of K such that $f_i x' = f_j T_j x'$ for $j \in \{1, ..., i-1\}$. By (7.6) there is an integer a such that $f_i T_i^a x' = f_i T_i^{a+1} x'$. Let x^* denote $T_i^a x'$.

From (7.5) and (7.8) we have our principal theorem:

(7.9) Suppose that n is a positive integer, p is a prime and, for each is in $\{1, ..., n\}$, u_i is a positive integer and k_i is a positive integer not divisible by p. Let T_i , $i \in \{1, ..., n\}$, denote the function from T^n into T^n such that

$$T_i(x_1, \ldots, x_n) = (x_1, \ldots, x_{i-1}, x_i + (k_i/p^{u^i}), x_{i+1}, \ldots, x_n).$$

If each of f_1, \ldots, f_n is a continuous function from T^n into the real numbers and

$$f_i T_i x = f_i x$$
, $x \in T^n$, $i, j \in \{1, ..., n\}$, $j \neq i$,

then there is an x^* in T^n such that $f_ix^* = f_i T_ix^*$ for i in $\{1, ..., n\}$.

Remark. Taking p=2 and $u_1=\ldots=u_n=1$ yields Schmidt's Satz 1 ([4], p. 86).

References

 K. Borsuk, Drei Sätze über die n-dimensionale euklidische Sphäre, Fund. Math. 20 (1933), pp. 177-190.

[2] S. Eilenberg and N. Steenrod, Foundations of algebraic topology, Princeton Math. Series, No. 15, Princeton, N. J. 1952.

[3] S. Lefschetz, Algebraic topology, Amer. Math. Soc. Coll. Public., Vol. 27, New York City, 1942.

[4] W. Schmidt, Stetige Funktionen auf dem Torus, J. reine angew. Math. 207 (1961), pp. 86-95.

[5] P. A. Smith, Fixed points of periodic transformations; Algebraic topology, Amer. Math. Soc. Coll. Publ., Vol. 27, Appendix B, New York City, 1942.

[6] C. T. Yang, On theorems of Borsuk-Ulam, Kakutani-Yamabe-Yujobo and Dyson I, Ann. of Math. 60 (1954), pp. 262-282.

[7] — On theorems of Borsuk-Ulam, Kakutani-Yamabe-Yujobo and Dyson II, ibidem 62 (1955), pp. 271-283.

[8] — Continuous functions from spheres to euclidean spaces, ibidem 62 (1955), pp. 284-292.

Reçu par la Rédaction le 4.6.1964