

but A. Pełczyński (see [8], p. 368) has remarked that every subspace of E with an unconditional basis is reflexive.

References

- [1] C. Bessaga and A. Pelczyński, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), p. 151-164.
- [2] P. Civin and B. Yood, Quasi-reflexive spaces, Proc. Amer. Math. Soc. 8 (1957), p. 906-911.
 - [3] M. M. Day, Normed linear spaces, Berlin 1958.
- [4] A. Grothendieck, Sur les applications linéaires faiblement compactes d'espaces du type C(K), Canadian J. Math. 5 (1953), p. 129-173.
- [5] R. C. James, Bases and reflexivity of Banach spaces, Ann. of Math. (2) 52 (1950), p. 518-527.
- [6] R. D. McWilliams, On the w*-sequential closure of subspaces of Banach spaces, Portugal. Math. 22.4 (1963), p. 209-214.
- [7] A. Pelczyński, A note on the paper of L. Singer "Basic sequences and reflexivity of Banach spaces", Studia Math. 21 (1962), p. 371-374.
- [8] I. Singer, Basic sequences and reflexivity of Banach spaces, ibidem 21 (1962), p. 351-369.

FLORIDA STATE UNIVERSITY

Reçu par la Rédaction le 25.7.1964

On sequences of continuous functions and convolution

bу

T. K. BOEHME (Santa Barbara, California)

1. In the study of Mikusiński operators the question arises "given a sequence of continuous functions g_n on the half-line $t\geqslant 0$ is there a single non-zero continuous g such that, for each n, g is of the form

(1)
$$g(t) = \int_0^t g_n(t-u)f_n(u)du, \quad t \geqslant 0,$$

where f_n is a continuous function?" For an affirmative answer it is obviously necessary that there exist some interval [0, T], T > 0, such that none of the g_n vanish identically on [0, T]. If this condition is satisfied the answer given by Theorem 3 below is "yes, there is always such a function g".

In what follows we will utilize the following notation. The functions involved are complex values functions on the half-line $t \ge 0$; juxtaposition of functions denotes convolution so that equation (1) will be written $g = g_n f_n$. C is the vector space of continuous functions, and L is the vector space of locally integrable functions. For g in C or in L we will use the semi-norm

$$||g||_T = \int\limits_0^T |g|(t) dt,$$

and a sequence g_n is convergent in L to g if $\|g_n-g\|_T\to 0$ for every T>0. The fundamental inequality for this semi-norm (in addition to the triangle inequality) is that, for any two functions g and f in L, $\|gf\|_T \leqslant \|g\|_T \|f\|_T$. The set C_0 (or L_0) is the set of all g in C (or L) such that $\|g\|_T>0$ for all T>0; that is, it consists of those functions which vanish on no neighborhood of the origin. In particular, a function g in C_0 is not the zero function. The symbol h will be used for that function in C which is such that h(t)=1 for all $t\geqslant 0$.

The basic principle in what follows is a theorem of C. Foiaş which says

THEOREM 1. For g in L_0 , T > 0, $\varepsilon > 0$, and f in L there is a k in L such that $||f - gk||_T < \varepsilon$.

For a proof of the above theorem the reader is referred to [1] or [2]. COROLLARY. For g in L_0 , T>0, and $\varepsilon>0$, there is a k in L such that s=kg has the properties

$$||s||_T \leqslant 1,$$

(ii)
$$||hs-h||_T < \varepsilon.$$

Proof. Take f in L with the properties that $||f||_T = a < 1$ and $||hf - h||_T < \varepsilon/2$. By Theorem 1 there is a k in L such that $||f - gk||_T < < \min[1 - a, \varepsilon/2]$. Then s = kg satisfies (i) and (ii).

We will denote the convolution product $\prod\limits_{1}^{N}s_{n}$ by S_{N} , and will use the notation

$$S_{N,M} = \prod_N^M s_n, \quad H_N = h \prod_1^N s_n, \quad H_{N,M} = h \prod_N^M s_n.$$

The next theorem can be interpreted to mean that if $s_n \to 1$ (the identity in the field of Mikusiński operators) in a sufficiently tractable manner then the infinite product $\prod^{\infty} s_n$ is convergent.

THEOREM 2. Take s_n in L, $||s_n||_n \leq 1$, and suppose that $||hs_n-h||_n \leq \varepsilon_n$ where $\sum_{n\geq 1} \varepsilon_n < \infty$. Then H_M is convergent in L and $H = \underset{M}{\text{Lim}} H_M$ is zero if and only if $s_n = 0$ for some n. For each n we have $H = s_n p_n$ where p_n is in L.

Proof. We note that, since $||s_n||_T \le 1$ for n > T, $||S_{N,M+P}||_T \le ||S_{NM}||_T$ if M > T. The convergence of H_M follows from the inequalities

$$\begin{split} \|H_M - H_{M+P}\|_T &= \|S_M(h - H_{M+1,M+P})\|_T \leqslant \|S_N\|_T \|h - H_{M+1,M+P}\|_T \\ &\leqslant \|S_N\|_T \left(\sum_M \varepsilon_n\right), \end{split}$$

where N > T is fixed. The same inequalities hold for $H_{R,M}$ with R fixed and $H = \lim_{M} H_{M} = \lim_{M} S_{R}H_{R+1,M} = S_{R}(\lim_{M} H_{R+1,M})$ which proves the last statement in the theorem.

It only remains to show that H is zero if and only if some s_n is zero. Take N > T and $\sum_{n > N} \varepsilon_n < T/2$; then

$$\|H_{N,M}\|_T\geqslant \|h\|_T-\sum_N^M arepsilon_n>\, T/2$$
 .

Thus

$$\lim_{M} \|H_{N,M}\|_T = \|\lim_{M} H_{N,M}\|_T > 0.$$

Since $H = S_N(\underset{M}{\text{Lim}} H_{N+1,M})$ and the latter limit is non-zero, H is zero if and only if $S_N = 0$, i. e. if and only if some factor $s_n = 0$ for $n \leq N$.

THEOREM 3. Let g_n be a sequence in C. A necessary and sufficient condition that there exists a non-zero g in C such that each g_n factors g, $g = g_n f_n$, with f_n in C, is that there is an initial interval [0, T] such that for n does g_n vanish on [0, T].

Proof. The condition stated in the theorem is clearly necessary; we will show that it is also sufficient. Since each g_n is a function in C_0 shifted to the right no more than T units we can just as well suppose that all g_n are in C_0 . With this assumption we can find for each n, according to the Corollary to Theorem 1, a k_n in L such that the continuous function $s_n = g_n k_n$ has semi-norms $\|s_n\|_n \le 1$ and $\|hs_n - h\|_n < 1/n^2$. By Theorem 2 the product $H = h \prod_{1}^{\infty} s_n$ is convergent, and the function h = H is the desired function.

Bibliography

[1] C. Foias, Approximation des opérateurs de J. Mikusiński par des fonctions continues, Studia Math. 21 (1961), p. 73-74.

[2] T. K. Boehme, On approximate solutions to the conduction equation on the half-line, Bull. American Math. Society 69 (1963), no. 6, p. 847-849.

UNIVERSITY OF CALIFORNIA, SANTA BARBARA

Reçu par la Rédaction le 27.7.1964