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and whether a paracompact semi-metric space is a Nagata space. Ap
answer to the following guestion should help considerably to solve thoge
problems.

QUESTION. What s a necessary condition on an open mapping f from
a metric space onto a Ty-space Y for ¥ 1o be normal (or Dparacompact)?
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A closure and complement result for nested topologies

by
J. Hintikka (Helsinki)

It iy well known that from a given set one can in a topological space
construet at most 14 different sets by repeatedly using the operations
of complementation and closure. The main purpose of this note is to
establish a similar result for any finite number of nested topologies.
Given any finite sequence of topologies each member of which is finer
than its predecessor, from a fixed set ome can construet only a finite
number of different sets by repeatedly using the operations of comple-
mentation and of closure with respect to any topology of the sequence.
It will be shown how this number is determined, and an upper bound
will be given to it.

This will be accomplished by means of methods developed in modal
logic. It is well known that the system of modal logic which is called S4
is interpretable as the closure algebra: If M and N are understood as
the closure and the interior operator, respectively, and if ~, &, and v
are understood in their usual Boolean sense, then a function formed
by their means from set variables is identically the whole space in all
topological spaces if and only if the same function is provable in S4
when the variables are interpreted as propositional variables, when ~,
&, and v have their normal propositional senses, and when M and N
are interpreted as the symbols for possibility and necessity, respecti-
vely (1). This connection is extended to the case of a finite sequence
of finer and finer topologies by considering a sequence of modal oper-
ators My, Ny, My, Ny, ..., My_;, Ny—; where each pair My, N; (1=0,1,
-y —1) is subjeet to the laws of 84 and where we have as an additional
assumption the axiom schema

(1) Mif O M. f
for each i =1,...,n—1 (or, equivalently,
(2) Niaf D Nif

for each §=1,...,n—1), where f is an arbitrary formula.

() For a lucid summary of many interesting results concerning the relation of
modal logies to topology, see H. Rasiowa [6].
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A simple semantical method of dealing with such modal logics ag §¢
has been outlined by the author (3). (This method is easily seen to he
equivalent with certain methods of Kripke’s (%).) A formula is provable
in the usual systems of S4 if and only if it is valid in this semantica}
approach (4). A formula is valid if and only if its unit set is not satis-
fiable. A set of formulae is satisfiable if and only if it is a part of
a member of some model system. A model system Q is a set of model sets
on which a transitive dyadic relation, called the relation of alternativeness,
is defined. This transititive relation must satisfy the following conditions
{f an arbitrary formula):

(CM*) If Mfepe, then there is in Q at least one alternative » to y
such that fer.

(CN*) If NfepeQ and if v eQ is an alternative to u, then fey.

A model set may be defined for our present purposes as a set of
formulae u satisfying the following conditions (f and g arbitrary formulae):

(C.~) TIf feu, then not ~fep.

(C.&) If (f&g) ep, then feu and ¢ eu.

(C.v) TE(fvg)eu, then fep or gepu (or both).
(CXN) I Nfepu, then feu.

No further conditions are here imposed on model sets or model systems.
If quantifiers are present, similar conditions are formulated for them.
It has been assumed that all our formulae are in the negational normal
form, ie. that all their negation-signs have been pughed as deep into
the formulae as they go until they all stand in front of propositional
variables.

From these conditions (with the exception of (C.~)) one can obtain
tules for constructing better and better approximations towards a model
system by starting from a given set A whose satisfiability we are inves-
tigating. These rules will be called (A.M*), (AN*), ..., (A.N), respectively,
and their formulation is left to the reader. Tf all the ways of trying to
build a model system which would show that 4 is satisfiable lead to
a violation of (C.~) after a finite number of steps, then 4 is not satis-
fiable. The construction which gave rise to this conclusion may be con-
sidered as a disproof of 1. Conversely, it may be shown that if 2 is not

(*) See my papers [1], [2].
() See 8. A. Kripke [3], [4], [5].
_ () This follows from Kripke's completeness results together with the obvious
equivalence of his semantical conditions with mine.

©
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satisfiable, it may be disproved in this way. This is a kind of complete-
ness result for our system of rules ().

Every disproof of the kind just mentioned may also be considered
as a reductio ad absurdum proof which starts from the assumption that
there exists a member u of a model system 2 which includes A. Tt is seen
at once from our rules that they have the following subformula property:
Each formula introduced by them is & subformula (a proper subformula)
of an earlier formula.

We can deal with the case in which we have a finite sequence of
modal operators M,, Ny, M, Ny, ..., My_1, No—y for which (1) holds as
follows: Instead of one alternativeness relation, we now use n different
alternativeness relations, called 0-alternativeness, 1-alternativeness, ete.
We assume that each (i+41)-alternative to a set is always also an i-alter-
native to it (i = 0,1, ..., n—2). Furthermore, we relativize the condi-
tions (C.M*) and (C.N+) (as well as the corresponding rules) as follows
(1=0,1,..,n—1):

(C.M*) If M.fepef, then there is in Q at least one i-alternative »
to p such that fe».

(CN+) If Nifeue® and if veQ is an i-alternative to u, then fe».

The condition (C.N) holds for each subscript of N.

This is our apparatus, of which only a small part will be needed in
what follows. By means of it, the problem we are investigating may be
formulated very simply. The question is: How many irreducible for-
mulae can we form from a given propositional variable p by the sole
means of the operations ~, M;, and N; (i=0,1,..,2—1)? By an
irreducible formula we here mean a formula which is not provably equiv-
alent to a formula of the same or a smaller number of operators. Be-
cause of the connection between M and N it suffices to ask: How many
irreducible formulae can we form from p and ~p by means of the oper-
rations M; and N;? Let us call this desired number K = K (n).

First of all, we can reduce this question to the question concerning
p only. In order to see this, let « be an arbitrary string of the operators
M;, N;, and let o be the result of interchanging the letters M and N
in a. (This notation will be used consistently in the sequel.) In order
to prove the equivalence of ap and f~p (where B is another sequence
of the operators My, Ny} we would have to show that ap and fp are not
satisfiable together. However, this cannot be shown by means of our
rules. Neither of the formulae in question contains a negation-sign, and

(*) This follows from Kripke’s results concerning the equivalence of semantical
tableaux to models, together with the obvious connection between our rules and
Kripke’s rules for his tableaux.
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from the subformula property of our rules it therefore follows that they
cannot give rise to a violation of (C.~). From the completeness result
it follows that ap and fp are satistiable together.

There are obviously just as many irreducible formulae of the form
ap as there ave irreducible formulae of the form a~p.

Our first main observation is the following:

Formulae of the form

(3) ;Vi.Njf = Nif or l\TiNjf = N,f

are valid according to whether j > 1 or i > 7§, respectively.

Proof (a). Assume that j>4. In order to show that the first equiv-
alence (3) is valid we have to show that the two implications N;N;f
D Nif and Ny D N;N;f are valid. (i) In order to show the first of the
two we have to try to imbed the formulae N;N;f and M;~f into one
and the same member x of a model system Q. The attempt may proceed
as follows:

(311) Ny Njfeuel }

counter-assumption,
(3.12) Mi~fep

(3.13) ~few from (3.12) by (A.M*); here » is an 4-alter-
native to p in Q,

(3.14) Nifew from (3.11) by (A.N+),

(3.15) fer from (3.14) by (A.N).

Here (3.14) and (3.15) violate (C.~), showing the desired validity.

(ii) In order to prove the validity of the converse implication we
have to try to see whether there is a model system 2 and a model set
such that
(3.21) Nifepe
(3.22) MiMy~fep

The attempt may proceed as follows:

} counter-assumption,

(3.23) Mi~fev from (3.22) by (A.M*); here » ¢ 2 is an i-al-

ternative to u.

(3.24) ~fexm from (3.23) by (A.M*); here w e is a §-al
ternative to »; hence (because j>14) an
i-alternative to », hence (because of transit-
ivity) an ¢-alternative to u.

(3.25) fexm from (3.21) by (A.N+).

Here (3.24) and (3.25) violate (C.~), showing the desired validity.
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(b) The validity of the second equivalence of (3) is proved (from
the appropriate assumptions) in a closely similar fashion.
By duality we have the following analogous result: Formulae of
the form

(4) MM;f = M;f or M{Mjf = M;f

are valid according to whether j >4 or ¢4, respectively.

Equivalences (3) and (4) show us that there is no need to consider
strings which contain two adjacent N's or two adjacent M’s. If they do,
a formula containing the string in question is provably equivalent to
a shorter formula, and hence does not add to the number of irreducible
formulae of the form we are considering.

Hence it suffices to consider, in addition to p, formulae which are
either of the form

(5) o M Ny My, Ny, My
or of the form
(6) wee Nog My, Noy My, N, ~p .

Now a formula of form (5) cannot be provably equivalent to one of
form (6)¢ For in order to show their equivalence one would have to show
that a pair of formulae of form

(7) {adMap, BMy~p}

is not.satisfiable. By examining our rules onme can see, however, that
this cannot be accomplished by their means. Consider, for the purpose,
the set » which is supposed to violate (C.~). The violating pair of for-
mulae must obviously be {p, ~p}. Here p can have been imported to »
only by means of an application of (A.M*); and the same applies to ~p.
However, they cannot both have been imported to » by (A.M*). Hence
a disproof of (7) by means of our rules is imp ossible, and by complete-
ness (7) is therefore satisfiable.

Hence it suffices to consider formulae of form (5) only. If the num-
ber of non-equivalent formulae of this form is k, the total number K
we are looking for is K = 2. (1+2Fk).

‘What conditions must the indices of (5) satisfy in order for (5) to
be irreducible? An answer to this question is obtained from the follovw-
ing result:

Formulae of the form
(8) NbMa+1‘Nb+jMa,f =NoM.f

are valid for arbitrary 'mdiaes'a, b, and for all >0, j >0.
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Proof. In order to show that equivalence (8) is va]i.d, we have to
show that the corresponding pair of implications are valid.

(a) In order to show this for the implication from the left to the
right, we may start from the following counter-assumption (£ a model
system):
(8.11)
(8.12)

Nbﬂ[a+iNb+jMaf (/] E.Q .
MyNo~feu.

The argument may proceed as follows:

(8.13) Na~fev from (8.12) by (AM*); »e &2 is a b-alter-
native to u.

(8.14) My i Ny jM,fev from (8.11) by (AN+¥).

(8.15) NoyjMofem from (8.14) by (AM*); we is an (a4-i)-
alternative to »; hence an a-alternative to ».

(8.16) Mifen from (8.15) by (A.N).

8.17) fee from (8.16) by (A.M*); pe is an a-alter-
native to m; hence (by transitivity) an
a-alternative to ».

(8.18) ~fep from (8.13) by (AN+).

Here (8.17) and (8.18) violate (C.~), proving the validity of the im-
plication.

(b) The wvalidity of the converse implication may be shown as
follows:

(8.21) NoMafeuef .
counter-assumption,
(8.22) MypNyp; My ;No~fep
(8.23) NgriMpi;No~few from (8.22) by (A.M*); ve 2 is a b-alter-
native to u.
(8.24) Mp;No~fev from (8.23) by (A.N).
(8.25) No~fen from (8.24) by (AM*); weQ is a (b-+§)-
alternative to »; hence a b-alternative to »;
hence (by transitivity) a b-alternative to u.
(8.26) Mifen from (8.21) by (A.N+).

Here (8.25) and (8.26) violate (C.~).
By duality, formulae of the form

MyNoyiMyy; Nof = My Nof

s

9

are valid whenever ¢ >0, § > 0.
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Hence in order for (5) to be irreducible its indices must satisfy the
following conditions:

either a;>a, or b,>b;

either b, >b, or a;>a,;

(10)

either a,>ay; or by>b,.

Here all the inequalities must be strict. Clearly, if at any line we choose
the second of the alternatives in (10), we must at all the subsequent
lines also choose the second alternative. Hence the general form of the
conditions which the indices of (3) must satisfy may be written in one
of the following forms (in both cases with a suitable #):

(11) (a) @y > Gy > A3 > o0 > Qg Uiz < Bz < Qirg < ...
by > by > by > ... > by; by <biy < bia< ...

(b) Q> Ay > g > . > a4 G < Wiy < Qo < ...

by >by>b3> o> b1y by < by < bige < ...

Sinee the indices can only assume a finite number of values 0,1, ...,
..., n—1, the longest irreducible formula of form (5) is clearly obtained
by making the two sequences of (11) as long as possible. It is easily seen
that this is obtained by choosing the alternative (a) and by putting

i =n—1. The longest irreducible formula is thus the following:

(12)  MpsNns My s Np o ... M, N, M, N, M, N, M, N, M, ...
e Npea My s N s M ap .

The number of operators it contains is (4n—1). As an upper bound for %
we therefore obtain k< (n+n2+-... +n41) = (if 5> 1) (n"—~1)/(n—1) and
as an upper bound to K therefore K < 2(1+2(n*—n)/(n—1)). This
upper bound is obviously much too large in all cases # > 1. For n =1,
we obtain as the upper bound 14, which is known to be the exact
number in question. .

On the topological interpretation (12) is the most complicated set
which can be formed from p by using repeatedly the closure and interior
operations with respect to any of the n nested topologies and which
does not identically reduce to a simpler set of the same kind.

The number k= k(n) does not appear to obey any very. simple
law as a function of n. An interesting further fact concerning this
number can easily be established, however. It is the fact that among
all the different formulae of form (5) satisfying (10) there are no pro-
vably equivalent ones. Requirements (10) constitute, in short, not only
@ necessary but also a sufficient condition for (5) to be irreducible.
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In order to show this, consider first a pair of formulae of form (5)
say () itself and ’

(13) N Mo Na M p .

In order to prove the equivalence of (5) with (13) we would have
to demonstrate that (5) is not satisfiable together with the followine
formula: °

(14) . Iﬂ-dz-chﬂIdlZ\T“l ~P-

What would such a demonstration (by means of our rules) look like?
The following schematic outline shows how the last few stages of the
argument must run:

Hit1 i Ha Ho
> Moy Npy oo D € i > Mo D e iy — D e g
_>Md12\TL‘1 ~P € pip1—> N01Np € [ ~D € U,
(dy-alt. (d, - alt. (g - alt. (@, -alt.
to pisa) t0 pit1) 10 pe) B0 4.

Most of this outline is self-explanatory. In order to be able to infer
~pew from Ny~pepy; we must have ¢ <ay, 6 <day,y ..y 0 < a@
In general, (5) implies (13) if and only if there are integers 1, 7, k

such that the following conditions are satisfied:

(15) (a) Oy 22 Cpy (g 22 Cy veey Qg 2201
(b) A2 biy Ay 2 bi,y .0, dyj =0y
(e) Qg1 2= Cjrty (i 22 Cigty ooy Qjrg = Cjr1;

Conversely, (5) is implied by (13) if and only if there are integers
@, Y, 2, ... such that the analogous conditions are satisfied. These anal-
ogous conditions will be called (16).

In addition, we know that the indices of (3) satisfy our condi-
tions (10). The indices of (13) must satisfy analogous conditions which
will be referred to as conditions (17).

Can conditions (10), (15)-(17) be all satisfied together? In order
to find the answer, let us first assume that ¢ > 1, # > 1. Then by the
first conditions of (15) (a) and of (16) (a) we have a, = ¢,. By the second
inequality of (15)(a) we have a, > a,; hence in (10) the second alter-
native is always satisfied. Thus by (15) (b) and (1 0) @& > by >b,. But
by symmetry we also have b, > d, > d;, which yields & contradiction.

Agsume, then, that 4>1, # = 1. Then we have as before a, = ¢,

dy > by >b;. By (16) (b) we have b;> dr = d,, which contradicts the
inequality just obtained.
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Thus there only remains the possibility that 4= 2= 1. Then by
(13) (b) and (16) (b) b, = d;. By repeatedly using the same argument
we can show that 1 =j=k=..=2=¥ =1, ap =20, b =14,
(r=1,2,..). But this means that (5) and (13) are identical, which was
to be proved. This is the only case in which their equivalence can be
proved by our rules, and by the completeness of these rules it is the
only case in which (5) and (13) are provably equivalent.

Although we have not found any simple expression which would
yield the number of the different irreducible formulae of form (5), we
have found sufficient and necessary conditions for such formulae to be
irreducible.

Tt is of some interest to see what our results amount to when n = 2.
The only possible values of the indices of (3) are then 0 and 1. We ob-
tain a convenient shorthand way referring to a formula of form (5) by
thinking of the string of its indices as a dyadic number. The formula
(4,7) will then be that formula (5) which has ¢ operators the string of
whose subscripts constitutes the dyadie number j. Then by our con-
ditions the irreducible formulae of form (5) trivially include the formulae
(1,0-(1,1), (2,0)-(2,3), (3,0)-(3,7). Of the formulae with four operators
the following are irreducible: (4,1), (4,3), (£,8), (4,9), (4,11), (4,12), (4,13);
while the following equivalences are valid (4,0) = (4,2) = (4,4) = (4,6)
= (2,0); (4,5) = (4,7) = (2,1); (4,10) = (4,14) = (2,2); (4,15) = (2,3). Of the
formulae with five operators the following are irreducible: (3,3), (5,17),
(5,19), (5,24), (5,23), (5,27); while of those which do not already reduce
because of their last four operators we can say the following: (4,1) gives
rise to (5,1) = (3,1) and (5,17); (4,3) gives rise to (5,3) and (5,19); (4,8)

=g =

gives rise to (5,8) = (3,0) and (5,24); (4,9) gives rise to (5,9) = (3,1)
d (5,25); (4,11) gives rise to (5,11) = (3,3) and (5,27); (4,12) gives
rise to (5,12) = (3 0) and (5,28) = (3,4); (4,13) gives rise to (5,13) = (3,1)

and (5,29) = (3,5). Of the formulae with six operators the only irre-
ducible ones are (6,35), (6,49), and (6,51) which arise from (5,3), (5,17),
and (5,19), respectively. As implied by our results, there is only one
jrreducible formula (5) with seven operators; it is (7,99) or

M, N, M, N M N, My p .

Tt avises from (6,35). No irreducible formulae (3) exist with more than
seven operators.

All told, we therefore have k(2)= (2-+-4-+8+7 +6+-3+1) =31
irreducible formulae of form (3) for » = 2. From what we have found,
it follows that no two of them are provably equivalent. Hence we have
E=FK(2)=2-(1+2-31) =126,

The proofs of our crucial equivalences (3) and (8) turned essentially
on the fact that the topologies we are dealing with are nested, i.e. that
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each of the n modal operators M we are dealing with is stronger than
its predecessors. This suggests that no finitude result is possible without
this assumption of nesting (linear order). In particular, since the proof
of (8) already turns on this assumption, it may be expected that without
the assumption of nesting we could already have an infinity of irreducible
formulae of the form ... N, Ny, p. This expectation turns out to be justi-
fied. It is well known that of each partly ordered set we can obtain
a topology by taking for the closure of each set § the set of all the ele-
ments ¢ for which ¢ <s for at least one se§. The following infinite
double tree will then serve as an example which shows the Justifiability
of our expectation:

Two partly ordering relations are defined on it whose covering
relations are indicated by. solid and dotted lines, respectively. From
the unit set of the highest element one can obviously form an infinity
of different sets by repeatedly using the two closure operations.
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Spaces in which sequences suffice™®
by
S. P. Franklin (Gainesville, Florida)

0. Introduction. Venkataraman [5] poses the following problem.

0.1. ProBLEM. Characterize “the class of topological spaces which
can be specified completely by the knowledge of their convergent se-
quences”’.

It is a well known and useful fact that every first-countable space
falls into this class. Indeed, this is so by virtue of either of two prop-
erties of first-countable spaces:

(a) A point lies in the closure of a set iff there is a sequence in the set
converging to the point.

(b) A set is open iff every sequence converging to a point in the set is,
itself, eventually in the set.

But these properties are not equivalent (see Example 2.2 below)
and each is of independent interest (see Arhangel'skil [1], Dudley [3],
Franklin and Sorgenfrey [4], Hukuhara and Sibuyo [6], Kelley and Na-
mioka [8], Mazur [10]). Hence problem 0.1 becomes by mitosis the two
problems (0.1 (a) and 0.1 (b)) of characterizing the class of spaces satis-
fying (a) and the class satisfying (b).

The first of these (0.1 (a)) has two known solutions. Kowalsky [9]
has given a characterization in terms of the neighborhoods of a point
as follows: A space satisfies (a) iff the filter of neighborhoods of each of its
points is a union of Fréchet filters. Since little is known of unions of Fré-
chet filters, this solution is not completely satisfactory.

A more penetrating solution is given by Arhangel'skii who calls
spaces satistying (a) Fréchet spaces. In [1] he asserfs, without proof, that
among Hausdorff spaces, Fréchet spaces, and only these, are pseudo-open
images of metric spaces: (Pseudo-open maps form a class between the
open maps and the quotient maps. See section 2 below for the definition.)
An analogous result, due to Ponomarev [3], characterizes first-countable

* This was written while the author was a National Science Foundation Post-
doetoral Fellow.
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