

eathaile in literature

On operators preserving a conjugate space

by

D. PRZEWORSKA-ROLEWICZ and S. ROLEWICZ (Warszawa)

Let X be a linear space over real or complex scalars. Let A be a linear operator transforming X into itself. By the nullity a_A of the operator A we mean the dimension of the space $\{x \in X : Ax = 0\}$. By the deficiency β_A we mean the dimension of the quotient space X/AX. If numbers a_A , β_A are both finite, we say that the operator A possesses a finite d-characteristic (Kato [7], Gochberg and Krein [6], Przeworska-Rolewicz and Rolewicz [10]).

In the classical theorems, for example in the Fredholm theory of integral equations (Fredholm [2]-[5]), instead of β_A a characteristic number $\beta_A^{\mathcal{I}}$ has been considered. To define this number, we consider simultaneously with the space X a total(1) space \mathcal{I} of linear functionals, which will further be called a *conjugate space*. Now $\beta_A^{\mathcal{I}}$ is the dimension of the space

$$\{\xi \in \Xi : \xi Ax = 0 \text{ for all } x \in X\}.$$

Let α_A , $\beta_A < +\infty$. If $\beta_A^{\mathcal{I}} = \beta_A$, we say that A is a $\Phi_{\mathcal{F}}$ -operator. Obviously for each functional $\xi \in \mathcal{E}$ we can consider a functional $\eta x = \xi A x$. We shall write $\eta = A' \xi$ and the operator A' will be called a conjugate operator to the operator A. We have $\alpha_{A'} = \beta_A^{\mathcal{F}}$. We do not always have $A'\mathcal{E} \subset \mathcal{E}$, but if A' possesses this property, we shall say that A preserves the conjugate space \mathcal{E} . The set of all linear operators preserving \mathcal{E} will be denoted by $\mathcal{L}(X, \mathcal{E})$; it constitutes an algebra.

If $\mathcal{Z}=X'$ is the space of all linear functionals, then each linear operator preserves \mathcal{Z} . If X is a linear topological locally convex space and $\mathcal{Z}=X^+$ the space of all linear continuous functionals, then every continuous operator preserves \mathcal{Z} . On the other hand, in these cases we have $\beta_z^{\mathcal{Z}}=\beta_A$. But there are also operators preserving a conjugate space which are not $\Phi_{\mathcal{Z}}$ -operators (see [11]).

⁽¹⁾ A space $\mathcal E$ of linear functionals is called *total* if $\xi x=0$ for all $\xi \in \mathcal E$ implies x=0.

In this note we give some theorems which permit us to prove when the operators A preserving the conjugate space $\mathcal E$ are $\Phi_{\mathcal E}$ -operators. In this note we use the method of regularization considered in papers [8], [9] and [10].

Given an algebra of linear operators \mathscr{X} , let \mathscr{I} be a two-sided ideal contained in \mathscr{X} . We say that an operator $A \in \mathscr{X}$ possesses a left-sided (right-sided) regularizer R_A to the ideal \mathscr{I} if $R_AA - I \in \mathscr{I}$ (resp. $AR_A - I \in \mathscr{I}$). We say that a regularizer is simple if it is simultaneously left-sided and right-sided.

We shall employ the following results from paper [10]:

- (A) If the ideal $\mathscr I$ is such that for each $T \in \mathscr I$, I+T is a $\mathscr D_{\mathbb F}$ -operator, then each operator A which possesses a simple regularizer to the ideal $\mathscr I$ is a $\mathscr D_{\mathbb F}$ -operator ([10], proposition 5.8).
- (B) By $\mathscr{K}(X, \Xi)$ we denote the set (the two-sided ideal) of all finite dimensional operators contained in $\mathscr{L}(X, \Xi)$. If $K \in \mathscr{K}(X, \Xi)$, then I+K is a Φ_{π} -operator ([10], proposition 4.2).

Let X and \mathcal{Z} be Banach spaces. We denote the respective norms by $\| \cdot \|_{\mathcal{X}}$, $\| \cdot \|_{\mathcal{Z}}$. In the space $\mathscr{L}(X, \mathcal{Z})$ define the norm

$$||A||^* = \max\{||A||_X, ||A'||_E\}.$$

If the topology in \mathcal{Z} is equivalent to the norm-topology of functionals, then obviously the norm $\|\cdot\|^*$ is equivalent to the usual norm $\|\cdot\|_X$ of operator $X \to X$.

By $\overline{\mathscr{X}}(X, \mathcal{Z})$ we denote the closure of $\mathscr{X}(X, \mathcal{Z})$ in the norm $\|\cdot\|^*$. Obviously $\overline{\mathscr{X}}(X, \mathcal{Z})$ is a two-sided ideal.

THEOREM 1. If an operator $A \in \mathcal{L}(X, \Xi)$ possesses a left-sided (right-sided) regularizer to the ideal $\tilde{\mathcal{K}}(X, \Xi)$, then it possesses a left-sided (right-sided) regularizer to the ideal $\mathcal{K}(X, \Xi)$.

Proof. Let us assume that there exists a left-side regularizer R_A to the ideal $\bar{\mathscr{K}}(X, \Xi)$, i. e. such an operator R_A that

$$R_A A = I + T$$
, where $T \in \bar{\mathcal{K}}(X, \Xi)$.

Take an operator $K \in \mathcal{K}(X, \Xi)$ such that

$$||T - K||^* < 1$$

and write B=T-K. It is easy to check, on the basis of the completeness of X and E, that the operator I+B is invertible and $(I+B)^{-1} \epsilon \mathscr{L}(X, E)$. Let

$$R_A^0 = (I+B)^{-1}R_A$$
;

then

$$R_A^0 A = (I+B)^{-1} R_A A = (I+B)^{-1} (I+T) = (I+B)^{-1} (I+B+K)$$
$$= I + (I+B)^{-1} K.$$

But $(I+B)^{-1}K \in \mathcal{K}(X, \mathcal{E})$; therefore R_A^0 is a left-sided regularizer of the operator A to the ideal $\mathcal{K}(X, \mathcal{E})$.

The proof in the case of a right-sided regularizer is identical. From theorem 1 and result (A) follows

COROLLARY 1. If an operator $A \in \mathcal{L}(X, \Xi)$ possesses a simple regularizer to the ideal $\bar{\mathcal{K}}(X, \Xi)$ in the particular case of A = I + T, where $T \in \bar{\mathcal{K}}(X, \Xi)$, then A is a Φ_{Ξ} -operator.

Remark. We do not know whether it is possible to replace in Corollary 1 the assumption that $T \in \overline{\mathcal{F}}(X, \Xi)$ by the assumption that $T \in \mathcal{F}(X, \Xi)$, where $\mathcal{F}(X, \Xi)$ is an ideal of compact operators contained in $\mathcal{L}(X, \Xi)$.

Consider the following application of theorem 1.

Example 1. Let L be a regular arc with a finite length on a plane. Let X=C(L) be the space of all continuous real or complex-valued functions defined on L. Let $\mathcal{Z}=C(L)$ be a space of functionals ξ of the type

$$\xi x = \int_{L} x(t) \, \xi(t) \, dt,$$

where $\xi(t)$ is a continuous real or respectively complex-valued function defined on L. Let T be an integral operator

$$Tx = \int\limits_{t} K(s,t)x(t)d\omega(t),$$

where $\omega(t)$ is a linear Hausdorff measure, $K(s,t)=K_0(s,t)k(|s-t|)$, where $K_0(s,t)$ is a continuous function and k(u) is a non-negative and summable function of one real variable continuous for $u\neq 0$. Then $T\in \bar{\mathcal{N}}(X,\mathcal{S})$.

Indeed, let

$$k_m(u) = egin{cases} k(u) & ext{if} & k(u) < m, \\ m & ext{if} & k(u) \geqslant m. \end{cases}$$

 $k_m(u)$ is obviously a continuous function. The arc L is regular and therefore

$$e_m = \sup_{s \in L} \int_{t} k(|s-t|) - k_m(|s-t|) d\omega(t)$$

tends to 0 when $m \to \infty$. But if we write

$$T_m x = \int\limits_L K_0(s,t) k_m(|s-t|) x(t) d\omega(t),$$

then $||(T_m-T)x||_x \leqslant Me_m||x||_x$, where $M=\sup_{s,t\in L}|K_0(s,t)|$. The kernels of the operators T_m are continuous functions. Basing ourselves on Weier-

strass theorem, we can approximate each kernel uniformly by polynomials. Hence each operator T_m can be approximated in the norm topology by operators belonging to $\mathscr{K}(X,\mathcal{Z})$. Therefore T is approximable by operators belonging to $\mathscr{K}(X,\mathcal{Z})$ in the topology induced by the norm $\|\cdot\|_{\mathcal{X}}$. But the topology in \mathcal{Z} is the norm topology in the conjugate space, whence $T \in \overline{\mathscr{K}}(X,\mathcal{Z})$.

Applying corollary 1 we find that I+T is a Φ_{C} -operator. In the particular case of $ku=1/|u|^{\alpha}$, $0<\alpha<1$, we obtain a well known theorem for weakly singular equations, without using the classical method of iteration.

Obviously the condition that $\omega(t)$ is a linear Hausdorff measure can be replaced by the condition that t is a complex-valued measure continuous with respect to t; in particular it is true when we consider a complex plane and integration is considered as integration on a complex are.

THEOREM 2. Assume that X is a linear space and Ξ is a conjugate space, X_0 and Ξ_0 are subspaces of X and Ξ respectively. Let $A \in \mathcal{L}(X_0, \Xi_0)$. Let there be such a simple regularizer R_A that the operators $T = I - R_A A$ and $T_1 = I - R_A A$ can be extended to operators \overline{T} , \overline{T}_1 belonging to $\mathcal{L}(X, \Xi)$ and $I + \overline{T}$, $I + \overline{T}_1$ are Φ_{Ξ^0} -operators. Then A is a Φ_{Ξ_0} -operator.

Proof. Operators I+T, $I+T_1$ can be considered on the whole space X. According to the assumption these operators are \varPhi_{Ξ^-} operators. By theorem 4.1 of [10] these operators considered on X_0 are \varPhi_{Ξ_0} -operators. i. e. operators AR_A and R_AA are \varPhi_{Ξ_0} -operators. Therefore proposition 5.8 of [10] implies that A is a \varPhi_{Ξ_0} -operator.

We consider the following application of theorem 2.

Example 2. Let L be a regular closed Jordan curve. Let $X_0 = H^\mu$ be a space of all functions x(t) defined on L and satisfying a Hölder inequality with an exponent μ , i. e. $|x(t)-x(t')| \leqslant c |t-t'|^\mu$, $0 < \mu < 1$. Let $\mathcal{Z}_0 = H^{\mu/2}$ be a space of functionals ξ of the type

$$\xi x = \int_{L} \xi(t) x(t) dt,$$

where $\xi(t) \in H^{\mu/2}$.

Let us consider an operator

$$Ax = A_0(t)x(t) + \frac{1}{\pi i} \int_L \frac{K(s,t)}{s-t} x(s) ds,$$

where the integral is considered as an integral in the sense of the Cauchy principal value, $A_0(t) \, \epsilon H^{\mu/2}$, and K(s,t) satisfies a Hölder inequality with an exponent μ , i. e.

$$|K(s',t')-K(s,t)| \leq c[|t-t'|^{\mu}+|s-s'|^{\mu}].$$

Let $A^2(t)-K^2(t,t)\neq 0$ for all $t\in L.$ Then the operator A is a $\varPhi_{H^{\mu/2}}$ operator. Indeed, let

$$R_A x = [A_0^2(t) - K^2(t,t)]^{-1} A_0(t) x(t) - \frac{1}{\pi i} \int_L \frac{K(s,t)}{s-t} x(s) ds.$$

Then by classical considerations (see also [8]) we obtain

$$R_{\mathcal{A}}A = I + T, \quad AR_{\mathcal{A}} = I + T_1,$$

where T, T_1 are weakly singular operators transforming C into $H^{\mu/2}$. By example 1 we infer that I+T, $I+T_1$ are $\Phi_{\mathcal{Z}}$ -operators. Therefore theorem 2 shows that A is a $\Phi_{H^{\mu/2}}$ -operator.

References

- [1] S. Banach, Théorie des opérations linéaires, Lwów 1932.
- [2] I. Fredholm, Sur une classe de transformations rationnelles, CR 134 (1902), p. 219-222.
 - [3] Sur une classe d'équations fonctionnelles, ibidem 134 (1902), p. 1561-1564.
- [4] Sur une nouvelle méthode pour résolution du problème de Dirichlet, Kong-Vetenskaps-Akademiens Foerh. 1900, p. 39-46.
 - [5] Sur une classe d'équations fonctionnelles, Acta Math. 27 (1903), p. 365-390.
- [6] И. Ц. Гохберг и М. Г. Крейн, Основные положения о дефектных числах и индексах линейных операторов, Усиехи мат. наук 12(1957), р. 261-322.
- [7] T. Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Anal. Math. 6 (1958), p. 261-322.
- [8] D. Przeworska-Rolewicz, Sur les équations involutives et leurs applications, Studia Math. 20 (1961), p. 95-117.
 - [9] Equations avec opérations algébriques, ibidem 22 (1963), p. 337-367.
- [10] and S. Rolewicz, On operators with finite d-characteristic, ibidem 24 (1964), p. 257-270.
- [11] and S. Rolewicz, On d- and dz-characteristic of linear operators, Ann. Pol. Math. (in print).

INSTITUTE OF MATHEMATICS OF THE POLISH ACADEMY OF SCIENCES INSTYTUT MATEMATYCZNY POLSKIEJ AKADEMII NAUK

Reçu par la Rédaction le 18.5.1964