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but A. Petezynski (see [8], p. 368) has remarked that every subspace of E
with an unconditional basis is reflexive.
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On sequences of continnous functions and convolution
by

T.K. BOEHME (Santa Barbara, California)

1. In the study of Mikusirigki operators the question arises “given
a sequence of continuwous functions g, on the half-line ¢ >0 iz there
a gingle non-zero continuous ¢ such that, for each n, g is of the form

12
(1) 9(t) = [galt—wfa(w)du, ¢>0,

where f, is a continuous function?” For an affirmative answer it is ob-
viously necessary that there exist some interval [0, 7], T > 0, such that
none of the g, vanish identically on [0, 7]. If this condition is satisfied
the angwer given by Theorem 3 below is ‘‘yes, there is always such a fune-
tion g”.

In what follows we will utilize the following notation. The functions
involved are complex values functions on the half-line ¢ > 0; juxtaposi-
tion of functions denotes convolution so that equation (1) will be written
g = gnfu- C is the vector space of continuous functions, and I is the vector
space of locally integrable functions. For g in ¢ or in L we will use the
semi-norm

T
lglle = [ lgl()dt,
0

and a sequence g, is convergent in L to g if ||g,— gllz — 0 for every T > 0.
The fundamental inequality for this semi-norm (in addition to the triangle
inequality) is that, for any two functions g and fin L, |lgfllr < llgliz|lfllz-
The set C, (or L,) is the set of all g in ¢ (or L) such that ||g|ly > 0 for all
T > 0; that is, it consists of those funetions which vanish on no neigh-
borhood of the origin. In particular, a function ¢ in 0, is not the zero
function. The symbol & will be used for that function in ¢ which is such
that h(t) = 1 for all ¢ = 0. .

The basic principle in what follows is & theorem of C. Foiag which
says
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TuEoREM 1. For g in Ly, T >0, ¢ > 0, and f in L there is a k in L
such that ||f— gkl|lr < e

For a proof of the above theorem the reader is referred to [1] or [2].

COROLLARY. For g in Ly, T > 0, and ¢ > 0, there is a k in L such that
§ = kg has the properties
(i) lsllr <1,

(i) [lhs — Rl < e.
Proof. Take f in L with the properties that |[flz = a <1 and
|Wf—Ri|r < /2. By Theorem 1 there is a k in L such that |f—gk|y <
< Min[l—a,e/2]. Then s = kg satisfies (i) and (ii).
N
We will denote the convolution product []s, by Sy, and will use
1

the notation

M N M
Snpe=[]sny Hy=1][s2, Hyu=1]]sm
N 1 N

The next theorem can be interpreted to mean that if s, — 1 (the
identity in the field of Mikusitski operators) in a sufficiently tractable

manner then the infinite product []s, is convergent.
1

THEOREM 2. Take s, in L, ||s,|l, <1, and suppose that ||hs,— h||, < &,

where Y e, < co. Then Hys is convergent in L and H = LimH, is zero
n>1 M

if and only if s, = 0 for some n. For each n we have H = 8,p, where p,
8 in L.

. Proof. We note that, since [|s;]lr <1 for n>T, ||y y1rllr <|Syulr
if M > T. The convergence of H,, follows from the inequalities

1B —Hyerplle = 1820 (h—Haryr,a040)lr < 1Sullz b —H 41,2242l
< I8wlle ( Y &),
M

where N >’%” is fixed. The same inequalities hold for Hp 5 with R fixed
and H = L];;LHM: Lgn SpHpyy = SR(L}(Im Hp.,1,) which proves the
lagt statement in the theorem.

It only remaing to show that H is zero if and only if some s, is zero.
Take N > T and } &, < T'/2; then
n=N

M

Hy,alle = hllp— ZE"> T2,
g
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Thus
Lim |Hy, yllr = Lim Hy yllz > 0.
M M

Since H= Sy(Lim Hy , ») and the latter limit is non-zero, H is zero
M

it and only if Sy = 0, i.e. if and only if some factor s, = 0 for n < N.

TuporEM 3. Let g, be o sequence in C. A mecessary and sufficient
condition that there ewists a mon-zero g in C such that each g, factors g, g
= (ufn, With fn in O, s that there is an indtial interval [0, T such that for
no n does ¢, vanish on [0, T]

Proof. The condition stated in the theorem is clearly necessary;
we will show that it is also sufficient. Since each g, 18 a funetion in O,
shifted to the right no more than T units we can just as well suppose that
all g, are in C,. With this assumption we can find for each n, according
to the Corollary to Theorem 1, a k, in L such that the continnous function
Sn = gk, has semi-norms |syl, <1 and ||h$n,— Rlln < 1/ By Theorem 2

o0
the product H = h[]s, is convergent, and the function h = H is the
1

desired function.
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