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On the theory of inductive families
by

W. SLOWIKOWSKI (Warszawa)

Introduction. This baper presents the complete and final version
of the ideas primarily developed in [4] and [5], i. e. a certain method for
handling the closed graph and the open mapping type of theorems in
inductive limits of (#)-spaces. It is essentially based on the results of
[11] and should be read with the assistance of [11] or [9]. The results
presented here have been announced in [10]. Though no applications
are given here, the paper is meant to give a background for the theory
which was partially outlined in [6]-[8]. It is only natural that in the course
of time and in connection with increasing number of applications the form
of [4] and [5] necessarily changed. After several attempts had been made
to improve the version of the theory, the most elegant and convineing
way was accepted and it is thoroughly carried out in this paper.

As it happens the methods Dresented here are rather distant from
those of the well-known Ptak’s and related papers [3]. Never-
theless, the briliant Ptak’s analysis of the kind of problems had its reflec-
tion already in [11] through the accepted terminology.

Though there is an easy to follow natural dependence between that
what is understand as the open mapping and closed graph topic in [3]
and what is done here, we are not going to diseuss it in this Paper waiting
for some other oceasion to do it. This is because this paper is to be followed
by the one which will discuss Example I of this paper and we restrict
ourselves here only for what is necessary for that coming paper.

The reader should notice that the only statements that make the
theory presented here applicable to some inductive family 9 ¢(SF) are
those stating about existence of an overwhelming set of components
in Q). Nince in this paper the only distingnished subclass of (% ) is that of
(&% )-families, the said vole of linking the general approach with (Z,%)-
tamilies is played by Propositions 1 and 2 of this paper.

It i8 obvious that there are classes much wider than the class of ¢*-fa-
milies, for which propositions parallel to Propositions 1 and 2 of this
paper can be proved. However, it goes beyond the limit set for this paper,
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We mention, finally, that the terminology and notation accepted here
i of [11].
agTe(}J:Zl t1]1115 tf::all aE; tille beginning a certain definition given in [11].
Tor linear topological spaces (U, 7) and (V, o) we writev(U, 7) <(V, o)
iff V is a subspace of U and the identical injection of (V, ¢) into (U, 7)
is continuous. ) . ‘
A family 9 of linear topological spaces is said to be an inductive
family (cf. [7]) iff D is directed by the relation < as follows. Tolgvery
(Usy 7)€, ¢ =1,2, there corresponds (U, )€ such that (U, v,)
< (Uyyw) for 4 =1,2. ' o
An induective family 9, is said to be coarser than the inductive farily
Q., which we write 9, < s, iff to every (U,, .rz)e‘fl)g‘ there eormsponfls
(Uy, 11)¢D, such that (U, n) < (U, 1); D i8 equivalent to @, iff
D: <9, and D, < D; Oy is cofinal with D, iff D, « Y, and Y, < D,.
With any inductive family 9 we associate the lincar space

D= U U.
(U)ed

The reader will notice that this definition and the analogous one given
in [11] on the occasion of defining pre-(#)-sequences coincide one with
the other on objects being simultaneously subject to both of the defini-
tions.

For any subspace Y < [9|, where O is an inductive family, we
define ‘

YAD={XAU,):(U,7)eD},

where the topology induced by = on ¥ ~ U is denoted by the same letter 7.

We introduce the notion of convergence in inductive families fol-
lowing the well-known pattern. Let @) be an inductive family. A sequence
{3 = 191 lends to zero in Y iff there exists (U, 7)< such that {z,} = U
and {z,} tends to zero in (U, 7); {w,} tends to we|D| iff {w,— x} tonds to
Zer0.

Any |9,|-valued function 7' defined on |Q,|, where ¥y, ¢ =1,2,
are given inductive families, iy said to bo sequentially continuous from
D, to O, iff for every sequence {w,} = |, we have {I'r,} tending to
Tz in O, whenever {s,} tends to @ in Q. It an inductive family X consists
of countable number of elements arranged in the form of o sequenco
X ={(X,, m)} with (X,,7,) > (2 ety Tagr) for mo==1,2,..., then %
is called an inductive sequence. An inductive family of (#)-spaces is called
an (JF)-family and an inductive sequence of (#)-gpaces is called an (SF)-
sequence.

We shall describe now some special kind of (S%)-families leading
to several important examples.
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Let 4 denote once for all the set of all increasing sequences of na-
tural numbers. Congider a double sequence {( Xy I l16.0)} of linear spaces
provided with single pseudonorm each. Assume that all ¥,» are subspaces
of a fixed linear space Y.

For arbitrary k = {k,}e#" we define

Yk = Ol Ykn,na
7, = the topology induced in ¥, by {|- [, .:n =1,2,...}.

Let the following conditions be satisfied:
1. (ylc,m ”'”h,n) = (Yk+1,n7 ll'llk+1,n) for k,n = L,2,..,

[}
2. U Y = Y for every a.
k=1 -

We assume additionally that every (¥, ), ke, is complete, i. e.
is an (#)-space.

It is easy to see that for every {(¥y.,, [*|l,)} satisfying the condi-
tions given above the sef

D = {(Tsy w):ket}
constitutes an (SF)-family.

The family 9 is called a o*family (*) and the double sequence
{(¥ims I' k)t — a decomposition of the family 9. It is obvious that
a given (S&)-family may have several different decompositions indicat-
ing that it is a o*-family. It is left to the reader to check that countable
(S&F)-families are equivalent to some very particular kind of ¢*-families.

An (SF)-family is said to be an (L F)-family (an (Lo F)-family)
iff it contains a cofinal (S&)-sequence (a cofinal ofamily). The class
of (&, F)-families will be denoted by (#1%) and the class of (Lo F)-fa-
milies by (L,#).

Examples which will come now correspond with that of [11] taken
in the order III, IV, V, VI of the numeration used in [11].

Bxawpres. I. Congider an (S%)-sequence % = {(X,, 7))} and let
for every n the sequence of pseudonorms {||- [tk =1, 2, ...} be pointwise
non-decreasing defined on X, and inducing the topology 7, in X,. Denote
by X’ the linear space of all functionals defined and linear on |%| with

restrictions continuous in every (X,, z,) separately.
Let

”mul*‘.m = Sllp{lw’m[ weX,, Hka,'n. < 1}
() The notion of o®-family coincides with that of o*-family introduced in [7],
Pp. 518, and used in [10] already as o®-family. The substitution of “>” instead of “*»
was done to avoid confusion with the notation concerning the concept of polarity.
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for we|%X| and R
Xlt,n = {"» X '||0&‘ Hk,n < OO}.

Tt is easy to see that {(Xia, I [ka)} repreﬁgeptg & cor‘n'm'p o*-family
which we shall denote by %*. Clearly |[%*| = X'. It will trivially flollow
from Corollary 3 of this paper that x* dogs not depe:r}d on the qhome of
{lI I} up to the relation of equivalence 1gtr0ducec1 jn (Jf_ﬁr’ ). Morcover,
eqm’%alent (#F)-sequences ¥ lead to equivalent %* which belong to
the so called adjoint class of equivalence.

A separate paper will be devoted exclusively to more extend studies
of this important example.

II. Consider a topological space B and suppose that there exists
a double sequence {Ry,} of open subsets of & such that

i «
Ry 2 Brpqy  for  Ekym=1,2,..,

and
UBpn==E8 for {k}et".
N=1

For every scalar-valued function f defined on R we introduce a pseundo-

norm
||f”k,n = sup {lf(r)i :"'€Rh,n}

and we put an additional assumption stating that for every continuous
function f we have

inf{“f”k,n:k =1, 2, } < oo
for every natural a.

The double sequence {(qfk,vm ”'“ls,n)}s where (glc,n == {fe({f(lﬁ). ”f”k,n
< oo} and #(R) denotes the space of all continuous functions on I, is
a decomposition of a certain o’-family which we denote by C(R). Tt is
clear that |C(R)| = #(R).

Let, for instance, B be a separable o-compact space. Denoting by
{Brnik=1,2,...} the sequence of neighbourhoods of a compact set
K,, we find that {R,,} satisfies the above listed requirements whenever

Kyc Ky forn=1,2,... and B = UK,.
Pusal

IOI. Let (X, w), ¢ =1, 2, be two (F)-spaces. Suppose that topolo-
gies 7; are given by pointwise non-decreasing sequences of pseudornoring
{I'limin =1,2,..} for i =1, 2, respectively.

Denote by & the set of all continuous linear mappings of (X, )
into (X, 7,). Define

”AHIE,’IL = Bup{l‘Am'l,n: |m[2,h < 1}
for 4% and
glcn = {'.,E€.(f: “AHIG,n < °°}
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It is clear that {(Zi., || |lba)} 18 & decomposition of a o*-family.
Denoting this family by £ we can write 8] = £.

IV. Consider an (£)-space (X, ), where = is induced by a non-de-
creasing sequence of pseudonorms {|-|,}, and the inductive limit (Y, =)
of an (F%)-sequence of Banach spaces {(¥,, N3

Denote by &£ the linear space of all bilinear functignals flz,y) de-
fined on X X ¥ and continuous with respect to product topology =X {||[|]l.}
while restricted to Xx ¥, for n = 1,2, ...

Define

Il = sup{If (@, 9)]: [y |lln < 1, Jlale < 1}
for fe4.

Let further

gk,n = {fe'@: “f“k,n < Oo}

Here again the double sequence {(Brems I )} is a decomposition
of a ofamily. As in the previous case we have |B| = F if B denotes the
discussed o’-family.

We do not intend to quote any more examples of o>-families nor we
propose to present. any detailed discussion of the already presented
examples. The examples are supposed to give to the reader only the proper
intuition as to which kind of linear spaces with which kind of convergence
can be considered as inductive families of that special character. However,
as it was already mentioned, a separate paper will be devoted exclusively
for discussion of the Example I and related questions.

Consider an (SF)-family 9. An (F )-sequence B is said to be a com-
ponent (2) of QD iff the following conditions hold:

a. |B| is a subspace of |9,

b. If {2,} tends to 0 in [V], then it tends to 0 in Q).

¢. There is (U, 7)e? such that (U,7) < (O B.

Notice, that a component of any Q) e(FF) is always a component
of every 9, e(SF) containing 9 or cofinal with Q). The converse is not
true. Indeed, whatever is ¥ e(SF), we can always produce 9,e(SF)
with || = 9] and (U, 7)), iff (U, 7) is finite dimensional. Clearly @
is coarser than 9, but it is quite obvious that, in general, a component
of B need not be a component of Q),. .

A set E of components of Q) ¢(FF) is said to be overwhelming in Y
iff to every pre-(#)-sequence B and every linear mapping 7' of a subspace ¥
of |9| onto a second category subspace of [B] there corresponds a compo-
nent {(W,,[|-lln)}eZ such that every R(Y¥Y ~ W), n =1,2,..., is of
the second category in [3].

(2) This should not be confused with “projective component” introduced in
[6] and [8] which is a different notion.
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Again, if & is a seb of components tilmt overwhelms in SQ?“ D e(SF),
then £ overwhelms in any 9, containing D and Huch‘ 17]}:1,1. D] = |DI.
Knowing already thab components of 2 are not ITOO(‘JHHA&L"lly.('r()m])(ment,s
of 9, contained in Y, we find that the converse is J@ot true. o

We shall study the notions of component and m;erwh.el.mmg set of
components using the introduced special case 0? c—fay}}hog. |

With any decomposition {( ¥, I lkn)} of a given o*-family 9 and
with any k = {k.}e#" We associate a pre-(F)-sequence .

[
Tron = (VY1 ey, == A ||
3. ?')la = {( ch,m H : Hh,n)} ) where ylr,,n. - QL.Y,{M and ” Hh,n max {H “/u,,,,:,

i =1,...,n}

Notice that

(Ys 7} = (N D

ProPOSITION 1. If {(Ximy ' llen)} 48 @ de(amn,posilmimr, of a o*-family
Q, then every Dy, ke A", given by 3, is a component of D.

Proof. We are supposed to show that for any lCe./.V ‘ am% any sequence
{yn} © |By.), such that {y,} satisfies the Cauchy condition, in. [EZ),J, there
correspond he and ye¥, ~|Dy| such that {yﬂ,} < Y, and .{i'./‘”} tiends
to y both in (¥, 7,) and [Dy,]. From A of Proposition 1 of [117] it follows
that if {y,} satisfies the Cauchy condition in [D], then to every pﬁhere
correspond m, such that y,—y, ¥y, for n,m = m,. Then, using 1
and 2 we find that to every p there correspond hy, 3= kb, such tlx.:mli'y h = {lg,}{,,}’ eN
and vy Ym} < Y, PR Sinee Yp— Ym eyk,,p < YIL,J: and “:'/mpe Ll
we hi::/;(; Yn 7=Jn(?1;i“‘?/m;;:‘f’/mpeyhpm for ')17') = '"2/)7- Th(bl‘]f {} = Xy, nsing 1
we find that
hffbl”yn—'ym”h,n =0

for every p, and finally there exists ye¢¥), such that {y,} t_o.nds to ¥ in
(¥n, 7,)- Now, for any fixed p we put k, = {k, ...,'lc?,, Ty 1y T o - }e./V'
We have {'yn—ymp: n = my} < 'Y,zz, satisfying _the Cauchy co‘ndlbjmn. in
(Y,cp, r,ep) and so it tends to some zl,e,Y,cp. Since (Y Ty r,,w) = (Y, )
the considered sequence tends to 2, in (X, 7,,) a8 well and wo have ¥ — ¥,
=tpe ¥y, = ¥y Thus, for n > my wo have gy = (Yu=Yur,) = (Y, =
—4)e¥y, and from the continuity of [|[,, in (Y, 7%,) W0 (,.nbtmu
B0 ([~ Yl p = B0 (Y — Yonp) — 2pllegy = 0. Homeo {y,} londs to y in Dy
and the Proposition follows.

ProrosITION 2. Consider a o-family D and a decomposition {('Jfk,,n,
llen)} of O. The set B = {Dp: ke A}, where Yy, are defined according
to 3, is overwhelming in .

Proof. Take a pre-(#)-sequence B and let 7 map Y <

a second category subspace of [B1. Tt follows from 2 thab ’Ul T(Y ~ Yia)

ontio
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= T'Y and then for at least one %; the set T'(¥Y ~ Y1) is of the second
category in [B]. Suppose we have found Iy <ly<... <k, such
that T(X¥ ~ Yp,-1) i8 of the second category in [V], where for any
Fyy ooy by we write X, = Yp 4~ .o~ Yi,». We have T(Y ~ Y, _y)
=]U T(Y ~ Ygp-t ~ Ypu) and then for at least one k, the set
fe=1

T(Y ~ Y1~ Yipo) = T(Y ~ X,,) is of the second category in [B].
In view of the inclusion ¥, « ¥y, We can take k&, > %, ,. We have
produced ket” with T(Y ~ ¥,,,) of the second category in [B] for
every natural n. This finighes the proof of Proposition 2.

This paper is arranged in such a manner that all the Theorems are
proved for arbitrary (S&)-families. This is achieved by introduction of
the notion of an overwhelming set of components. With that kind of set
up Propositions 1 and 2 are needed exclusively for showing the applica-
bility of the general theory to (Z,%)-families.

However, it has been indicated and practically even shown in [4]
that the class of (SF)-families admitting overwhelming sets of compo-
nents is much wider than that of (%,%)-families. This justifies the intro-
duction of overwhelming sets of components.

It has been explained in [11] what it is a complete-closed mapping
of pre-(F)-sequences.

Now, having introduced the notion of inductive families we need
a certain additional definition.

Suppose that (X, %), ¢ =1, 2, are two linear spaces each provided
with a sequential topology by way of establishing sets of sequences con-
vergent to zero x;, ¢ = 1, 2, respectively. We call {z,} convergent to zero
iff {z,—2} converges to zero.

A mapping T of a subspace X, = X, into X, is said to be closed re-
lative to (X, x,) iff for every {m,} < X, with {z,} tending to & and
{Tz,} tending to y we have zeX, and Tx = . :

In the case X, coincides with the whole X,, we drop for the sake of
brevity the word ‘“relative” calling the mapping closed.

In all conerete cases appearing later we shall accept as the sets of
sequences convergent to zero those which have been already defined as
such in the considered cases.

For any component B of a Y e(FF) and any subspace Ye|D| we
write

Y A BEYY A 1B, [ )}

The following Proposition commects complete-closed mappings and

mappings closed relative to some Q):

PROPOSITION 3. Let D e(SF), B, be a pre-(F)-sequence and T — a linear
mapping of a subspace ¥ < || into |B|. If T is closed relative to D), then
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for every component B of D the mapping T’ restricted to a mapping of [ Y ~ B
into [B,], is complete-closed.

Proof. If {y,} is a Cauchy sequence in [¥ ~ B] and {T%,} tends
to some 2 in [B,], then from the definition of a component of ¥) it follows
that {y,} tends to some y<|Y| ~ |B| in both Y and [B]. Hence y¢ ¥ and
Ty = z which proves that 7' is complete-closed while restricted to [¥ ~ Q.
The proposition is proved.

In [11] there have been proved the Open Mapping Theorem in two
different versions and the Closed Graph Theorem in one version.
In this paper we ghall prove some other versions, two of the Open
Mapping Theorem and two of the Closed Graph Theorem.

THEOREM 1 (The Open Mapping Theorem IIL, ¢f. (47, [11]). Consider
an (SF)-family D provided with a set 5 of components, overwhelming in ¥,
a pre-(F)-sequence B, and o linear mapping T of a subspace ¥ < ()] into
[B,]. Assume that the image of Y 4 of the second category in [B,] (it happens,
Jor instance, if B, is an (F)-sequence and TY contains |nB,| for some n).

If T is closed relative to D), then there evists B e 5 such that the mapping
restricted to the mapping of [Y ~ B] into [B,] is open.

Proof. Since TY is of the second category in [DB,], we can find
BeF such that every T(X¥ ~ |nQB|) is of the second category in [9,].
Furthermore, 7' iy closed relative to ¥ and then from Proposition 3 it
follows that T is complete-closed restricted to the mapping of [¥ ~ B]
into [,]. Hence, we can apply Theorem 2 of [11] and find that 7' re-
stricted to the mapping of [¥ ~ B] into [B,] must be open. This finishes
the proof of Theorem 1.

TeEOREM 2 (The Closed Graph Theorem II, cof. [5], [11]). Consider
an (SF)family D, an overwhelming in D set of components H, an (F)-
sequence B, and o Linear mapping T of |B,| into |D|. If T is closed, then
there ewists B e such that T is o continuous mapping of some shift [m,B,]
into [B].

Proof. Let L = {x¢|B,|: To = 0}. Since T is closed, L must be a
[B,]-closed subspace of |B,| and we can produce the quotient (#)-se-
quence B, /L. Let T denote the factorization of I to a mapping of |G, /L]
into {)|. Clearly T is closed and [, ] /L = [B,/L]is complete. Lf we denote
by Y the image of |B,| in 9, then B = T~! ig a linear mapping of ¥ onto
|B,/L} closed relative to Q). Applying Theorem 1 we find BeF such that B
Testricted to ¥ ~ || is open as a mapping from [¥ ~ Q] into [B,/L].
Hence, from Proposition 5 of [11] it follows that there exists my such that
B(Y ~ |Q]) = Imo (B /L)| = |(m,DB,)/L|. Furher, B is open from [¥ ~ B]
into [B,/L] and then T = B~ considered on B(Y ~ |B|) is continuous
from [B,/L] into [B]. Then 7T is continuous from [m,B,/L] into [B]
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and finally T restricted to |m,B,| is continuous from [m,B,] into [BV].
This finishes the proof of Theorem 2.

From Theorem 2 we obtain the following important properties of
components and overwhelming sets of components:

—

COROLLARY 1. Suppose = is a set of components of some D e(ISF)
and B, is an arbitrary component of V. If E is overwhelming in D), then
there exists BeZ such that B, is finer than B.

Proof. It follows directly from Theorem 2 if 7 ig the identical in-
jection of |B,| into |D)|.

COROLLARY 2. Consider two (S.F)-families Q) and D, such that D < D,
and | D] = |O1l. If O admits a set of components, overwhelming in D, then
every component of D is a component of D as well.

Proof. If & is overwhelming in 9, it must be also overwhelming in
D, and then, applying Corollary 1, we find B = with B, finer than B
and so B, must be a component of ).

COROLLARY 3. If D,e(SF) contains an (FF)-family D, D] = |D|
and D admits an overwhelming set of components, than D is cofinal with D, .

Proof. It follows from Corollary 3 if we put (U, ) = M B, = [B,]
for each (U, 7)e9);.

To complete the list of the open mapping and the closed graph theo-
rems that go together with the kind of approach we have developed here,
it is necessary to add two more theorems. Though the theorems are actually
simple corollaries of Theorems 1 and 2, we shall quote them as Theo-
rems 2 and 3 because of their independent character and importance.

TuEorEM 3 (The Open Mapping Theorem IV). Consider two (SF)-
families Dy, © =1,2, let D, admit an overwhelming set of components =
and let T be a linear mapping of ¥ < |Ds| onto |Dy|. If T is closed relative
to s, then to every component B, of D, there corresponds a component B e
such that T restricted to Yy ~ |B|, where Yg = {ye¥: Ty [Ty},
is open as a mapping of [Yg, ~ B] into [B;].

Proof. Take any component B, of 9);. Restricting 7' to Yy we obtain
a mapping of Yy, onto |B,| closed relative to ¥, and applying Theorem 1
we find Ve satisfying the requirements of the Theorem.

TuroreEM 4 (The Closed Graph Theorem III). Consider two (JSF)-
families D and D;, D admitting an overwhelming set of components =,
and o Vinear mapping T of |D,| into |D|. If T is closed, then to every (Uy, ;) €D,
there corresponds (U, ) D such that TU, = U and T resiricted to the map-
ping of (U, 7)) into (U, 1) is continuous.

Proof. Take (U;, 7)Y, and consider the (#)-sequence defined as

follows. Put |nT,| = U, for every n and arrange {||s,.} to induce the
topology 7, in U,. From Theorem 2 it follows that there exists LV e& such
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that T maps U, into [B] and is continuous from (U, 7,) into [B]. Hence,
from D of Proposition 1 of [11] it follows that TU; < [N B|. Since B
is a component of 9, there must be (U, )¢ coarser than M Y and
the Theorem follows.

References

[1] S. Banach, Théorie des opérations linéaires, Warszawa 1932.
[2] J. Dieudonné et L. Schwartz, Lo dualité dans les cspaces (F) et (£F),
Ann. Inst. Four. Grenoble 1 (1949), p. 61.
[3] V. Ptak, Completeness and the open mapping theorem, Bull. Soe, Math, T'ranc,
86 (1958), p. 41-74.
[4] W. Stowikowski, On continuity of inverse operalors, Bull. Amer. Math,
Soe. 67 (1961), p. 467-470
[5] — Quotient spaces and the open map theorem, ibid. 67 (1963), p. 498-500.
[6] — On the continuity of inverse operators in (ZF)-spaces, ibid. 09 (1963),
. 832-834.
[7] — The concept of inductive family of (F)-spaces in connestion with solvabilily
of linear equations. Bull. Acad. Polon. Sei. 11 (1863), p. 517-520.
[8] — ZLinear operators in spaces of distributional type,
. 521-524.
[9] — The concept of (F)-sequence, ibid. 12 (1964), p. 465-470.
[10] — (&F)-sequences and inductive families of (F)-spaces, ibid.
p. 613-615.
[11] — On the theory of (F)-sequences, Studia Mathematica 25 (1965), p. 281-296.

ibid. 11 (1963),

12 (1964),

INSTITUTE OF MATHEMATICS OF THE POLISH ACADEMY OF SCIMNCS
INSTYTUT MATEMATYCZNY POLSKIRJ AKADEMII NAUK

Regw par la Bédaction le 10. 6. 1964

STUDIA MATHEMATICA, T. XXVL. (1965)

On some classes of functions with regard to their orders of growth

by
W. MATUSZEWSKA and W. ORLICZ (Poznan)

The aim of this paper is to investigate some classes of continnous and
positive functions ¢. Such clagses oceur in various instances, for example
in definitions of such mathematical objects as Orlicz spaces, spaces of
sequences strongly summable in a generalized sense, and, more generally,
modular spaces ete. Various conditions imposed on moduli of continuity
lead also to such classes of continuous positive functions ¢. In all the above-
mentioned situations some restrictions on functions ¢ are given which
describe, roughly speaking, the growth of ¢ as 4 — co (or 4 — 0) in com-
parison with the growth of functions from a given functional scale (in
most cases the scale of functions *). For example, in the theory of Orlicz
spaces often occurs the so-called condition A,, and in various problems
of analysis functions regularly increasing in the sense of Karamata are
of importance.

This paper is a continuation of papers [11], [8], [9] and gives a further
development of the ideas of those papers. These simple ideas consist in
the application of the so-called indices (compare 3.1 of the present paper),
and of a notion of equivalence of functions, more general than that of
asymptotical equality. The purpose of the authors is to give a possibly
simple and systematic exposition of the problems in question.

1. In this section we shall denote by % a real extended-valued funec-
tion defined for x4 > 0. The function 4 is said to be subadditive in {0, co),
if the inequality 7 (u;+ ) < h(uy)+h(u,) holds for any non-negative
Uy, iy unless the values h(w,), h(u,) are infinite and of opposite signs.
Changing in the above inequality the sign < into > we obtain the defi-
nition of a superadditive function in <0, oo).

1.1. Suppose h is monotone and subadditive in <0, co), h(0) == 0.
Under these assumpiions the following formulae hold:

.k h
(%) lim rw _ ) e for any 0 < u* < oo,
g0+ O<pp® W
h ;
(k) lim hiw) = inf Julw). for amny 0 < p* < oo.
u—oo [ )
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