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that T maps U, into [B] and is continuous from (U, 7,) into [B]. Hence,
from D of Proposition 1 of [11] it follows that TU; < [N B|. Since B
is a component of 9, there must be (U, )¢ coarser than M Y and
the Theorem follows.
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On some classes of functions with regard to their orders of growth

by
W. MATUSZEWSKA and W. ORLICZ (Poznan)

The aim of this paper is to investigate some classes of continnous and
positive functions ¢. Such clagses oceur in various instances, for example
in definitions of such mathematical objects as Orlicz spaces, spaces of
sequences strongly summable in a generalized sense, and, more generally,
modular spaces ete. Various conditions imposed on moduli of continuity
lead also to such classes of continuous positive functions ¢. In all the above-
mentioned situations some restrictions on functions ¢ are given which
describe, roughly speaking, the growth of ¢ as 4 — co (or 4 — 0) in com-
parison with the growth of functions from a given functional scale (in
most cases the scale of functions *). For example, in the theory of Orlicz
spaces often occurs the so-called condition A,, and in various problems
of analysis functions regularly increasing in the sense of Karamata are
of importance.

This paper is a continuation of papers [11], [8], [9] and gives a further
development of the ideas of those papers. These simple ideas consist in
the application of the so-called indices (compare 3.1 of the present paper),
and of a notion of equivalence of functions, more general than that of
asymptotical equality. The purpose of the authors is to give a possibly
simple and systematic exposition of the problems in question.

1. In this section we shall denote by % a real extended-valued funec-
tion defined for x4 > 0. The function 4 is said to be subadditive in {0, co),
if the inequality 7 (u;+ ) < h(uy)+h(u,) holds for any non-negative
Uy, iy unless the values h(w,), h(u,) are infinite and of opposite signs.
Changing in the above inequality the sign < into > we obtain the defi-
nition of a superadditive function in <0, oo).

1.1. Suppose h is monotone and subadditive in <0, co), h(0) == 0.
Under these assumpiions the following formulae hold:

.k h
(%) lim rw _ ) e for any 0 < u* < oo,
g0+ O<pp® W
h ;
(k) lim hiw) = inf Julw). for amny 0 < p* < oo.
u—oo [ )
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Ag is well known [3], the formula (s) is valid for an arbitrary finite
meagurable & which is subadditive in <0, o0), and so is the formula (x)
under some additional assumption on % in the neighbourhood of 0. But
we must take into consideration that 7 () may be infinite a)llld, besiqe,g,
assuming the monotony of %, the proof can be arranged in a f;hghtly sim-
plified form. Thus, for the sake of completeness, we shall give here the
proofs of (x) and (). Let us write

8 = sup Rh{u)/u.
Oyt

To prove (x) let us first suppose that the function h is non-decreas-
ing on <0, co). Then h(u) is finite for each u =0 if h(pg) < oo for some
o > 0, as a direct consequence of the subadditivity of h. Thus we have
to consider two cases:

(a) h(p) = oo for any u >0,

(b) 0 < h(u) < oo for any u = 0.

If (a) occurs, the equality () is obviously satisfied and § = oc. If
(b) takes place, we choose an arbitrary u* >0 and p* > y,. Given a p,
0 < u < g, let us denote by » a non-negative integer such that gy =
nu-+6(u), 0 << 6(u) < p. It follows that

h h h{d ()
) Mp) v M) | MW
Ho Ho B Ho
Let us assame that h(u) >0 as u—>0-4. Bub u - 0- implies
nulu, —~1 and consequently

h
(++4) b () < limint (w)
Mo perl+ u
and the inequality
h
8 < ]imzinf——g/i < limsup () <8
w0t B 0 14

follows both for finite and for infinite S. Xf the relation iu(u) > 0 a8 u —> 0~}
does not hold, then (x) —> ¢ a8 g ~ 0-- with a positive ¢. But then § == co
and h(u)/u — oo a8 u — 0+, which means that (x) iy satisfied. Let us
now suppose that kb is non-increasing on <0, co). Only two cases are Pos-
sible:

(a) h(p) = —oo for any u >0,

(0) h(p) <O for any p >0 and () >0 an u-»0-.

In any case the limit

lim h(u) = ¢

p0

icm
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exists, and h(u) < 0. Assuming ¢ < 0 we can choose for any u, >0 a se-

quence p, 0+, p+pp--... < gy, hip,) <ec. But owing to the sub-
additivity of the % we get )

h(po) < h(py+pot...+pn) <me  for

and consequently h(g,) = —co. Assuming (a) we have § = —oo and
h(u)/u — —oo with u tending to 04; so (x) is then satisfied. In case
{(b) one can apply the inequality (+), including the limiting case A{y)
= —oo. Bince h(u) -0 as x— 0+, the inequality (++) follows and
consequently also (x), if § = —oo as well. To prove (+) let us write

n=1,2,..

s = inf h(u)/u.
B>

For a non-decreasing function h for which %(u) = oo for any u > 0,
the formula (x+) evidently holds. In the second possible case, when 0 < h(u)
< oo for any p > 0, we choose u, > u* and an arbitrary u > u,. Write
# = Nuy+ 6(u), where 0 < 6(u) < go, m is a non-negative integer, the
subadditivity of % gives
) h(p) _ o B(m) n 1{6(u)

-+ ES .

“ “o B 1

Because of 0 << h(6(u) < hpo), nuple -1 a5 u—» oo, we obtain

h
s < ]iminf——(& < ]imsupm < M)

4o M 00 12 Ho

?

and consequently i (u)/u — s as u — oo, where 0 < s < oco. Let us suppose
now that % is non-increasing in <0, co). If h(u) = —oco for a certain
>0, then h(u) = —oo for u > &, and evidently () holds. Tf h(u) is
finite for every u >0, then (;") may be applied, and in virtue of

—o0 < hiu) < h{d(u) <0
this implies (x).
1.2. Suppose h is monotone and superadditive in {0, o), h(0) = 0.
Under these assumptions the following formulae hold:

h h
(%) lim L(ﬁl = inf —l(—'ul for any 0 < p* < oo,
[ R O<p<ue M
h 1
{#%) lim .i(l‘l = :up—fﬁ)— for any 0 < u* < oo.

H-roo M [
This immediately follows from 1.1, for if » is monotone and super-
additive in <0, co), then —7% is monotone and subadditive in (0, oo)
and conversely.
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9, Further we will always denote by ¢ 2 non-negative finite-valued
measurable function defined on (0, co). The following definitions and
notation will be useful in our considerations. We shall say that
o, is: a) l-equivalent, b) s-equivalent, ¢) a-equivalent to g, respectively
if the inequalities

(*) agy (k) < oa(w) < boy(kyu),

hold for: a) u = %y, b) 0 < 4 <ty ©) %> 0, respectively, where g, b,
%y, % are some positive constants. We Wﬂll denote i—equivalgnee, s-equi-
valence, a-equivalence of ¢; 10 g bY: @1 ~ 2, 01~ 0uy 01~ 0y TESPEC-
tively.

The symbol g, ~ g, will mean that ¢; and g, are asymptolically equal
for p— oo (for u —>0-), i e. that g (u) = h(u)e.(u), where hu) 0,
R(u) — 1 as u — oo (as 4 — 0-+). Bvidently o, == g; for % -+ oo (for u - 0+)
implies p; < 0s (01 ~ ;) but not conversely. Similarly to =, rl\/, ria, <
have also the properties of the equivalence relation. A function ¢ is called
non-decreasing (non-increasing) for large w (for small w) if there exists
a positive u, such that ¢ is non-decreasing (non-inereasing) in the interval
{ttg, o0) (in the interval (0, #,)). A function ¢ is called pseudo-increasing
for large w (for small u) if o ~ g, (if ¢ < 01), where ¢, is non-decreasing
for large » (for small ). Let us remark that we can always assume g, to
be non-decreasing in the whole interval (0, co). A function o pscudo-
decreasing for large w (for small «) iz defined in a similar way.

2.1, If for an &> 0 the function ¢ (u)/w’ is non-decreasing for large w
(for small w), then the inequalities (x) and the inequalitics

(%) 91(7‘31“) < ea(®) < 91(]?72/“)7 7‘717 Tty > 0,

for u =%, (for 0 <u < %,) imply each other.

Indeed, if 0 < b <1 we can assume &y, = ky; if b > 1, then because
of o, (au) < oo () for a =1, u = @, wo geb oy (kyu) = bo, (kyu) for large u
(for small u), where b, = b'’k,. Analogously we can define %, = ka'"
#0<a<<l, by="F if a = 1.

The notion of l-equivalence, as defined by (x), has been systomatically
used by Krasnosel’skii and Rutickii [6] under the additional assumption
that ¢ is convex, o(u)/u —>0 a8 u - 0}, g{u)/u -+ oo a8 % -+ co. Butb
under these hypotheses o(w)/w is non-decreasing in (0, oo), whence tho
definition of l-equivalence in the sense of Kranosel’skii and Rutickii
coincides with the more general definition of l-equivalence given above
(due to W. Matuszewska [7]).

2.2, Let us assume that, the function u'e(u) is non-decreasing for lorge
(for small uw) for a A > 0.

° ©
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(.a) A function o is pseudo-increasing for large w (for small u) if and
only if a constant 0 < & <1 ewists such that

(+) e(ug) = ko(wy),
Jor uy =y = w* (for 0 < uy < uy < u¥)

(b) A function o is pseudo-decreasing for large w (for small u) if and
only if a constant k& > 1 ewisls such that

(++) 0(ts) < ko(uy),

Jor uy = wy > w* (for 0 < uy < up < u¥).

The proof of this theorem for large u can be found in [9]; its proof
for small % follows the same lines.

2.3. (a) If ooz for u— oo (for u— 0+) where g, is non-decreasing
Sor large w (for small u), then inequality 2.2(+) holds for any 0 <k <1
and w = u* (k) (if 0 < u < w*(k)); conversely, if this property is satisfied,
then ¢ ~ g, for u— oo (for w — 0+), where o1 is non-decreasing for large u
(for small u).

() If e== o for w— oo (for u—0--) where g, is non-inereasing for
large w (for small u), then inequality 2.2 (++) holds Jor any k> 1 and u = u* (k)
(if 0 < u < u*(k); conversely, if this property is satisfied, then o~ g, for
% — oo (for w — 0+4) where g, is non-inereasing for large w (for small u).

If in addition w*o (u) for a 4 > 0 is non-decreasing for large u (for small u),
one can define o, in such a manner that uw'g, (u) is also non-decreasing for
large w (for small w).

Ad (b). Let us consider the case “for large u”. If @ =2 ¢, Where g,
is non-increasing for large % for any s > 0, the inequality

(I1—e)o1(u) <o) < (14¢2) o (u)

holds for large w, und hence
1+¢
olm) <T7—o(w)
—é&

i ouy 2w > o, where u* iy sufficiently large. If condition 2.2 (++)
for any k> 1 and w 3> «*(k) is satisfied, then

o) <supe(t) < (1+s)o(u)

Iz

holds for large w. Assuming g;(%,) < oo and defining

supe(t) i uw = u,,
i>u

ou(u) =
01 (%) i 0<u <y,
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i i tion which is asymptotically equal to ¢
X)e; i(jrbg: ;01;1111201‘;:5?;51,;1;? t]c;at %29 (u), 'ﬂ >0, i8 11_0n-dec.re%sin§ for
% > % implies the same property for v o1 (w) for large u. In fact, if « = u,,
7 and o >1, then
Wol(t) < to(t) < (aw)o(am) < (eu)'e:(au)  for
wo(t) < (aw)o,(au) for > au,

U <<t au,

and consequently
wtor(w) < (au)'e (au).
3. According to the'terminology of [7] a function ¢ (301’)1)1[}11011& a.m’l
non-decreasing for u 3> 0, vanishing only for » = 0 and tending to in-
finity as % — oo will be called a p-function. We will always denote q-fune-

tions by Greek letters ¢, v, x,... ) -
Tet us define for any g-function the following extended-valued func-

tions for positive a:

Ip(a) = limsup p(aw)p(v),

00

Iy(a) = liminf p(au)/p(u),

lyp(@) = limsup ¢ (ou) /e (v).

Us 0=

lp(a) = Yimint p(au)/p(u),
- U0

3.1. A. Por any p-function there ewist limils (indices):

‘ g lglp(a) Elg lp(a)
= - == 11 =

(1) S a—l}l’l:lHJ lga a>l lga !
o BB@ Tl

(2) S = 1<larf}oo 1g(1 o u:}l:.) lga !
. lgly(a) lg I5(a)

1= 1 P2 =su
@) T e lga | aeb lga

o gly(e) L lgly(a)
= = int )
@ % 1~]:1u]i[>100 lga i1>1.1 lga

B. For any g-function there ewist Vimits (indices) $ipy Supy iy Oops
which we define as above, but replacing L,(a), I,(a) by oy (a), l,(a) respectively.

As regards the meaning of the above formulae we shall keep the con-
ventions 1g0 = —oo, lgoo = oo, and the same conventions are tacitly
adopted in analogous situations.

The indices defined by A (2), (4) were first introduced in [11], and
these defined by (1), (3) in [10]. We can get a uniform method for proving

their existence by applying the following substitutions:
¢ =a for

f)y =lge(), ¢ =no, 0<u<oo, 1< a< oo.

icm
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We make use of the remark that
“h(u) = Lmsup(f(u-+p)—f(u)) = lg (a)
U—>00
is non-decreasing and subadditive in <0, o), and that A(0) = 0

B(u) = Hmint(f(u+ u) —f () = Igl,(a)

’

is non-decreasing and superadditive in {0; o0), and we apply Lemmas 1.1
and 1.2. We proceed analogously, except for replacing 7,(a) by o (a), Ip(a)
by liy(a); to prove the existence of the limits mentioned in B.

3.2. The indices oy, s}, Tesp. oy, si, (which may be infinite) are in-
variants of relation ~ for % — co (for » — 0) but not invariants of the 1,
s-equivalency; the indices o,, s,, resp. oy,, Syp are invariants (including the
limiting case when they are infinite) of relation & Tesp. N ([11], [10D).

3.3. By I, or D, respectively, 1 > 0, we will denote the class of p-func-
tions for which the quotient g (u)/u is asymptotically equal for % — co
to a non-decreasing or non-increasing function on (0, oo) respectively.
I3 or Dj denotes an analogous class but for asymptotical equality for
% —>0+.1,0r 15,l will stand for the class of p-functions for which the quo-
tient ¢ (u)/u’, 1> 0, is l-equivalent to a non-decreasing or non-increasing
function in (0, co) (i. e. is pseudo-increasing or pseudo-decreasing for
large u) respectively. If in place of I-equivalence we take s-equivalence,
we get the definition of class I? or DY respectively.

Let us notice that @I, resp. gD, implies @ =~ g, where p is integrable
in every interval (0,b) and g(u)/u* is non-decreasing resp. non-increas-
ing in the whole interval (0, cc). Of course, analogous remarks can be
made with respect to other classes of g-functions defined previously.

3.34. (a) If oy < 4, then peD;; if peD,, then ob < A.

(b) If 0 <2 <sy, then gely; if pely, then A <sb.

Analogous theorems are true if we replace o, s}, D,, I, by Gopy Sopy
Dj, I respectively.

For example we shall prove (a). Write o(u) = @(u)jv* and remark
that, in virtue of 2.3, g« D, if and only if inequality 2.2 (++)for any k>1
and u > w* (k) is satisfied. Let o < A. This means, in view of 3.1 (3),

the inequality [,(«) < o* for a > 1, whence
(+) plaw) <dp(u) i w > u(a).

For a given ¢> 0 let us choose ¢, such that 1 < gy < (1+ &)'4
Let o > 1 and let for a non-negative integer n the inequalities af < «
< op™ hold. From (+) it follows that

p(ou) < p(ar™u) < (o5 (u) < dlajp(u) < o (L4 2)g(u)
Studia Mathematica XXVTI, , 2
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for u > u,{ay), which means

U -
(P(Zz) < (1+e) al 11) ity = > (),
Uy Uy

and consequently o is asymptotically equal for % — co to a non-increas-
ing funetion in (0, oo). Let peD;. In virtue of 2.2(++) the inequalities

plau) < (1) a'p(w)

are satisfied for every ¢ >0 and « =1 if % > w*(e). But thiz means
l(a) <o’y 0, <1

3.3.2. (a) If 0,<}, then q?ela;,; if q?eﬁ,“ then o, < A

(b) If 0< A<s,, then pely; if pel,, then A <s,.

Analogous theorems are true if we replace o, s,, f)l, I 1 DY 04,y 84
152, 10 respectively.

For example we shall prove (a). In view of 2.2, qaeﬁﬂ if and only
if inequality 2.2(+) is satisfied for o(u) = @(u)/* for a certain constant
k > 1 and for , > u, > u*. Assuming o, < A we have, by 3.1 (4), [,(a)
<@ for an a>1, whence p(au) < a*p(u) for w>uy, p(eu) < d*akp(u),
a > . But it is easily seen that for 1 < a < & the same inequality is satis-
fied for u > w,; thus inequality 2.2(+) holds with a constant % = o’
and for u > u,. Conversely, if }ueﬁ;_ then, owing to 2.2(++), ¢(au)
<kd'p(u) for a >1, u>u* and it follows that [,(a) < ko*, o, < A

3.3.3. If @ is a strictly increasing p-function, then the inclusions peD,
(pel;) and ¢ eIy, (97 eDyy) are equivalent.

An analogous theorem iy valid for the pairs of classes D}, I3, or I3,
D}, respectively, just as for classes D,, fw,

Evidently the following inequalities imply each other when v, = ¢ (u,),
2= p(th):

for  wy = uy = u*(h),

e Mm) 1 g (wy)
WS P

for vy =0, 2 put(k)),

and thus by 2.3 the inclusion peD, implies ¢ 'el; and conversely. We
proceed analogously with the other classes.

3.3.4. If ¢ is a strictly increasing g-function and s& > 0, then s}, = 1/ch_y.
If 5, =0, then o}_, = co and conversely.

Analogous relations are true also for indices Sy Ty - - (5c0 [6] for
the case of indices s, Gp)-

Some classes of functions 19

If s, >0, s, > A > 0, then, in virtue of 3.3.1(b) and 3.3.3, ¢ eDyy,
0p-1 < 1/4 and consequently 1/s; > op_,. If 1 > op_;, then pelyy, 81> 1/4
and s, > 1/o,_;. We have proved s, =1/c,_, under the assumption
s3> 0, but proceeding as before we can find this true also if Oy < 00,
whence equations s, = 0 and 0p_y = oo are equivalent.

34. If ¢ s a non-decreasing fumction in {a,bd, where a >0, and
o (u)[u* is mon-increasing in {a, b>, then ¢ fulfils the condition of Lipschitz
in the interval {a, b).

(An analogous but slightly less general statement can be found in [2]).

Let us assume u, useda, bd, uy > u;, 4, = au,. Because of g(aw,)
< d*o(u,) we have

0 < o(ug)—e(uy) < (a‘-—l)g(ul).

Since
. M Ha—1) for A=1,
a—1<
Ala—1) for 0<2<1,
o—1 < (Ug—u)fa, 1<a<bfa,
we get

W ram o (B) (uy—uwy) it A1,

e(%)——e(%)<l 2070 (B) (ts— 1) it 0<A<1.

Remark. The lemma evidently fails when we assume either o to
be non-inereasing or the quotient g(u)/w* to be non-decreasing on <a, b).
3.4.1. Let o be positive and non-decreasing on (a, b) (& = 0, b = co are
not excluded). A necessary and sufficient condition for the quotient o(w)/uw’
to be non-inereasing on (a, b) is the absolute continwity of ¢ in any interval
Ky ">, where a < ¢ < ¢’ < b, and the fulfilment almost everywhere in

(@, b) of the imequality
+) ug'(w) _
o(w)

This follows immediately from 3.4 and the equation
(o(uyw™ = w* (o' (w)u— Ag(w)).

3.4.2. Suppose that o is positive and absolutely continuous in any
interval <c', ¢y, where a < ¢ < ¢’ <b. 4 necessary and sufficient condi-
tion for the gquotient o (u)/u’ to be non-decreasing on (a,b) (0 < a < b < oo)
18 the fulfilment almost everywhere in (a, b) of the inequality

o' ()

1< .
) < o(u)
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3.4.3. Suppose that ¢ is integrable in any interval (0, b), and that the
quotient o(u)[u* is non-decreasing (non-increasing) on (0, co). If
[ eyt
0
then o (u)/u*** s non-decreasing (non-increasing) on (0, oo), and the in-
equality wo(u)[o,(u) > A+1 (< A1) holds for every u > 0.

Let us assume, for example, that g(u)/u* is non-inereasing in (0, o).
From

o1(u) =

u

oy (u) = f O Q(u)u”’lf't“dt = %o (u)/A-+1
0

0

we obtain wg; (u)/e,(u) < A+1 and it suffices to apply 3.4.1. We proceed
analogously if ¢(u)/u* is non-deereasing in (0, oo).
3.5. For a g-function ¢ let us write

v(w) = [p(@)dt.

(a) If @eD,, then weDyq; of wel;, then wely .

(b) If @eDY, then wngH; if pely, then 1,0512“.

Analogous theorems are true for classes D, I,, D%, I%.
If peD; (peD)), then po~p for u —>oo; in addition

alw) = [e(dt < oo

in any interval (0,5) and o(u)/u* is non-increasing in (0, co). By 3.4.3,
o (w) Wt i also non-increasing. On the other hand, y =~ gy for 4 - co
(for » — 04-), since yp is a ¢-funetion, and consequently peD;,,. An anal-
ogous reasoning can be applied to the other clagses, where use is made
of the remark that from @ r\zzg (@ zig) follows ~ 01 (y ~ 01)-

4. In this section we shall write for a p-function ¢,

v(w) = [o(t)dt,

u
® u) = M for
(%)
41. The following inequalities hold:

(a) 148} <]i$infh¢(u) <8y <8y < 0, < o) < limsuph, (v) < 140,
ad Ur00

u>0.

=
1 : 1 .
() 1+sp< h%nj;ffhw(u) < 80y < 8oy < 00y < 0, < Hmsuph, (1) < 1+ o
U0

icm
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The intermediate inequalities between the indiées in (a) follow im-
mediately from 3.1. To prove the right-hand inequality in (a) let us as-
sume

limsup h,(u) << 4.
U—>00

It follows by 3.4.1 that ypeD,, whence

oy <1, 0, <limsuph,(u).
Ur00

Let op < oo, op < A. In virtue of 3.3.1, peD,, which means that
@ =2 o for u — co, where o(u)/u’ is non-increasing for % > 0, and

U

ou(u) = [o(t)dt

0
is finite for any » > 0. In view of 3.4.3 we get

uo (u)

u>0.
01(w)

h(u) = <A+1  for

But p~yg, y~p, for u—> oo implies h(u)= h,(u) for u — oo;
therefore

limsuph, (%) = limsuph(u) < i+41
U—>00 U—ro0

and
limsuph,(u) < op+1.
U—00

The left-hand inequality in (a) and the inequalities in (b) can be
proved by similar arguments.

4.2. A function g, positive for u > 0, is said to be regularly increas-
ing for 4 — oo (for @ — 04), according to the terminology of [4], [5],
it o(Au)fo(u) —g(A) as u—> oo (a8 % -—>0+4), ¢g(4) < oo, for all 1 >0
(recently in [1] the term function of regular asympiotic behaviour has
been adopted for such a function). If g(4) = 1 for any A > 0, the function o
is called slowly varying for u — oo (for # — 0-). In the sequel it will be
assumed that ¢ = ¢ iy a g-function; such an assumption is quite sufficient
for many applications. It is easily seen that g(A) is multiplicative in (0, oo0);
therefore g(1) = 1». The exponént 7, is called the index of regularity;
7, = 0, if and only if ¢ is a slowly varying function. It follows directly
from 3.1 that ¢ is regularly increasing for 4 —» oo .(for » —> 0+) and has
an,index 7, if and only if s} = o} = r, < oo, and is slowly varying for
% — oo (for w—0+) if and only if s, = g; = 0.
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4.214. A necessary and sufficient condition for a g-funciion ¢ to be
regqularly increasing for u —> oo (for u —0+4) and have an index 7, 18 that:
peD; (peDY) for all A >1,, pel, (pell) for all A <1,, 2> 0 (cf. [9], [1]).

A p-function ¢ possesses both properties in question if and 0nfy if
A < 8) < o) < A; this follows from 3.3.1. Our assertion follows immediately
from these inequalities.

4.2.2. (a) In order that o be regularly increasing for u — oo and have
an index v, it is necessary and sufficient that

(+) lim Ay (w) = L+7,.

U000
' (b) In. or.dm" that @ be regularly increasing for w > 04 and have an
inder 1y, t is necessary and sufficient that

(+4) u]irgih,,,(u) =147,

If By (u) =147, for u — oo, then, by 4.1(a), s}, = o}, = 1--r,. This
means that w_is regularly increasing and has an index 1--r,, a;mi since
i(u) =‘1p(u)u hy(u) it follows that ¢ is also regularly increasing and
; 1::,: anlmdef 7,. Conversely, if ¢ is regularly increasing and has an index o

L, = 0, = 7, and, by 4.1 (a), b, (u) > 147, for u - ) oV
(b) in a similar way. o ’ > oo One can prove

4.3. Every o-function slowly varyi
‘ - ying for w ~> co (for w — 04-) can be
represented in the canonical form of Karamaia: d ) o be

(+) @(u) = ¢(u)exp fa(t)t’ldt.
. iy

u Here c(u) is a positive and continuous function, ¢(u) —¢,c¢ >0
a(u;ll :Ooo (as w—0+4), e(u) is & non-negative and continuous f@mction;
) as ;4,—> oo (as u - 0-+). Conversely, under the hypotheses on &(u)
- ug en a(;fue, the function defined by the formula (%) is slowly 'uaryim;

oo (for w—0 but 3 ion
o 041 . +) (but, of course, not mecessarily a o-function,

Ip fact, we have

(+) up (u)
v (u)

=1+e®), up(u)=y(w) for w>0;

f::rzforeoi;o) Ii'sltnon-negative, continuous and tending to 0 as % - oo
- . Integration on both sides of (+) gi ith o
=w(uo)(1+£(u)). : (+) gives (%) with e(u) =

icm
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43.1. Bvery p-function for which o, < oo (for which sy > 0) has a re-
gresentation of the form 4.3 (x), where o(u) is a positive continuous function
for which

limsupe(w) < k(1-+o) (liminfe(u) = k(1+s))
U->00 U—>00
with @ k>0, 0 >8>0, and e(u) is a non-negative CONVINUOUS function,
limsupe(u) <o (liminfe(u) > s).
U—00 U000

Here ome may assume o = op, § = Sp.

For the indices o}, s), an analogous theorem is valid; of course,
limsup, liminf is to be taken for # — 0+ instead of % — co.

From 4.3 (+) we obtain representation 4.3 (%), where

o(u) = p(ue)(L+e(w),
and by 4.1(a) we have
limsupe(w) < o, or liminfe(u)> s
U—->00 U0
respectively.

4.3.2. Following the notation used in [10] let us denote by K, the
class of g-functions for which [ (o) »1 as a 140 and a +>1—0, and
by K a subclass of K, of all g-functions for which 7,(e) >1 for every
a>1.

4.3.3. If for a p-function @ the conditions sg > 0 oL < oo are satisfied,
then peK: and is representable in the form 4.3 (), where the functions ¢(u),
e(w) satisfy all the conditions mentioned in 4.3.1 and in addition the fol-
lowing condition:

(%) lim (ﬁmmfi(—“@) = lim (umsup c(““)) =1
arlt0 \ useo  C(2%) 0sit0 \ usoo  C(%)

Comversely, if ¢(u), e(u) satisfy the conditions listed in theorem 4.3.1
and (#x), then @ p-function of the form 4.3 (x) belongs to K. If in addition

¢(ou)

miof

o C{U)
then peKs, s, > 0.
‘Write

=1 for az=1,

g(u) = exp [e(t)idt.

%o
If s(w) satisfies the conditions mentioned in 4.3.1, the following
inequalities hold for large and arbitrary & 0 <<e <8,

(+) gu)ad* < glow) <a™g(u) for a=>1.
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If in addition ¢(w) fulfills the assumption from 4.3.1 and ¢ has the
representation 4.3 (%), then from (+) and (s*) the inequalities

.. . Clau) = Les c(au)
liminf 70 Ll (a) < (a) < a®"lims -
1141_1390 o(u) a l,(a) p(2) < @ 1,,,;;11) o(u)
follow. This implies [,(¢) -1 a8 ¢ -1, I(a) >1 if

liminf ¢(au)/¢(u) > 0.
Ur00

If 0 < 5, < 0}, < oo, then ¢ can be represented in form 4.3 (*) and ¢ (u),
¢(w) satisfy the conditions of 4.3.1 with ¢ = s;, 0 = o). Whence inequal-
ities (+), where s = s,, o = o}, for large u, hold. Since the inequalities

p(u)a
are also satisfied for any a > 1 and for sufficiently large U, wo geb

8—¢

< plau) < " p(u)

—(al~81-5'.s) ¢ au) al-—sl+2s
a 77K ( La® " for  w>w@(a)
o{u)
and (+x) follows.
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On Bochner-Riesz summability almost everywhere of multiple
Fourier series

by

CHAO-PING CHANG (Hong Kong)

L Introduction

§ 1. The purpose of this paper is to prove the k-dimensional (% >2)
version of the following theorem in Fourier series of one variable due
to J. Marcinkiewicz [2]. The author wishes to thank Professor Antoni
Zygmund for suggesting the problem and for many useful consultations
with him in the preparation of this work.

THEOREM A. Suppose f(z)eL[—mn, ], f is periodic with period. ?Tr.
If f satisfies, at every point x in a set B of positive measure, the condition

1
(1.1) If(e+h)—f(z) =0 (l/log—l—ﬁT) as h—0,

or even merely

1t = i h—0,
a2 3o —feia = 0(t o )

then the Fourier series S[f] of f converges almost everywhere in E.

Tt is obvious that at an individual point @ condition (1.1) implies
(1.2), so that it is enough to prove Theorem A under the_a W.ezb.ker ass@p-
tion (1.2). It may be remarked that condition (1.1) at an individual point x
does not imply convergence of the Fourier series Sif1 a,?: . Zygmund [6],
p. 303, has pointed out that even the stronger condition

1
(1.3) If(z+h)—f(@)] =0 (1/10gm) a8 h—>0

does not always imply convergence of the Fourier series S[f] at . Thus
Theorem A is primarily a theorem of almost everywhere convergence

of Fourier series on a set E. N ) _ . a
We now introduce notation and definitions in connection with mul-

tiple Fourier series. B, will denote the k-dimensional Buclidean space.
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