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On the convergence of orthogonal series of polynomials
by

O. RATATSKI (Poznan)

1. Introduction. Young [5] proved a test for the convergence of
trigonometric series formulated by means of generalized variation.
The aim of this paper is to formulate and to prove this test in the case
of a possibly large class of polynomial orthogonal series (*). First we give
the definition of generalized ®-variation of a function, as introduced by
Wiener [4] and generalized in various directions by Young [5], and Mu-
sielak and Orlicz [3].

Let @(u) be a continuous function defined for « > 0, strictly increas-
ing, #(0) = 0, P(u) -+ oo a8 % —» oo, and let f(x) be a real-valued
function defined in the interval [a,b]. Young defined ®P-variation of
the function f(x) by the formula

k-1
Valf, [0, 1] = sup D) @(1f (@) —f (@),
Tl
where IT rung over all partitions ¢ = z, <@, < ... < # = b of the in-
terval [a, b]. He modified the classical theorem on limits of Stieltjes
integrals, and applying this modification he proved the following test
for the convergence of trigonometric Fourier series ([5], p. 610):
If a function f(x) continuous in [—m,n] has a bounded D-variation
in this interval, where ’
lim e *P(u) =1 with an a < %,
' Uk fe
then the trigonometrio Fourier series of f(w) is comvergemt to f(w) at every
point @e(—om, m).

Remark. The theorem is quoted here in a slightly weaker form than
the original formulation by Young, namely we assume f(x) to be continuous
in the whole interval. Flowever, this case seems to be the most interesting
one; moreover, limiting ourselves to continuous functions, we need not
mention special properties of functions of bounded generalized variation.

(Y) This problerx{ was raised by W. Orlicz.
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Let o(2) be a positive integrable function in [a, b]. We shall deal with
& system of polynomials {p,(#)} orthonormalin [a, b] with respect to o(z)
a8 a weight-function, i. e. such that

for =n =k,

b
af mE@pdele@ds =

Here p, («) denotes a polynomial of degree n, with a positive coefficient
of 2™, If 8, (x) denotes the n-th partial sum of the Fourier series of a fune-
tion f(z) with respect to the system {p,(2)}, it is well known. that

b

(L1) Sn(@) = [ FOEa(t, 2)o()d,
‘where ‘ N
(1.2) En(t,2) = D' pe(t)pr(a)

k=0

is called the kernel of the integral (1.1).
In the problems of convergence of Fourier series, the following sum-
mation formula of Christoffel and Darboux is of importance:

_% Pal@)Par1 () —Pn(t)Puyr (@)
Qny) - ’

€8 D mitipu(e) =
k=0

here an, an,; are the positive coefficients of ¢", #"** in polynomials P (),
Dny1(@), Tespectively. It is known that a,fa, +1 < max(jal, |b]) (see [1],
P. 33). In the sequel ¥ (u) will be a continuous function defined for % >0,
strictly increasing, ¥(0) = 0, ¥'(u) — co a8 % — oo, and such that

(1.4) Fuy) + ¥ () < ¥ (1)

for arbitrary u,, u, > 0. Moreover, we shall write

t
(1.5) gu(t,0) = [ Kn(u,2)o(w)du for n=0,1,2,...
In our further considerations we shall limit ourselves to the interval
[—1,1], since the general case is reduced to this one by the substitu-
tion ¢t = ~142(z—a)/(b— a).

2. We now formulate Young’s test for convergence in the case of
orthonormal polynomial series.

THEEOREM. Let {p, ()} be a system of polynomials orthonormal in [ —1, 1]
with respect to the weight-function o(w), and let f(w) be defined in [—1,1].
We suppose that (*)

@)‘Condition (2.1) is satisfied, for instance, in the case of normalized Jacobi
Polynomials {pn(®# ()} where ¢(z) = (1-2)°(A+2), a> —1, > —1 (see [2],
P. 89, footmote (2)). . .

e ©
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(2.1)  there emist constamts ¢, >0, ¢, > 0, >0, ¢, >0 such that
¢ [
0 < P —
<e(®) < 1= [P (®)] < 1= 220
for all e(—~1,1) and n =0,1,2, ceey
(2.2) f(#) is continwous in [—1,1],
(2.3)  there exists a constant a < % such that f(@) is of bounded B-variation
i [—1,1], where
(2.4) O(u) ~exp(—u™")  as w0+,
Then
f@) = > aupala) for evory we(—1,1),
N0
where

dy = f(t)_'pn(t) e (t) dt.

L.

Remark. It iy easy to give an example of a function which is of
infinite @-variation for all ®(u) = u®, p > 1, but satisties conditions (2.3)
and (2.4).

3. Proof. We shall prove the Theorem basing ourselves on the fol-
lowing lemmasg. ]

Lemma 3.1. If the system {p, (%)} satisfies condition (2.1) and [a, f]
e (—1,1), then

é2
Elf Pu(@)Pm(2) o) d = 0(|n—m1)

uniformly with respect to &, &, where o < & < & < B.
The proof of this lemma may be found in [2], p. 91-92.

Lemwma 8.2 ([5], p. 602, Theorem 5.5). Let f(t), g(t) be of bounded
generalized variation of the type ®,, ¥, respectively, and let f, g have no
common points of discontinuity. Moreover, let ¢, resp. v, be the functions
inverse to @, resp. ¥,. We suppose that

Snlilnli) <=

2 P1 ” Y1 ” .
b

Then the Riemann-Stieltjes integral f g(t)af(t) ewists.
a

LEmMMA 3.3. Let the following conditions be satisfied:
@n(t) (n=1,2,...) have uniformly bounded Y-variation, where ¥
"8, a convex function, and F(t) is of bounded D-variation in [a, b].

Studia Mathematica XXV "

(1)


GUEST


H. Ratajski

Gn(t) (n=1,2,...) and F(8) are continuous in [a,b], 1Gn(a)|
<M forn=1,2,...

(3.3) Zc,‘o o1 /m)p(Llin) < oo, where o, y are the functions inverse to 9, ¥,
To==]

respectively.
G (1) = G(2) as n - oo for te(a, 1,) and te(zy, b) where =, is a given
point in (a,b).

Then

(3.4)

b b
lim [ Gu()dF (1) = [ G)dF(1).
ns00 4 a

The proof of this lemma is obtained by a slight modification of the
proof of Theorem (6.2), p. 606, [5].

Levma 3.4, Let ¥(u) be a continuous, strictly increasing Sunction,
defined for w >0, ¥(0) = 0, ¥(u) - oo as u - oo, satisfying (1.4). Given
any 6 > 0, we then have
Velgnt,2), —1 <t <1]< 0(5)[1-;-2: ‘P(-]%f—))] for —14s<m<i—p

M=
where g,(t,x) are defined by (1.5), and C (), k(8) are constants dependent
only on 6.

Proof of Lemma 3.4. Let we[—1+ 4, 1— 6], where § > 0. Then
[2~1/n,o+1/n] = [—~1+ 48, 1— £6] for sufficiently large n. The points
—1+4/2, —143, a—1/n, 2+4+1/n, 1—38, 1—4/2 divide the interval
[—1,1] into seven subintervals. On the other hand, let us divide the in-
terval [—1,1] by means of the points

m
A = B4 —
n

where m takes such integer values that Ome[—1,1].
We now give some auxiliary estimations:

(@) If either (a,B) < [—1, —1-+6/2] or (a;8) = [1—6/2,1] then
B
S 1Bty @)l 0 (9)@ < 94(9).

Applying the Christoffel-Darboux summation formula for polynomials
Pn(®), we obtain

B
[ 1Bty @) 0y at

~14-8/2

o [Pnia ()] an T i)
< n @l [ S et~ (o) _{ Ol
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Since ze[—~1+6,1— 4),
such that |p,(z)| < h,(8) for
integration to the whole [—1,
inequality

there exists by (2.1) a constant hy =k, ()
every index . Changing the interval of
1] and applying [t—=] > 6/2 and Schwarz’s

1 1 1 1
[e0lewd = [10a0Ve@ Vel @t <{ [ emmar [ olyar}™®,
- - 4 4

we find that the integral

B
[ 1Batt, @) o (t)at

is bounded by a constant y,
obtained in a similar way.

(i) If (o, 8) = [e—1/n,2+1/n], then

dependent on 6. The second part of (i) is

B
J 1Bty )l 001t < 4 (5).

Indeed, we have —1+4/2 < -l <t<az+ln<l— 6/2 for
sufficiently large n. Hence, by (2.1),
z+1/n n

S D Ipet)lipu(@)] o))t < hy(8)(nt-1)

B
[ 1Batt, @)l o(t)at <
1 T—1/n k=0

S|

< 7:2(9).
(iii) Let (a, f) < [am 3 @my1], where m is such an integer that m o= -1,
m#0 and ape[—1+ 38,1 18] Then
B
J 1Bt )l 0 (1)t < 5(8) m.

Indeed, since —14-6/2 <o+ mn <t<a+m+1)n <1-— 4/2, the
last inequality follows by applying the summation formnla for polynomials
Pn(®) and the inequalities

mfn for m>o0,
[t—a| >
jm+1|fn for m <o0.
In the case of m > 0 we have
B
J 1Bty o)l o(t)de
T+ (m+1)n zy(miym
In t) o(t ol
1 24mjn [t—a| gy [t—a|

T+ m/n

n 1
S hy(8) —. =,
m n

and the proof is finished.
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—
[

In the case of m < 0 analogous estimations hold.
(iv) If either (a,f) < [, 1—8/2] for a fized m >0, or (a,f) =
c [—148/2, an] for o fized m <0, then
4 1
< yu(8) —.
UKn(t,w)e(t)dtl\h( )

Indeed, by (1.3) we have

B B
? Op _'pn+1(t) _ On Pa(t) D
[ Ealt, o) et = an+1pn(m)uf7_—m—g(t)dt @ |32y e(®)

Supposing m > 0, let us apply the mean-value theorem to the first
of the integrals. Taking into account the inequality m/n < |a—=|, we get

B
= kb

la—l‘ibl ‘ fpm(t)e(t)dt‘ < %1 f’pn“(t)g(t)dtl,

where a < f’ < p. By lemma 3.1,
4 1
a} PrsiB)e ()@ = o(m)_

Thé second integral is estimated analogously. Hence

| Eatt, 900 <249,

In the case of m << 0, the argument iz analogous o the al:zo've one.
We now turn to the proof of lemma 3.4. We take a p'a.rmtlon —1
=ty < t; < ... <ty =1 of the interval [—1, 1] and we consider the sum

¥ N i,
(88) o= 3 P(galtes ©)—gall—yi®)]) = ZT(L [ Eatt, o) o t]).
=1 r=1 r—1
Let
4 5 I =\a—— —l——)
11=("“17 “1+‘2—)y Iy = —1—{—5,58—-“ ’ 3= ’ n ’
6

1 8
14=($+%‘,1—§), Isz(l_'i’l)‘

. We group the intervals (i,_.,%) in three classes, namely: (f_1, %)
belongs
1. to the first class if (t,_;, %) = I, v I3 v I,
2. to the second one if (t,_;,1,) c I, v I,
3. to the third one if (f,_,?,) contains at least one of the points
—1+468/2, &—1/n, z4+1n, 1— /2.

@ ©
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Denoting by oy, 05, and ¢, the sums in (3.5) extended over intervals
(tp1, t) belonging to the first, the second and the third class, respectively,
we now prove all sums oy, gy, 0y to be bounded; this will give the boun-
dedness of the sum (3.5).

As regards oy, applying (1.4) and the estimations (i), (ii), we obtain

—14+8/2 T+1n

a<¥( [ 1Kat, e®d)+¥( [ |Kalt, o)l ot)ae)

£—1m

1
+Y’(l_fm o (1, 0)|0(8) @) < 5(8).

In order to estimate the sum o, we divide the indices r from the second
class again in two subclasses, denoting by »' such # that (f,_ 138) € (Omy Aimys)
and by 7"’ such r that ¢,._; < a,, <, for some m. Denoting the respective
sums by o, and oy, we have 6, = o;+ 0}, and by (1.4) and the estimation
(iii) we get

o) = 2 ‘—I’(]t[1 Ka(t, 2) e(t)dtf) < Z T( jl 1Kot )] o (3) dt)
<> Tlllcn(t, @ e(t)dt) <2 j’w(&)

mz=0 me1 m
Mg

In order to estimate the sum o), let us note that to every m there
exists at most one value 7’ such that

(3.6) tr_ 1 < Qg < By,

We limit ourselves only to such intervals (f,._, , %) which are con-
tained in I,, since the sum of intervals contained in I, is estimated ana-
logously. Denoting the first interval of the type (t,-_, , {,~) on the right-hand
side of the point z+1/n by (7,, 7,), We obtain by the estimation (iv)

’ fan(i, w)g(t)dt,! < AQN
1

1

Now writing (73, 7,) for the next interval of the type (4,-_.,t,) on
the right-hand side of (7y,7,) and applying (3.6), we obtain a, < 5.
Hence, by (iv),

a ()
| [ Eatt, 2) et | <1"‘2—.
T3
Proceeding further in the same way, we get the inequality

. 74(9) S 7/4(5))
273 SZW(W)<2";T(—WL .

M0
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We now estimate oy; it is easily seen that o contains at most four
terms. Let (a, §) denote the interval containing, say, the point —1+-§/2.
B

We write the integral [K,edi in the form \
8 —1+8/2 B
[ Eattymyo@t = [ Ealh,)e®dt+ [ Halt, ottt
a a —1+42
Hence

149 /4
[ fﬁKn(t,w)e(t)dtls f ﬁiKn(t,m)lg(t)m[ | Eatty 2)e(t)at
a —1+8/2

The first integral is bounded by a constant independent of », n in
virtue of (i). By (iv), the second integral is estimated by a constant de-
pendent only on 6 in case where § < a_;. If §> a_;, we must estimate
the integrals of the form

ay B
[ Batt, )o@, [ Ealt, 2)e(d)dt.
a_y ay
But the second integral is estimated by (iv) if § <1— 6/2, and by

(iv) and (i) if g >1— 6/2. Hence
B
| [ Ealts @o()d| < 7(8)

and this shows ¢; to be bounded by a constant dependent on 4. Thus
lemma 3.4. is proved completely.

4. We now proceed to the proof of the Theorem. Formula (1.1)
and the definition of the functions g,(t, ) give

(4.1) = [ W) dilgalt, @)]-

Integrating (4.1) by parts, we obtain

1
(4.2) Ba(@) =f(1)— [ galt, ®)df(2).
—1
In particular, let the function ¥ be defined for small > 0 by formula
¥(u) = wu[[lnu|'**, where £ >0, and let it be defined for other u >0
a,rbltra,nly but in such a way that ¥(u) satisfies condition (1.4) and is
convex. We now apply lemma 3.3; we obtain

icm°
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=6n  OW e =B, p() el (w04 );
W) ~ ”—n%, P(u) ~ulnu*e, o —a,
t)‘LetG’(t 2) = 0 for -1 <i<a,

for @<i<1.

It is easily seen that the assumptions of lemma 3.3 are satisfied ;
property (3.4) follows from the generalized Riemann-Lebesgue theorem.
Hence, by (4.2), we obtain

1

(@) = f)— [

-1

G(t, @)df (1) = f(1)— f (1) = (),

a8 n —> oo, and the proof of the Theorem is thus completed.
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