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On open mappings and certain spaces
satisfying the first countability axiom
by
R. W. Heath (Tempe, Arizona)

A, H. Stone [16] showed that a regular space F is metrizable and
locally separable if E is the image of a locally separable metric space
under an open mapping f such that, for each p ¢ B, Y (p) is separable.
In [5], S. Hanai showed that a 7'-space satisfies the first countability
axiom if and only if it is the open continuous image of a metric space.
Similar or related theorems are to be found in [2], [3], [6], [7], [8], [14],
and [15]. In particular, A. Arhangel’skil [3] showed that a T)-space
Y has a uniform basis (see [1] or [2]) if and only if there is an open
mapping f from some metric space onto Y such that, for each p¢ Y,
F(p) is a bicompactum. Note that, by Theorem 4 of [11], a space ¥
has a uniform basis if and only if it is a pointwise paracompact deve-
lopable space.

In this paper necessary and sufficient conditions are given for the
open continuous image of a metric space to be (1) a semimetric space,
(2) a developable space, (3) » Nagata space or (4) metrizable. Besides
characterizing these four main classes of spaces which satisfy the first
countability axiom, the four theorems point out a surprising relation
that exists among those classes of spaces. Also a characterization of
Nagata spaces similar to that for semi-metric, developable and metric
spaces in [9] is given. :

Terms not defined are used as in [17] or [2]. A mapping will be
a continunous function. If X is a metric space, a e X and ¢ > 0, S(a, ¢)
will denote the open ball, {m: |r—a| < e}, of radius ¢ with center a.

DermniTioN 1. Let f be a mapping from the metric space X onto
the topological space Y. Then f is a P-mapping provided that, for every
peY and every open set R confaining p, there is an ¢ > 0 such that
f[S(]_l[p],e)]CR (i.e., { is uniformly continuous on f'(p)); and f is
a C-mapping provided that, for every compact subset K of ¥ and
every open set B, RDOK, there is an ¢>>0 such that F[8(F K], &)] CR.
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DrriNiTIoN 2. A topological space Y is developable provided that
there is a sequence Gy, Gy, G, ... of open coverings of ¥ such that (1)
for each ¢, @; D @;;1 and (2) for any open set R containing any point p
of ¥ there is an n such that p ¢ g e G, implies g C R.

Note that a developable Ts-space is a Moore space (satisfies Axiom L
of [13]). From Theorem 1 below one sees which part of the conclusion
in Theorem 1 of [3] still holds when one removes the pointwise para-
compactness (implicit in a uniform basis) from the hypothesis.

THEOREM 1. A necessary and sufficient condition that a T,-space ¥
be developable is that there emist an open P-mapping { from some metrig
space X onto Y.

Proof. The condition is necessary. For suppose that Gy, Gy, Gy, ..
is a development for Y. For each n let A, be a discrete topological space
such that there is a one-to-one function g, from A, onto @,. Let X then

be that subspace of the product space [] A, consisting of all points
n=1
& = B L, ... such that, for pe ¥, ﬂlgn(wn) = {p}, and for each ze X,

let f{z) = 1@1 gn(@n). Then X is a 0-dimensional metrie space with a met-

rie @ defined as follows: if @,y « X and n is the smallest natural num-
ber £ such that @ % yz then d(w, y) = 1/n. It is easily seen that f iy an
open mapping of X onto ¥ (or see the proof of Theorem 1 in [5], noting
that, for xe X, {gu(n): n =1, 2,..} is an open neighbourhood basis
for f(z)). Also fis a P-mapping. For suppose that pe S and R is an
open set containing p. By definition of development, there is a natural
number # such that if ¢ G, and p ¢k then h C R. But if z,yeX, f(z)
=p, and d(z, y) < 1/n, then #; = y; for i < n, so that P € gnTn) = gu(Yn)

and {f(y)} =Q1g(yn)CR. Thus f[8( '[p], 1n)]CR. Tt follows then
that 7 is a P-mapping.
Conversely, suppose that f is an open P-mapping from the metric
space X onto the topological space Y. For each natural number n, let
n={f[8(z, 1fm)]: 2 X, m = n, n+1,..}. Then @, @, ... iy a de-
stlopmen!:. For suppose that p is a point of the open subset R of Y.
Smceﬂl fis a P-mapping, there is a natural number #» such that
186G ), 1/n)1]CR‘ Note that, if m>2n and P € f[8(», 1/m)], then
S(@,1/m) ~ {7 (p) # @ so that S(w 1/m) C 8(f™"
[p],1/n), and hence
f[8(w, 1/m)] C R. Thus, if PeheGy, ,then heR. s
The condition therefore is sufficient,

Note that Theorem 9 of [3] is an immediate corollary of the next
theorem. (but apparently not conversely).
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THEOREM 2. A (necessary and) sufficient condition that a T,-space ¥
be metrizable is that there exist a metric space X and an open C-mapping
from X onto ¥. i

Proof. The condition is sufficient. For suppose that f is an open
C-mapping from the metric space X onto the T,-space ¥. For each
natural number %, let G = {f/[S(®, 1/m)]: e X, m = n, n+1, ...}. Since
f is a C-mapping, then, for any two nonintersecting closed subsets H
and K of Y one of which is compact, there is an # such that no member
of @, intersects both H and K. Therefore, by a theorem of F. B. Jones
[12], Y is metrizable.

A topological space Y is a semi-metric space provided that there
is a distance function 4 defined on Y such that, for x,y e Y, (1) d(z, y)
= d(y, x), (2) d(z,y) > 0 and d(z, y) = 0 only in case z = y, and (3) the
topology of Y is invariant with respect to d.

The following theorem from [9] is useful in Theorem 4.

TeEEOREM 3. The topological space Y is semi-metric if and only if
there exists a collection of open sets, {gu(z): ve ¥, n = 1,2, ..}, such that
(1) for each e X, {galx): n =1, 2, ..} 15 a local neighborhood base for =
and (2) if yeX¥Y and x 48 a point sequence in Y such that, for each m,
Y € gm(®m), then = converges o y.

By Theorem 4, for the image of a metric space X under an open
mapping f to be semi-metric it is necessary only that f be a P-mapping
relative to a certain subset of X.

TaEOREM 4. A T,-space Y is semi-meiric if and only if there exist
an open mapping [ from some metric space X onto Y and a subset X'
of X such that (1) f(X’) =Y and (2) if pe ¥ and R is a neighborhood,
of p, then, jor some &> 0, f[8(7 '[p], &) » X'| CR.

Proof. The condition is neecessary. For suppose that ¥ is a semi-
metric space and {gn(®): 2 Y, n =1, 2, ...} is an open basis satisfying
the conditions in Theorem 3. For each n let A, be the discrete topo-
logical space whose points are the points of ¥; let X be the subspace

o0
of [] A, consisting of all points @ = @@, ... such that, for some peX,
n=1

{gnlwn): »=1,2,..} i8 a local base for p; and for each xe X let f(#)
= (") gn(#x). That X is metric and f is an open mapping from X onto ¥
=1

aggin follows as in the proof of Theorem 1 in [5]. Also, if X’ consists
of all points # of X such that 2, = #, = 23 = ..., then it is easily seen
that X’ satisfies (1) and (2).

Conversely, suppose that there is an open mapping f from some
metric space X onto the T,-space ¥ and that there is a subset X’ of X
satisfying (1) and (2). Then, for each p ¢ ¥, let # be a point of X’ such
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that f(z) = p and let gu(p) = f[S(z,1/n)] for n=1,2,.. It is eagily
seen that {gu(p): pe ¥, n=1,2,..} satisfies the conditions of Theo-
rem 3, so that ¥ is a semi-metric space.

DeriNrrioN 3. A Nagata space X is a T,-space such that, for each
z e X, there exist sequences of neighborhoods of @, {Un(x): n =1, 2,..)
and {Sp(w): n =1, 2, ...} such that (1) for each ¢ X, {Un(w): n =1, 2, o}
is a local base for @, (2) for all z,y € X, Sa(2) ~ Suly) # O implies that
e Un(y).

Remark. A Nagata space is a paracompact semi-metric space [4],
but it is not known whether the converse is true. By Theorem 3.1 of [4],
a T,-space is a Nagata space if and only if it is first countable and hag
2 ¢-cushioned pair-base (defined below).

DEFINITION 4. A pair-base P for a space X is a collection of ordered
pairs of subsets of X such that (1) for every (p,, p,) ¢ P, p, is open and
1. Cp, and (2) for every z¢ X and every neighborhood U of o, there
exists a (p,, p,) € P such that « e p, Cp, C U. Also P is called cushioned if,
for every subeollection P’ of P, CL(LJ {py: (ps, 2s) € P'}) Cl {py: (P1,D,) € P}
(C1= closure); and P is o-cushioned if it is the union of countably
many cushioned subcollections.

A characterization of Nagata spaces which is somewhat simpler
and is useful in Theorem 6 is given by the next theorem.

THEOREM 5. The T-space Y is o Nagata space if and only if there
exists a collection {fa(x): xe ¥, n=1,2,..} of open sets such that, for
cach me ¥, (1) {ga(m): 0= 1,2, ..} 15 a local Dase for @ and (2) for every
neighborhood R of © there is a natural number n such that () N guly) = O
implies that y e R.

Proof. If Y is a Nagata space, such a collection is obtained as
follows: for each # Y, let ga(x) be the interior of 8u(w) for n=1,2, ..
(see Definition 3).

Conversely, suppose that there exists such a collection {gn(z): v e ¥,
"= 1,2,..} of open subsets of the 7.-space Y. It will be shown that
Y has a o-cushioned pair-base. For each natural number m and each
% > m, let M(m,n) be the set of all points © of ¥ such that if gu(@) A

N gy} #* O then y e gm(w). Clearly, for each m and # and each subset
M'(m,n) of M(m,n),

CL{U {gn(®): e M'(m, )} C U {gm(e): ¢ M'(m,n)}.

Thus {(gn(=), !]m(w'))t weMim,n), m,n=1,2, ...} is a o-cushioned pZLir-
base for ¥ and since Y ig also first countable, it is a Nagata space (see
above remark).

By Theorem 6, together with Theorems 1, 2 and 4, Nagata spaces
would to be related. to semi-metric spaces in the same way as metrie
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spaces are to developable spaces. This suggests, for example, that, since
a paracompact developable space is metrizable, a paracompact semi-
metric space should be a Nagata space.

THEOREM 6. A T,-space Y is a Nagata space if and only if there
is an open mapping f from some metric space X onto Y and a subset X'
of X such that (1) {(X') = Y and (2) for every compact subset K of ¥ and
every neighborhood R of K, there is an & > 0 such that {[S(f/(EK), &) ~
nX '] CR.

Proof. Suppose that ¥ is a Nagata space. Let {gu(x): 2¢ X,
n=1,2,..} be a basis for ¥ satisfying (1) and (2) of Theorem 5. For
each =, let A, be the discrete topological space whose points are the

points of ¥; let X be the subspace of ] A, consisting of all points

=1
& = BT ... Such that, for some p e ¥, {ga(wn): n =1,2, ..} is a local

base for p; for each z¢ X, let f(x) = ﬁ gn(a); and, let X' consist of
n=1

all points # of X such that o, = #, = a3 = ... Clearly f is an open mapping
from X onto Y (see proof of Theorem 1 in [5]) and X' satisfies condi-
tion (1). Suppose that X’ does not satisfy (2). Then there is a compact
subset A of ¥, a neighborhood R of K, and point sequences « and ¥
such that, for every natural number 5, @, € X', [(yn) € K, d(2n, yu) <1/n
(the metric d is defined in the proof of Theorem 1), but f(x,) ¢ B. Note
that, for each n, d(¥n,ys) < 1/n and z, ¢ X' imply that f(ya) € gu(f(@n)).
Since K is compact, the sequence f(v,), f(¥.),... has a cluster point 2
in K, and, further, it may be assumed without loss of generality that
f(yn) € gu(2) for each n. Thus g,,(f(m,,)) ~ gu(2) 7= O for each n, so that
by Theorem 5 there is an n such that f(xz,) € B contrary to assumption.
Thus X’ satisfies (2).

Conversely suppose that there exist such an open mapping f from
a metric space X onto the 7,-space ¥ and such a subset X' of X. For
each n and each ye¥, let zef (y) n X' and let gu(y) = F[8(x, 1/n)].
Clearly {ga(y): y e Y, n=1,2, ..} satisfies condition (1) of Theorem 5.
Suppose that it does not satisfy (2). Then there is a point % € ¥, a neigh-
borhood R of y, and a point sequence x in ¥ such that, for each =,
Tn ¢ B but gu(@s) ~ galy) 7= 9. I, for each n, 2, € gn(2n) ~ gnly), then, for
some natural number N, K = {y} v {z,: n >N} is a compact set of
which R is a neighborhood. Then, by the hypothesis on f and X and
the definition of gu(2,), there is a natural number M such that, for
%> M, x, e R contrary to assumption. Hence, by Theorem 5, ¥ is
a Nagata space. '

It is hoped that the above theorems might be wuseful for, among
other things, determining whether a normal Moore space iz metrizable
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and whether a paracompact semi-metric space is a Nagata space. Ap
answer to the following guestion should help considerably to solve thoge
problems.

QUESTION. What s a necessary condition on an open mapping f from
a metric space onto a Ty-space Y for ¥ 1o be normal (or Dparacompact)?
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A closure and complement result for nested topologies

by
J. Hintikka (Helsinki)

It iy well known that from a given set one can in a topological space
construet at most 14 different sets by repeatedly using the operations
of complementation and closure. The main purpose of this note is to
establish a similar result for any finite number of nested topologies.
Given any finite sequence of topologies each member of which is finer
than its predecessor, from a fixed set ome can construet only a finite
number of different sets by repeatedly using the operations of comple-
mentation and of closure with respect to any topology of the sequence.
It will be shown how this number is determined, and an upper bound
will be given to it.

This will be accomplished by means of methods developed in modal
logic. It is well known that the system of modal logic which is called S4
is interpretable as the closure algebra: If M and N are understood as
the closure and the interior operator, respectively, and if ~, &, and v
are understood in their usual Boolean sense, then a function formed
by their means from set variables is identically the whole space in all
topological spaces if and only if the same function is provable in S4
when the variables are interpreted as propositional variables, when ~,
&, and v have their normal propositional senses, and when M and N
are interpreted as the symbols for possibility and necessity, respecti-
vely (1). This connection is extended to the case of a finite sequence
of finer and finer topologies by considering a sequence of modal oper-
ators My, Ny, My, Ny, ..., My_;, Ny—; where each pair My, N; (1=0,1,
-y —1) is subjeet to the laws of 84 and where we have as an additional
assumption the axiom schema

(1) Mif O M. f
for each i =1,...,n—1 (or, equivalently,
(2) Niaf D Nif

for each §=1,...,n—1), where f is an arbitrary formula.

() For a lucid summary of many interesting results concerning the relation of
modal logies to topology, see H. Rasiowa [6].
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