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On linear processes of approximation (III)
by

G. FREUD (Budapest) and 8. ENAPOWSXKI (Poznah)

1. The results of this paper differ from those of papers [4] and [5]
in two respects. In both of our previous papers the test-conditions for
approximation referred to the trigonometric system. In the present paper
our conditions refer to more general systems of functions. The prerequisites
for such basic systems are two simple properties, one of which we call
Fejérian, the other Jacksonian resp. quasi-Jacksonian property. Beside
the trigonometric system there are several other orthogonal systems which
enjoy both of these properties, e. g. the eigenfunctions of a non-gingular
Sturm-Liouville problem, polynomials orthogonal over a finite interval
with a weight function bounded from below, Hermite polynomials and
the Franklin system (). As to the other respect, we specify presently our
approximation-operators to coefficient-transformations of the correspond-
ing expansions. In order to include all of our applications, we shall for-
mulate our theorem in a somewhat abstract form. The necessary prepara-
tions for it will be expounded in Chapter 2. The formulation itself along
with the proof will constitute Chapter 3. Chapter 4 is concerned with ap-
plications to Jacksonian systems, Chapter 5 deals with Hermite poly-
nomials.

2. Let X be a real linear vector space which forms a normal linear
vector space with norm || ||, and also with norm || ||. || ||, will refer to ap-
proximation properties, | ||, to the modulus of continuity. The correspond-
ing spaces will be called X; and X, respectively. Beside X, and X, we
take into consideration another normed linear space Y and a bounded
linear operator B which maps X; to Y. The norm in ¥ will be denoted
by |l llz- In X, there is defined an abelian semigroup U, b >0, of
linear transformations of X, (it is enough to have U; defined for all
0 <h <1 and then set U = U, for h > 1). Thus

Uhthz = Uh1+h27 UO =1.

(1) Apart from the Hermite polynomial system which is quasi-Jacksonian all
the other systems listed above are Jacksonian.
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Additionally, we agsume for every & (?)
(2.1) 10 < 1.
Let for feX, 6 >0
0(85) = sup | U(H—Fla-
0hss
We assert
(2.2) w(93;f) < 20w(8;f) for
Indeed, we first have
(263 f) < 20(8; /)

9>1, 8>0.

gince, for 0 < b < 4,

10w (H)—fls < 1T (H)— Un(Hlla+ 1 Un(F) —Fle
= 10T =Ml A 1Tn(H) —fll
= (10lle+ DT =l < 200(8; ).

Let now 2" < ¢ < 2**). Then by induction

nd (287185 f) < 21w (8; f)
1

o(#9;f) < 0(27'8; f) < 2"+ (85 1) < 200(8; f).
Further, noting that w(d;f) is always bounded, we put

Qe HE af —-——-‘“(:jf) .
9

Q(a ; f) is an increasing funetion (which can be easily proved by dif-
ferentiating); we also have

Q(25;f)=2aff°—%jﬂdmgzaf “—’(—%de=29(a;f)
28 ]

80 that, following our previous argument,

(2.3) Q98;f) <200(5;f) for H>1, 630,

. fjSup]pose that we are given in X, a sequence of linearly indepen-
en _elements {qnn}, n=0,1,2,..., and a sequence of bounded linear
functionals a;(f) with the property (3)

0 if
1 if

k # n,
k=mn.

ap(pn) =

(*) Here || || stands for the operator-norm in X,

() For the existence of such functionals ]
—under rather sonditions —
[71, p. 151, Theorem 9, and p. 172, Remark, reer feneral conditions ~see
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A linear combination
n

Z a5 Px

k=0

with real a,, as,...,a, will be called a g-polynomial of n-th degree; the set
of g-polynomials of degree n will be denoted by @,. We define, further,
E,.(f) as the greatest lower bound of |f—p|l, a8 p runs over &,. We call
{pn} @ Jacksonion system if, for every feX, n >1,

Boa() <ofo(2s1) +o 211,

where ¢ > 0; actually only ¢ = 0 or g = 1 are of interest.
Similarly, {p,} is said to be a y-quasi-Jacksonian system if with
0<y<1

i,

n'

1
EB,_(f) <e {w(?’f) +0
The expansion of an element feX in the system {p,} is defined by

(24) f~ D a(f)pn-
I3

Having that, we define the partial sum-operator
salf) = D) al(f) o

k<m
As a consequence of boundedness of ag(f), this is a continuous linear
transformation of X,. We define similarly

(2.5) BuNE Y (1—bimae(Ho

<<
and in particular the operators of (C, 1)-summation
P def k
F.(f) = 1— —) & (f)pw.
k<n "

The expansion (2.4) will be called of B-Fejérian type if
(2.6) IB(Fn(Nly < &sliflhy feX, n=1,2,...

In the simple but rather important case of ¥ =X,, B=1I,
I-Fejérian type will be briefly called Fejérian.


GUEST


376 G. Freud and 8. Knapowski

Introducing the de la Vallée-Poussin means

7) (f) det ﬂn(f)"’”l—pn](f)

n— My

where 7, = [n/2], we have the following propositions which are well
known in more special cases:

(2.7) v(f) =f whenever fe®,),
(2.8) I1B(on(£))llr < 64Hfll, feX,n=1,2,.
(2.9) ”B(f"”n f))”]f nl(f), feX,m=1,2,...
Relation (2.7) is an easy comsequence of the relation
) 2 alh
w =

and of the fact that s,(f) =f, whenever fe@ns T2 my.
Relation (2.8) follows directly from (2.6).
As to (2.9), fixing an ¢ > 0 we have with some PPy,

1f—plh < By (H+e.
Then
1B (oa(f)—llx = B (ealf—2)+2—f)llz
< 6llf =2+ IBIIf—plh < ox{ B, (f)+ &}
and we let ¢ tend to 0.
In the sequel we shall use the following

Lemma. Let (2.4) be of Fejérian type. If {p,} is a Jacksonian sysiem,
then

||B(Fn(f)~f)uy<oa(( ))+eufu11°g"), feX,m=1,2,.

if {pn} 18 @& y-quasi-Jacksonian system, then

B~ <ofo (i) +am), sexin=1,s,..

Proof. Let n, = n, myy = [n;/2]. Then
o0

Pa(f)—f =) f’:{& (t0g

7=0

(H—7).
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By (2.9) we get in case of a Jacksonian system

[B(En () —lr < 2“"7“"”’”1 VB, ., ()

<2 la +Z( sl B s Bag i 1)

<§;§‘E,,(f)<%;{ () o 2]

k=0
< f o(5s) s+ elfiogn)
— fw %f) ay+ el togn)

n—1

= colo (7] +enri—E).

Similarly, for a y-quasi-Jacksonian system, we obtain

|BE—Alle <= Dt =154, ()

7=0

<en 3 5o (i) vel o
np 41>
Using the inequality (¢), valid for n; > 1,
n n
(2.10) F < < ?-
we getl

IBE N1l < on D)2 o

2 . ) ! f:f}
<eufo (;blwf)EZ'j“*”’+ellfilln‘y}
§=0

e {w (% ; f) +e [Ifllm“’”}-

(%) (2.10) follows from the fact that 2¢—! < n < 2# implies [2¢-1/2] < ny.
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3. TuEoREM. Let (2.4) be a Fejérian expansion; we consider o sequence
of coefficient-transformations (2.5) with the properties

3.1) ”B a (f) ”Y esllflly  for  feX, n=1,2,...,
(3.2) by, =0, n=1,2,...,
(3.3) bl,n=0('1‘)7 n=1,2,...,
n
(3.4) 2-14 bm»«o( ) n=1,92,...

These conditions imply that
a. if {pn} s o Jacksonian system, then for feX

[B(B.(f)—f)ll» < cm{ ( ,f)+0||f”110g.%_}

b. if {pa} i8 o y-quasi-Jacksonian, then for feX
1
BB (=1l < e {w (;,—;f) +ellfl w}.

Proof. Let p(n) stand either for (1/n; N +g{|f”,19gﬁ or for
n

o/n; fy+ollflin~? in case a or b respectively. We write, as in our
baper [4],
(3.8)  B(Ba(N)—f) = B(Fu(f)—f) +B(Bu(f—F,) ) B (Bo(Fy) — F, ().

As to the first two terms, their ¥-norms are 0( (n) ) by our Lemuma,
(3.1) and the boundedness of B. For the last term we have

= = Yten 1= ) e

k<n

Bn (Fn) “‘1’

As in our paper [4], formula (4.1), we put b
Abkn— bkn_bk—;«lny A bkn”‘Zkan’I“bk]zn (k_ 0 1

B'n. n_‘ nf)

el S bn»\.z,w == 0,
.., n), and obtain

n % . ”»
- _20(1_.77) Azbk.n(k—l—l)FHl(f)...%Z Ay (k1) Fp, ().

k= 2]
Noting (see [4], formula (4.2)) that

n % , 9 n
g (1-—;) A1)+ "n‘,; Bty (et-1) = b,
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and using (3.2), we come to

(Fw~Faf)
=~ ;)AZbk,n<k+1){Fkﬂcf>—f}+;gztbk,,wrl)wk“(f) 1.

By Lemma, multiplying by B,
B (B (Fa) —Fy)| ¢

n

k 2 n
< (1 ) 1l 0 31 i 1)

k=0

‘We have by (2.2) and (2.3)

p(k+1) < op——— k+1 p(n),
50 that
36 BB iy < camp] Y (1= )i 0nal+ 2 311,
k=0 k=0
Since

Abk,n = bn,n_ bl,n“ {Azbﬂ,1L+A2bl,n+' . ~+Azbk—1,n}y k=0,1,...,2—1,

b = bo— {Abg+Abyp+...+- b1}, k=1,2,...,m,
we get
. o1
(3.7 ]Ab,f,n|g019—n—, k=1,2,...,n—1,
and
k
(3.8) |Br,ul <3197”‘a k=1,2,...,n.

These inequalities and (3.4) yield our statement.

4. We turn now to applications. In all of them elements of X are
real or complex-valued functions of a real variable te@. The operator
Uy, will be in most cases the operator of translation

(4.1) Tu{f ()} = flt-+ ).

For @ = (—oo, --00) or in case of periodic functions, this definition
makes sense. In the remaining cases which we treat, @ = [a, b] is a finite
interval and elements of X are continuous functions. Here we extend the
function f(t) by f(b) for ¢ > b and by f(a) for ¢ < a, 8o that our definition
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(4.1) applies again. A more general type of a semi-group satisfying
(2.1) is defined in the following way: we have @ = [a, b] and a strictly
monotoneous function g(x) defined on [¢,d] and transforming [o, d]
into [a, b]. Further, we have an operator A(f) defined on X such that

Af@) =flgw), A9 = olg™ (@)-

Then we put
Tw(f) = TO{f @) & 47T, {4f (0)},

where T, is the operator of translation defined above. (2.1) is satisfied
if we take as X,-norm the usual C-norm. An important particular case
of this kind is [a, b] = [—1, +1], [¢, @] =[0, =], g(2) = cosz; this oper-
ator T is denoted by T {p.} Will be always an orthonormal system of
functions and ay (f) will stand for the corresponding Fourier coefficients of f.

a) The trigonometric system. Let X = X, = X, = I’[—n, n] (p > 1)
or Oy, and g, = ¢™. As well known, this system is Fejérian, so that we
can put ¥ = X, B = I. We further set U, == T. With this notation
w(6) is the ordinary modulus of continuity and, according to Jackson’s
theorem, the system is Jacksonian with ¢ = 0. Thus in this case the con-
ditions of our theorem turn out to be identical with (2.4), (2.5), (2.6)
of Theorem 1 in [4], the conclusion being possibly only slightly less pre-
cise. E. g. for felipa, 0 < ¢ <1, we obtain exactly the same statement

f+0(n™%) it a<l1,
Bal) = f+0(1°i”) i oa=1.

b) Polynomials orthogonal over o finite interval [a,b]. Here X =X,
=X, = C[a,b] and ¢, = p,(t), where p, () are polynomials orthonormal
with respect to a distribution da(z) whose support is contained in [a,b].
a(t) is supposed to be absolutely continuous in [a, b] and

0 < m < vrai mind (t) < vrai maxo () < M < oo.
a<Ci<h asgt<h

Let B = B,, 6 > 0, be the operator which restricts o given funetion
defined on [a,bd] to the same function defined on [a-}- 8, b— 8]
Y = ¥, is the space O[a-68,b—6]. As a consequence of investigations
of the first of us (see [3], § 1) we can state that {p.()} form a B,;-Fejérian
gystem for each §>0. We define U, = T} ;5 with this choice of U3,

{p.(?)} is, as is well known, a Jacksonian system with ¢ =0 (%). Hence
we have

(*) We might put as well Up = T5. In this case, however, our final statement
would be dlightly less precise.
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CorROLLARY 1. Under the conditions imposed on a(t) and (3.1)-(3.4)
we have

max
a4-3<t<b—8

where By(f; 1) = By(f) is defined by (2.5).

) Sturm-Liowville ewpansions. Let X =X, = X, = ¥ = ([0, =],
B=1I, U,=1T,. Let {u,()} be the system of eigenfunctions of the
Sturm-Liouville problem

w8+ (2—g@)u(t) =0, ¢eC[0,x],
w (0)—hu(0) =0, o' (x)4+Hu(r) =0,

B =101 < 08 239),

ordered according to the increasing eigenvalues. We set g, = u,(f). As
a consequence of the equiconvergence theorem of A. Haar, this system
enjoys the Fejérian property. On the other hand, it is also Jacksonian
with ¢ = 1 (see [6]), so that our theorem can be applied. What is more,
in this case we can formulate also a sufficient condition for (3.1) in terms
of by, We assume (3.2)-(3.4) and compare the

Bolfi ) = 3 (L—bea) @ (N (t)

k<n

with the corresponding trigonometric-Fourier expression
n
1 —
B 1) = --:(1+1/2 (1—1b, )u}‘;(f)eoskt).
350 == é‘ "

By Haar’s theorem and (3.7) we get, applying partial summation,
[1B2 (f5 &) —Ba(f; )l = OIflL),

which means that condition (3.1) is in our case equivalent with the cor-
responding statement for the trigonometric system. In the latter case,
however, we have a simple criterion of 8. M. Nikolski stating that

n=1,2,...,

(4.2) My =0 or Ay <0, k=0,1,...,0—1,
and

>y 1—bf

—* _ —0Q
(4.3) g?n_k+1 W

imply (3.1) for B} and consequently also for B,. Owing to (4.2), condition
(8.4) can be expressed in a much relaxed form:

1
Abrn_l,ﬂ =S 0(—%")
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All in all, we have
COROLLARY 2. Suppose (4.2), (4.3) and

1 1
bo,n =0, bl,'n =0 (-;’l«—), Ab%—l.ﬂ =0 (“)

n
Then
n 1 1
Inax g (1= bo) o () we (0) —F(B)| < 011 (Q(Wf) +max /(o) Li ”)

d) Franklin system. Let X = X, = X, =Y =0[0,1],B=1, U,
=T, and @, = yg,(t), where {y,(¢)} is the orthonormtal Franklin system
(see e. g. [1]). Using the results of [1], this system is both Jacksonian
and Fejérian, so that our theorem applies. Nevertheless, in this case one
can deduce in a trivial way a more precise resulf.

5. Let X be the linea,r/space of those functions f(x) defined on
(—o0, +oo), which are bounded and uniformly continuous on the
‘whole real axis. Let

Ifl, = sup |e"*Pf(a)],
<T< 00

Ifl. = sup |f(w)
— 0L L A 00

and Uy, = T}.

Let further {p,(¢)} be the system of orthonormal Hermite-polynomials
{27 (n!)" ¥ %Y H, (2)}. Refining a theorem of the first of us (see [37),
we will prove that {p,} is Fejérian. We note also that it is $-quasi-
Jacksonjan; this follows from a more general theorem of M. M.
Dzrbakian (see [2] p. 430-431, Theorem 7h).

We refer to the following inequality, proved in [3]:

1 n~-1 Z-+dp
(5.1) ;Z 18.(f; @)] < {K, () f P& agyn 4
2 IRRACIP” FLL® s
Frm | [ =l
‘where
n—-1
Eu(@) = ) pi(o)
Km0
and

= 27/'.’(,‘,!)-1/2 -l
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is the coefficient at a, in ¢, (2), so that
. s 12
(5.2) max —= = 0(n"?).
v<n Yo

As in [3], we insert t+ = 1—n"" into the formula

- ta®
N R @) = (1— ) (
™ f___éfp() ( )" “exp 111

and obtain
(5.3) Ko (2) < (1 —n‘1)2¢3(w)(1—~n“’)" = o).
v=0
Putting in (8.1) 6, =»""* and using (5.2) and (5.3), we have finally

210 1 5 *r2
e D) I ) = 0Gsuple 1)),

whence
Fu(Hh = O(Iflh), q.e.d.
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