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If in addition ¢(w) fulfills the assumption from 4.3.1 and ¢ has the
representation 4.3 (%), then from (+) and (s*) the inequalities

.. . Clau) = Les c(au)
liminf 70 Ll (a) < (a) < a®"lims -
1141_1390 o(u) a l,(a) p(2) < @ 1,,,;;11) o(u)
follow. This implies [,(¢) -1 a8 ¢ -1, I(a) >1 if

liminf ¢(au)/¢(u) > 0.
Ur00

If 0 < 5, < 0}, < oo, then ¢ can be represented in form 4.3 (*) and ¢ (u),
¢(w) satisfy the conditions of 4.3.1 with ¢ = s;, 0 = o). Whence inequal-
ities (+), where s = s,, o = o}, for large u, hold. Since the inequalities

p(u)a
are also satisfied for any a > 1 and for sufficiently large U, wo geb

8—¢

< plau) < " p(u)

—(al~81-5'.s) ¢ au) al-—sl+2s
a 77K ( La® " for  w>w@(a)
o{u)
and (+x) follows.
References

) [1] R. Bojanic and J. Karamata, On slowly varying functions and asymplots
relations, Math. Research Center, U. §. Army, Madison, Wis., Tech. Summary'Rep.
No. 432, 1963.

[21 J. M.‘Chen, On two-functional spaces, Studia Math. 24 (1964), p. 61-88.

[3] E. Hille and R. 8. Phillips, Functional analysis and semi-groups, Prov-
idence 1957. ’
) [4]1 J. Karamata, Sur un mode de croissance réguliére des fonetions, Mathema-
tica, Cluj, 4 (1930), p. 38-53.
o5 [6]1 — Suwr un mode de croissance réguliére, Bull. Soe. Math. France 61 (1933),
p. 55-62.

[6] M. A. Krasnosel’skii and Ya. B. Rutickii, Oonvew functions and Orlics
spaces, Groningen 1961.

[’_7] W. Matuszewska, On generalized Orlicz spaces, Bull. Acad. Pol. Sei.,
Sér. sei. math., astr. et phys., 8 (1960), p. 349-353.

[8] — Some fwt.her Dproperties of @-functions, ibidem 9 (1961), p. 445-450.

‘[9] — Regularly increasing functions in connection with the theory of L*®-gpaces,
Studia Math. 21 (1962), p. 317-344,

[10] — On a generalization of regularly increasing funoti P
o2 drg, g y eaging functions, ibidem 24 (1964),
. [11] -—'a,nd 'W. Orxliez, On certain properties of p-functions, Bull. Acad. Pol.
Sci., 86ér. sci. math., astr. et phys., 8 (1960), p. 439-443.

[12] 8. Yamamuro Bzponents of modulared sems-ord, ?
. : : » lare -ordered, linear spaces, J. T'ac.
Sei. Hokkaido Univ. 12 (1953), p. 211-253. Y ,

- Regu par lg. Rédaction le 28. 11. 1964

icm°

STUDIA MATHEMATICA, T. XXV (1965)

On Bochner-Riesz summability almost everywhere of multiple
Fourier series

by

CHAO-PING CHANG (Hong Kong)

L Introduction

§ 1. The purpose of this paper is to prove the k-dimensional (% >2)
version of the following theorem in Fourier series of one variable due
to J. Marcinkiewicz [2]. The author wishes to thank Professor Antoni
Zygmund for suggesting the problem and for many useful consultations
with him in the preparation of this work.

THEOREM A. Suppose f(z)eL[—mn, ], f is periodic with period. ?Tr.
If f satisfies, at every point x in a set B of positive measure, the condition

1
(1.1) If(e+h)—f(z) =0 (l/log—l—ﬁT) as h—0,

or even merely

1t = i h—0,
a2 3o —feia = 0(t o )

then the Fourier series S[f] of f converges almost everywhere in E.

Tt is obvious that at an individual point @ condition (1.1) implies
(1.2), so that it is enough to prove Theorem A under the_a W.ezb.ker ass@p-
tion (1.2). It may be remarked that condition (1.1) at an individual point x
does not imply convergence of the Fourier series Sif1 a,?: . Zygmund [6],
p. 303, has pointed out that even the stronger condition

1
(1.3) If(z+h)—f(@)] =0 (1/10gm) a8 h—>0

does not always imply convergence of the Fourier series S[f] at . Thus
Theorem A is primarily a theorem of almost everywhere convergence

of Fourier series on a set E. N ) _ . a
We now introduce notation and definitions in connection with mul-

tiple Fourier series. B, will denote the k-dimensional Buclidean space.
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A single letter such as #, ¥, %, ¢, ... will usually denote a point in .
A point @ = (@, ..., @) in By is called a lattice point if its coordinates
@,,...,  arve integers. The letter » will always denote a lattice point
in B, unless otherwise stated. For any two points = = (u;,...,x),
9 = (%1, -+ Yx) in Ey we define a scalar product &y = @y,+...+a,yy.
The usual Euclidean norm in F, is then given by |o| = (x a)'* = (2?4
Foo 222 do = dwydmy. .. dm, will denote the usual k-dimensional Le-
besgue measure in Fy; while do will denote the (k—1)-dimensional Le-
besgue measure in Fy. For the k-dimensional Lebesgue measure of a set §
in Bj we shall use the notation |S|. The unit sphere |2 = 1 in K will be
denoted by Z and o = [do is the surface area of X It is wellknown

P

that oy = 252 /T'(6/2).

The distance between two sets P and @ in F, will be denoted by
dist(P, Q). 68 and §° denote respectively the boundary and interior
of a get § in ;. The diameter of a set § in F;, in symbol diam(8), is de-
fined by Sup{lz—y||zeS,yeS}

The term function throughout this paper is understood to be complex-
valued function unless the contrary is stated. A function f(z) = f(z, ...,
ax) is said to be periodic if f is periodic with period 2= in each of its inde-
pendent variables x,, ..., @;. @, will denote the fundamental cube in 1,
consisting of all points & = (2, ..., ) satisfying the inequalities —= < #;
<7 (f=1,2,..., k). If f(2)eL(Q), f is periodic, we define the numbers

(1.4) a, = (2r)~" f fl@)e™ ™z, n being lattice points,
O

and call them the Fourier coefficients of f(z). The formal series

2 @ Giwx
n

is called the multiple Fourier series of f(z) and will be denoted by S[f]
= §[f(#)]. Following the notation of the one variable cagse this relationship

iy indicated by f(x) ~ Za, ™",
For any E> 0 and any complex ¢ we define
Sk(x) = 8% (x, f) = 2 (L [l | B a6

|®|<F

(1.5)

and call it the Bochner-Riesz means of order 8 of the Fourier series (1.5).
We saiy that (1.5) is Bochner-Riese summable of order 3, in symbol summable
(B-R, 8), to a finite (complex) number s if Lim S8%(z,f) = s.

' R0

_ Bochncj,r-R.iesz summability for multiple Fourier series of % variables
18 a generalization of Cesiro summability for Fourier series of one variable.
In fact, when ¥ =1 summability (B-R, 0) is equivalent to the clagsical
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Cesaro summability (C, 6) of order 6. Bochner-Riesz summability of the
gpecial order 6 = (k—1)/2 is particularly important and throughout
this paper we shall consider only summability (B-R, (k—1)/2) for mul-
tiple Fourier series of % variables. This particular method of summability
is, in fact, the analog of the ordinary convergence of Fourier series of one
variable because it has been found that some theorems on the convergence
of Fourier series of one variable have their analogs valid for multiple
Fourier series when convergence is replaced by summability (B-R, (k—1)/2)
in multiple Fourier series of k variables. In view of the frequent occurrence
of the quantity (k—1)/2 in this paper we shall let o = (k—1)/2.

Llog*L(Q,) will denote the class of all measurable functions f(x)
defined on @ such that

[ If (@) log* |f(@)|da < oo.
(43

Similarly, L(log*L)¥(@Q,) will denote the elass such that

[ 1f(@)|{log™ |f(a) }'de < o.
Qr

Because of the frequent occurrence of the function 1/log(1/t), 0 <t < 1,
throughout this paper we shall denote it by I(¢), i.e.

1 .
0, My=1lg- i 0<t<l.

(1.6) 1(0)

We do not define I(f) for ¢ >1 although 1/log(1/f) is meaningful
for ¢ > 1. In the notation of 1() the right-hand side of (1.1) may be denoted
by O(I(|R])).

It is clear that I(t) is continuous, concave for 0 <t <1 ¢, convex
for 1/¢® <t <1 and has a point of inflection at @ = 1/

We now give below the statement of the main theorem to be proved
in this paper.

TamorEM 1. Suppose f(x) = f(@y, ..., Tx)eLlogtL(Qy), k=2, f i
periodic. If f satisfies, at every point % in a set B of positive measure in By,
the condition -

1.7 If(z+m)—f(@)| = O(R)) as [k >0,
or even merely
(1.8) na [ ife+—f@\de = O@(h)) as b >0+,

1t<h

then the Fourier series S[f(z)] of f is summable (B-R, a) at almost every
point x in the set H.
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1I. Preliminary theorems and lemmas

§ 2. A review of the proof of Theorem A (see for example [7], p. 170-172)
reveals that the following six theorems (Theorems B, C, D, E, I, G below)
on one-dimensional Fourier series have been used.

TerorEM B (Dini’s test for convergence). Suppose f(x)eL[—=, nl,
f s periodic. For any point zy and for any real r > 0 we define
Fm;r) = 2Hf(@o+r)+F(@—r)}

Then the condition

fff Zo3 T)—J (%)l

implies that the Fourier series 8[f] of f converges to f(m) at v = m,.
TesorEM O. Suppose f(z)eL[—mn, =], f is periodic, f(m) s finite
valued. Then the condition
[f (@) — f )|
[t]

da < oo for some 8 >0 (f(m,) being finite valued)

dt < oo for some >0

<s
implies that the Fourier series S[f] of f converges to f(my) at & == o,.
TEREOREM D. Suppose f(z)eL*[—w, =], f is periodic, f(2) ~ Ye,6".
If the2 Fourier coefficients ¢, (n = 0, 41, £2,...) satisfy the condition
Z‘ lea]*log || < oo (the Z’ sign here meams that the summation ewtends over
all integers n ewcluding 0) then the Fourier series S{f(2)]
almost every point x.

TeEorEM E. Suppose f
Define

of f converges at

) ~ ch ei’:m:'

(@)eL[—=, =], f is periodic, f(x

fm_u(_._

I e}, — 00 < @ < 0O

{ lf(w+t) —f(a)p
(hence g(x) is periodic). Then
fg(w)dm < oo if and only if Z' len|*log ] < oo.

TreOREM F. Suppose f(w

Lot g(ay w)eL[—mn, ], f is periodic, f(w)~ Yo,é™

) be defined as in the previous Theorem B. Then the oondmon

fg(m)dw < o

—TC

implies that the Fourier series STf ()] of f converges at almost every point w.
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THEOREM G. If f(z), —oco < & < oo, is periodic, continuous every-
where, and there exist two constants A >0, a > % such that

If (@+R)—f (@)} < ({A])

holds for all @ in (—oo, 0o) and for all sufficiently small h, say |h| <o
where 8 > 0 does not depend on the point x, then the Fourier series S[f(x)]
of f converges at almost every point x in (—oo0, co).

Theorem B is the well-known Dini’s test for convergence, from which
Theorem C follows easily as a corollary. Theorems D, E, F are due to
Plessner [3] and Theorem G follows easily from Theorem F. For a handy
reference of Theorems D, E, F, G see Zygmund [7], p. 163-164.

The question arises naturally whether or not Theorems B, C, D, E,
T, G have their analogs for multiple Fourier series of % variables (k = 2).
This question can be answered affirmatively. We shall establish the fol-
lowing Theorems 2, 3, 4, 5, 6, 7 which are the k-dimensional analogs of
Theorems B, C, D, B, F, G above respectively.

Let f(x), z<Hy, be locally integrable, i. e. integrable over every finite
sphere in F,. For any point .’ve_Ek and any r > 0 we define

f f(@)do.

E—Io] =1

Here o, = 20" |F(k/2) so that o™ is the (k—1)- dlmensmnal
measure of | —xy| = 7 in B;. Thus f(%,; r) is the mean value of f taken
over the sphere |x—x,| = 7. When k& = 1, f(#,; r) reduces to ${f(z,+r)+
+f(wy—1)}

TaEoREM 2 (Dini’s test for summability). Suppose (@) eLlogt L{Qy),
% > 2, f is periodic. If f(m,) is finite valued at a point xye By and the follow-
ing Dini’s condition

Sfl@mos r) =

fMdr<oo for some £ >0
0

(2.1)
is satisfied, then the Fourier series S[f] is summable (B-R, a) fo (=)
at = €. :

THEOREM 3. Suppose f(z)eLlog™L(Qx), k=
is finite valued. Then the condilion

RSP

2, f is periodic, f(m,)

(2.2) for some ¢ >0

it<e
implies that the Fourier series S[f] is summable (B-R, a) to f(2) af = 2.

THEOREM 4. The Fourier series of a periodic function f (w) e L (log* L)*(Qx),
% =2, is summable (B-R, a) at almost every point @ in B.
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THEOREM 5. Suppose f(x)eL(Qr), k = 2, f is periodic, f(m) ~ Y, oo,
Define

e (ol Y

lﬂg zell)

g(z) =Q{

(hence g(x) is periodic). Then

(2.3) fg(m)dm < oo if and only ile [en)*log [n] < oo
Qe w

(the 3" sign here means that the summation extends over all lattice poinis n

in By excluding (0, ..., 0)).
THEOREM 6. Let f(x) and g(x) be as in the last theorem. Then the con-
dition
j g(z)ds < oo
Y

implies that the Fourier series of f is summable (B-R, a) at almost every
point x in By,

TH:EORE.M 7. If f(o), weBy, & = 2, is periodic, continuous everywhere
and there exist two constants A > 0, o > 4 such that

(2.4) [f (@+-B)—f ()| < AV(|h])

I'LOZ.dS for all weBy, and for all sufficiently small by say |h| =X 6 where § > 0
18 independent of w, then the Fourier series S| f(2)] of f is summable (B-R, a)
at almost every point © in By, ' ’
Th.eorems 2 and 4 are due to Stein (see [5], p. 107, and [4], p. 140
respectively). A comparison of Theorem 4 with Theorem D shows that thc;
assumption %"|on]210g|n| < oo in Theorem D about f can be considerably

relaxed t‘o .feL(logﬂ‘L)z(Qk) in k-dimensional Fourier series (k > 2). For
thet.remammg Theorems 3, 5, 6, 7 we shall give proofs in the following
sections. )

- §3. It ig inough .tf’ show that the assumption (2.2) of Theorem 3
;?rglllslsa’the Dini’s condition (2.1) of Theorem 2. Using the polar coordinates

fy(t)dtr—f{ f g(t)da} dr

e Y=t
by setting g(t) = |f(ao+)— f(w)|/[t|* We have

3. g
R k{MLlf(wo+t)—~f(mo)ldcr}d?u
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Taking absolute value on the identity

[ (f@o+t)— f(ze)) do

=

1
s 1) —Ff (@) = —crk—rk‘—l
and then dividing throughout by » we have

@o; 1) — (@,
T ZTON ¢ rr [ if(at-o~s(aldo.
) =r
Integrating the above inequality with respect to » from 0 to e and
using (3.1) we get
ar <o’ [r*] [ 1f(@+0—flaldjar

0 ty=r

f If (@ 1) —F(o)]
H r

1f (g 1) — f (o)
——-——mk at

E<e
which shows that (2.2) implies the Dini’'s condition (2.1).

§ 4. An important step in the proof of Theorem B (see [7], p. 163)
lies in the asymptotic formula

2 b
sin” ni
f it =2 f
A :

ag n—>oo, B =1,2,3,...
Actually what is really needed in the proof is the inequality

32
Smt i dt = logn+ 0(1) == logn,

. < 7 sinnt
ogn < [

J
where B, y are constants. In the proof of Theorem 5 in §9 of this paper
we shall need the k-dimensional version of (4.1) which reads: there exist
two constants A, B; depending on % only such that

dt < Blogm, for n=2,8,4,...,

(4.1)

gin’(n-t)

W-— dt < Blog|n|

Ailogin| <
J

for all lattice points n in By with |»f* > 2 (i e. |n| > 1). For simplicity
gin®(n-t)

we write
it = f
f 4]

Qr Qk

(4.2)

sin® (ngty . . - xty)

Bt.. " ... diy,

(4.3) I(n)

so that (4.2) can be written as Azlogin| < I(n) < Bilogin|.
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For any B > 0 we let Ay denote the triangular set in I, defined by

A = {(@, ...y wp)|@; =0 for ¢ =1,2,..., %; 2 +... -+, < B}

Let P, denote the rqstrietion of @y to the first quadrant in 7, i. e.
Po={@,.., )| 0 <2y <m for ¢ =1,2,...,k}.

(4.2) will be established via the following lemmas.
LemMA 1. There ewists o constant By, depending on T such that

I(n) < Bilog|n|

for all lattice points n in By, with |n* > 2.

Lemya 2. Suppose f(u) is a complew-valued function defined for all
20 and continuous there, ¢; >0 for o =1,2,..., % If f satisfies the
two conditions

(1) ﬂiﬂ eL[0, h] for some h > 0 (hence for every h > 0),
Sl 4. 4 2)

Gt T o) s integrable over A, for some h >0 (hence
&+

for every h > 0),
then, for every B> 0, the following formula holds:

f@t. + o) 1 (B
4.4 =
s i - Foal = arm ] e

LEMMA 3. There ewists am absolute constamt C (not even depending
on k) such that the inequality

sin’ (gt +. ..+ myty,) ¢
(4.5) sin' (it mty)
Q‘[ (bt 1) “> I'(k) log(mt-...+m)

holds for all Lattice points n = (n,, ..., ) with ny, > 0 for all 4 = 1,2, ..., k.
LuvmMa 4. There emists a constant 4, depending on & such that

sin2(n-¢
(+.6) Ity = [ 20D 4y > 4, 10g
A ;
for all laitice points n == (0,...,0) in E,.

Lemmas 4 and 1 are the first and second halves of the inequality

§4i12) respectively. We now prove Lemmas 1, 2, 3, 4 in the sections that
oliow.
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§5. Proof of Lemma 1. Since @, is contained in the spheere
[t < k" and the integrand in (4.6) is non-negative we have

fsinz(n-tz @< f sin® (n 1) it

=) = i
Qe 1t<k /2

= f + =TI,+1,, say.

[ES Y VP R A v
Now sin(n-t) satisfies the following estimates:
[sin(n-2)| < |(n-?)| < |0, |sin(n-t)] < 1.

Using the first and second estimates for I, and I, respectively we

have
1/in)

3 s 1 O
I, = [ Rt = |nffoy [ rdr = nffor——g = —
' msljl.ml af 2[nl* 2’
1 o
i
L < f it = o, f =L — au(logh¥*z-+og|nl).
1/in< it <k M 2n 1finj

Hence
I(n) = I,+1, < op(3+logk**x) + i log|n| < Bylog|n|

for all lattice points # in B, with [n]| > 2"* and for some constant Bj de-
pending on % only.

§6. Proot of Lemma 2. We gquote a formula from Fichtengolz
[1], p. 481, which asserts the following:

If f(u) is a comples-valued function defined and continuous in 0 < u
<1 and if p;>0, =0 (1=1,2,...,k), r>0, then

Ppy—1 o1
L ok

(@ +. ..+ o)1

_ Tp)..Teo [ fauwremet
T D(pite o)) (@ut )P (geunk )

dx

ff(m1+---+mk)

Setting p; =1 (¢ =1,2,...,k) in this formula we obtain

Fl 4+ ) 1 [ fwe e
S 4

dz =
i Gy oo+ Qr) Ik qut7)..(gputr)
From (6.1) we can derive a more general formula: If f(u) is a complex-
valued function defined and continuous in-0 <% <R (R >0) and if

Studia Mathematica XXVI. 3
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q1>0 (7;:1,2,‘...,"0), r >0, then
1
6.2) f fl@t...+aw) _ 1 u*~*du
' (@1 %+ o+ Gt B (k) QW‘H“ (g1

(6.2) is obtained by making the change of variables y, = Ray, ...,
4y, = Rmy, to the integral on the left-hand side of (6.1) and by setting
g(u) = f(u/R). Thus we obtain

) Ir ‘du

~ I'(k) f (qlu—l— (gt

f g+t
(Qly1+---+!lkyk+R7’)k

which is (6.2) in another set of notations, i.e. y; instead of »; and g in-
stead of f.

For m =1,2,3,...
{fm(w)} by

Fo(®) = Pl ..., k)

we define two sequences of functions {F,,(z)},

B\
=f(ml-l-,..+mk)/(qlw1+...+qkwk+W) for 4 =20,...,2 >0,
futt) = JRE fgut =) faut ) dor w0
m 1 ponsd BRRLEC poy = 0.

Setting r =1/m (m =1,2,3,...) in (6.2) we obtain

1
(6.3) Ame(m)dm=F(-7o~)ffm(u)du, m=1,2,3,...
R 0
Now for each m =1,2,3,... we have
By (2)] = |f("71+---+97k)|R .
(Q1$1+~--+!1kwk+-—)
m
1f (@4 . )|
m for all wedy, ® #(0,...,0),
| (Rw)| w* 1 |f(Bw)
mA\U)| = < < 1.
) @ur1jm)(Gutim) = g g w for 0<u<l

Thus each member of the sequence {F,,(

#)} is dominated by the
function

flo ..+ ay)|
(@@ +. .-+ gee)’

icm
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integrable over A and each member of the sequence {f,(u)} is dominated
by the function |f(Rw)|/w integrable over 0 < w < 1. Passing to the limit
m — oo on both sides of (6.3) and using the Lebesgue dominated con-
vergence theorem we obtain the desired result (4.4).

We remark that assumption (ii) of Lemma 2 is actunally redundant
because it can be proved that assumption (i) implies assumption (ii) but
this point is of no importance to our future application of Lemma 2.

§ 7. Proof of Lemma 3. It is enough to prove (4.5) with the domain
of integration P, replaced by 4, since 4, < P; and the integrand in (4.5) is
non-negative for all points ¢ = (4, ..., ;) in P;. Hence we seek to prove

(7.1)

J(n) = fsm CURSE 1) 10g (g .. 1)

N (bt t)E )

An

for all lattice points n = (ny, ..., %) Wwith n; >0 (i =1,2...., k).
Applying the change of variables @; = mt, ..., @ = mly to the
above integral in (7.1) we obtain

1 sin® (@, +. .. 4 @)

Ny My (@1 1+ . .+ e )*
Any+.. kg

J(n) =

Our next step is to apply Lemma 2 with f(u) = gin®%. We now claim
that the function f(u) = sin*u satisfies conditions (i), (ii) of Lemma 2.
For (i) this is nearly trivial. To see (ii) we let ¢ = Min(gs, ..., ) and note
that for all points z = (#,...,%)edr We have

flwy+...+ o) :Iiiin(ﬂﬁl-f—u-“I-ﬂﬂk)\z < (my+ ...+ ay)
(41m1+---+qwk)k (91$1+~--+Qk$k)k = {Q(%‘F---"F“’k)}k
1 1 1

TE @t o) STl

which proves (ii) since the function 1 [lw*~* is integrable in any neigh-
borhood of the origin in Hy.
An application of Lemma 2 with

1
fluy =sin*u, R =(n+...+ngm, @ = (t=1,2,..,k
yields
1 sin® Ru)
(7.2) T = ). (L) I’(k)f

1 fsing(n,—k...-l—nk)vdv
- Tk v )
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It is well known that

T . g
{‘Sl]l“m’l)

1
dvzglogm as m —>oo through 1,2,3,...
0
Hence there exists an absolute constant C such that

b

(1.3) f

(7.1) now follows from (7.2) and (7.3) with m = n,4-...-n,. This
completes the proof of (4.5).

2002
sin*mo
for all

dv > Clogm m=1,2,3,...

§8.Proof of Lemma 4. We first make the following three remarks:

1. In proving (4.6) it is enough to prove it for only those lattice
points n = (ny, ..., m) with #, =0, ..., 9, > 0.

2. In proving (4.6) it is enough to prove it with the domain of in-

tegration @y, here replaced by P; (recall that P, is the restriction of Qs to
the first quadrant).

3. In proving (4.6) it is enough to prove it with [t| in the denominator
replaced by ||l and {n| on the right-hand side of (4.6) replaced by |n|.
Here ||| is another norm defined by

||50H=|W1\++|901cl, m:;(wl?"-ymla)'
Remark 1 is justified by the identity
I(nyy oy mg) = I(|my], vy ).

To see this identity we define a “modified signum funetion” s(r)
r being a real number, by setting

-1 if r<o,
1 it r>o0,

Wiﬂ.l this definition it is clear that |r] = rs(r) for all real » and that
8(r} is either 1 or —1. Applying the change of variables ‘

to= u,8(ny),

H

s(ry = s(0) =1.

b= U8(My), ...y, G = w8 (N

to the integral defining I(n) = I M1y ..., m) (see the right-hand side
of (4.3)) we have

Itn) = I(m,. ... _ 8in? (my 8y 4. .. A my )
(n) (g ooey ) Q{. E+. LR
_ f SI0® (0|10, . .+ || )
s (Ui ...+ ug)i

daty...dt,

dul...duk = I(]’Vbll, ...,I’ka|)

since s*(n;) =1, Wity = Wyuss () = [mylu; for all j = 1,2,..,k
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Remark 2 above is justified by the inclusion relation P, = Q) and the
non-negativeness of the integrand in (4.3).

Remark 3 above is justified as follows. Clearly [t} = [¢], |n] = |n|
from the definition of the norm |-|. Suppose we have succeeded in prov-
ing (4.6) with |¢| replaced by [|t], |»| replaced by |||, i. e.

dt > Azlog|n|  for

fﬁw n # (0,...,0).

i
AT

Since sin’(n-t) is always non-negative, ||t} > [f[, [[n]| = |n| and the
logarithm is an increasing function, we have

fsm‘(n-t) i > fsm'(n-t)dt, |
(93

o e log{nl| > logIn.

The preceding three inequalities together imply (4.6).
‘We now apply the remarks 1, 2, 3 simultaneously with the result
that in order to prove (4.6) it is enough to prove
sin®(n-1
[ 280 > aytog i
AT
for all lattice points » = (ny,...,n) with #; >0 (i=1,2,...,%) and
n # (0, ...,0). The above inequality in full notation can be written as

f sin® (myty . . -+ M)

(81) (. ..+ 1)

diy...dty = Aglog(n, ...+ ny)
P

where n; are integers with n; > Oforalld = 1,2, ..., kandn;+...+75 > 1
gince at least one of x,, ..., n, is an integer > 1.
‘We now prove (8.1) by induction on k, i. e. we shall derive (8.1) from

dty...dt,_y = Ag_log(my+. ..+ Me1)s

sin® (gt .o g Try)
(8.2) f =
ol Gttt

k-1
where n; > 0 are integers foralls = 1,2, ..., k—1 withn;+...+m_; > 1.

Clearly (8.1) is true for & = 1 because of (7.3) so that in proving the
implication (8.2) = (8.1) we may assume % > 2. We distinguish between
the following two cases:

Case (i). Bach of ny,..., ng is > 0.

In this case we can derive (8.1) even without using (8.2). It is already
in Lemma 3.
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Case (ii). At least one of #g,...,m; is > 0.

Sinee the value of the integral in (8.1) is symmetric with respect to
Ny, ..., we may, without logs of generality, assume that n;, = 0.

Formula (8.1) now becomes

sin? (ny by -+ Mgy te)
(8.3)  I(gy...,Mp_q,0) = f»— e YR
1) ) 11 5, (t1+---"|*tlc)k 1 k
= log(my ...+ ),
where n; > 0 are integers for all ¢ =1,2,...,k—1 with #n,--...-n_,
>1. Here the condition n,+...-ng_; > 1 comes from n,-...--n;, > 1

and n; = 0.
In the integral in (8.3) we integrate first with respect to ¢, then with
respect to ¢,...,%_, and thus have

(8.4)  I(nmyy ...,y ,0)

- {7
P bR )E S (Mt Mg B By

k=1 0

The inner integral above can be evaluated as follows:

f dty - _ 1 U=
VORI (B—1) (b oA 1) fimo
C(k—1) (s )

(8.5)

where we have written s for #,+...4#,_, for simplici ' i
) 1+ .. +t_; for simplicity. We now claim
that the integral (8.5) satisties the inequality

a
(8.6) Ia > 1
of (bt 7 (o= 1)K (. )t

for all points (¢, ..., teey) Py
In faet when (f,...,%_,)ePs_, we have certainly

(8.7) Strm=h+.. .+ tr < (nt... ) +n = kn.
Now (s+m)** > s* ' 7" gince &k > 2. Thus

8k~1 > T:Ic—l-

(8.8) (-S‘-!-—TL‘)IC_I-—
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Applying inequalities (8.7), (8.8) to the right-hand side of (3.5) we
have
k1 1

r at;
.,f G Tt~ =D m) T (h—L)F

which is precisely (8.6). Applying inequality (8.6) to (8.4) and noting (8.2)
we obtain

I(”U sy M1y 0)

1 sin® (ny b+ - M1 f1)
> at,...de,_
(F— 1)K f bttt 1 e
Ppy
= S
Z o og(ny+...+n%_1)

which shows that (8.1) is satisfied with 4; = Ay /(E—1)E*"". The in-
duction argument on % is now complete.

§9. Proof of Theorems 5 and 6. To prove Theorem 5 we begin

by showing

Qi ‘@

zofu |f(w+t)alf‘(m—t)l’ dm} i,

(9.1)

- |f @+t —fla—tP _ e\,
ITdm} @t = 4@nf* D eI (n).

3

(9.2) Qf {

Ok

The first identity follows from Fubini’s theorem by an interchange
of the order of integration. To prove the second identity we note that

F@tt) ~ Ylead™)e™,  fla—t) ~ lene™ "
for any fixed te<By. Subtracting we have
flat+t)—fle—t) ~ E(c,,min(n-t))e‘”.

By Parseval’s identity on multiple Fourier series for the integrable
function f(z+1)—f(z—1) with zeQ a8 variable we have

@n)7* [If(0+0)—flo—t)lde = D loa2isin(n- ) = 4 3" |e,*sin’ (n-1)
Qr n kit
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since sin(n-¢) = 0 when % = (0, ..., 0). Here we remark that the Parge-
val’s identity on multiple Fourier series is usually stated for I? (@) periodie
funetions but it is likewise valid for all L'(Q;) periodic functions. Dividing
both sides of the above identity by [¢|* and then integrating with respect
to ¢ over @, we obtain

. { fl@+1)—fle—yf dw} =i [ { ZME‘I{;@E@} &
[0

[t*
Q"
’ lanzSin2(n't) ! 2
= 4_2 {é{ i wdt} = 4;’ (a1 ().

In the last step of the above plr'oeess we have interchanged the
[ and ' signs, which is justified by the non-negativeness of
I

Qr n
leal*sin®(n-1) /18] for every te@y. This proves (9.2).

We are now practically at the end of the proof of Theorem 5. From
(9.1) and (9.2) follows

[9(@)dw = 4(2r)* 3 0,2 (n).
Qr n
Hence
J9(z)dz < oo it and only it D lealI(m) < oo.
Qe

W

) Because of the inequality Aglogin| < I(n) < Bilogin| for all lattice
points n with |n|> > 2 (see (4.2)) we have now

D leaPI(n) < oo if and only if D lealogn] < oo.

The desired result (2.3) follows now immediately.
The proof of Theorem 6 is now almost a triviality. In fact, we have

[9(@)dn < o0 > 3 jo,Mlog n| < 00> 37 Jault < oo
Qr n n .
> (by the Riesz-Fischer theorem) f(w)eL*(Qi) = feL(log* L)*(Q;)

> (by T}l;eorem 4) 8[f(x)] is summable (B-R, a) at almost every
& In fy.

§10. Proof of Theorem 7. By Theorem 6 it is enough to prove

a+0)—f(a—1)p

fg(m)da: < oo  where g(z) = f—lji(——-——(* dt.
(1 Q

It*
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From hypothesis (2.4) we have

Ifle+1)—fla—1)] < AI*(2]t) for all @By, teB, with i <§,
and hence
(10.1) s
Ifle+t)—flo—t)> < AP*20t) for all @eB, teE: with |f] < 5

Now the function f(z), being continuous everywhere and periodic, is
certainly bounded. Thus there exists a constant M > 0 such that

(10.2) [flea+t)—fle—1t)| <M for all wekHy, all teE.
‘Write .
g(z) = IMM at= [ + =L +L, say.
Qe It l<s/2 tfé’f

Applying the estimates (10.1) and (10.2) to the integrals I,, I, res-
pectively we obtain

¢ lf@tt—fla—1) . [ e
L= [P d< tf——fﬂk i
jt<s/2 H<s/2
Rl

dr = some constant C; not depending on z.
72 N

(here we -have used the fact that [ »™'I'*(2r)dr < oo if 2a > 1),
[1]

o+ —Ffla—ol . [ M(%)dm <[ M(%)dm
Q

I =
: =62 mk {t1=8/2
1eQy 1247
= some constant (, not depending on .
Thus

9(@) = L+1 < O, +0,
= gome constant C; not depending on z, for all zeE;.

The boundedness and measurability of g(z) implies its integrability
over @y, i. e.
f‘g (@)dx < co.
177

~

This completes the proof of Theorem 7.
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III. Further lemmas

§ 11. In this section we list the statements of some additional lemmas
which will be needed in the proof of Theorem 1in § 17.

A seb O in By is daid to be periodic if (@, ..., a;) «C implies that each
of the following 2k. points

(@ £270, Byy ooy i)y (D1, Ba 270, Doy ovvy Bp)y ovny (Bry oony Bppmyy Dok 27c)

also belongs to ¢. From this definition it follows that all points of the form
(@1 ..., Ty)2-27n, n being any lattice point in By, also belong to (.

LemmA 5 (Extension Lemma). Suppose that

(i) O is a closed and periodic set in By. f(x) is a periodic complex-valued
function defined on C.

(i) w(t) is a real-valued function defined for all t = 0 such that w(0)
=0, o(f) is continuous, monotone-increasing (i.e. non-decreasing) and
concave for all 1 > 0.

(iii) f(m) satisfies the inequality

(1L.1) f(@)—f)l < o(lz—yi)

Then there exist a periodic extension f(z) of f(w) to the whole space B,
such that the following inequality is satisfied :

(11.2) 7 (@)—F ()| < V20 (la—yl)

Before passing to the statement of the next lemma let us revert
to the funetion I(f), 0 < ¢ < 1, defined earlier at the end of § 1 by 1(0) = 0,
1{t) = 1/log(1/t) for 0 <<t <1. We have seen that I(f) is concave for
0 <t <1/, convex for 1/e* <t < 1. In certain steps in the proof of our
main Theorem 1 in §17 the convexity property of I(f) for 1/e* <t <1
ig'an. obstacle -and so it is negessary for us to redefine 1(t) for ¢ > 1/é
80 28 to make I(t) concave everywhere. More precisely stated we are seek-
ing a real-valued function A(t) satisfying the following properties:

(i) A(¢) is defined for all real ¢ > 0,

(ii) A(#) coincides with I(¢) for all sufficiently small ¢,

(ii) A(¢) is strictly increasing and concave for all ¢ = 0.

Such a function 1(t) certainly exists and can be constructed in, many
ways. One way is to define

_ 1(t) it 0t
a+pBlogt it t>1/
where a, # are constants to be determined with B > 0. Property (iii)

is clearly satisfied for all ¢ > 1/¢* since logt is strictly increasing and con-
cave for all t >1/¢* (indeed for ¢ > 0)

for any  x,yeC.

for any w,yeC.

Alt)

<1/é,
&,
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We now choose a, f in such a way that
2) 1(¢) and a+ Blogt give the same value at ¢ =1/¢,
b) the graphs of y = I(¢) and y = A(¢) have the same tangent at
1=1/¢ i.e X)) =1(t) at t =1/
These conditions uniquely determine a =1, f = 1/4. Accordingly
we now define A(¢) by
if

1 9
lflog? 0<t<1/e,

1
1—;—Zlogt if t>=1/é.

For any two positive numbers m >0, a >0 we define

a
F(m,a) = [ (a—t)" 4D dt.
0
The above integral clearly exists for all m >0, a > 0. The next
+two lemmas are concerned with certain inequalities satisfied by F(m, )
and an asymptotic expression for F(m, a) as a 0.
Levma 6. We have

1
(11.3) F{m,a) ~ (E) a™\(a) a8 a—>0.
Hence there ewists a constani 8, >0 (depending on m only) such
that

1
(11.4) F(m,a) > (%)a'"l(a) for 0<a< dn.
LiemMA 7. For any 0 > 0 there exists a positive constamt 8, ¢ (depending
on m and 0 only) such that

(11.5) F(m,a) < 207™F(m, 0a) for 0 <a<dnp.

The next lemma is concerned with the decomposition of certain
sets in Ej. A cube in Ej is defined by the set of all points (@, ..., %)
satisfying the inequality

o <o Kby G <@ Kby - o < a < by

where —oo < a; < b;<oo (j=1,2,..., k) with by—a; = by—a, = ...
— b,—a;,. The common quantity s =b—a; (j=1, 2,..., k) is called
the edge of the cube and ' is called the diagonal of the cube. A cube is
clearly a closed set. The diameter of a cube is equal to its diagonal (see
§1 for the definition of the diameter of a set). Two cubes are said to be
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non-overlapping if their interiors do not infersect even though the cubes
may intersect on the boundary.

LemMmA 8 (Decomposition Lemma). Let K be a cube in Iy, and let
K° denote the interior of K. Suppose P is a non-empty closed set contained
in K°. Then there exists an infinite sequence of mon-overlapping cubes {0:}
(j=1,2,3,...) such that )

KE—P={JQ;, Limd; =0,
i=1 j

J—00

1<yl <3 for all j=1,2,3,..,
Here d; = diameter of Q; end s; = dist(Qy, P).
. The next lemma is the %-dimensional version of a theorem of J. Mar-
cinkiewicz in one variable (see [6], p. 129, part (ii)).
LEMMA 9 Let @ be a cube in By, and P be a closed set contained in Q.
Let 6(x) = dist (v, P) for any point xek;. Then for almost every point o
in P we have

I(z) = f‘Ti(i—(Z')?dK oo.
¢

§ %2. Proof of Lemma 5. First we claim that w(¢) satisfies the trian-
gular inequality

(12.1) ow+9) < o(w)+o®) for w0, v320.

. In fact (12.1)is trivial in any one of the following three cases: (i) w = 0,
(i) » =0, (i) % = .

In the case of u = v (12.1) becomes w(2u) < 2w (u) which is a direct
consequence of »(0) = 0 and the concavity of w. Hence it is enough to
prove §12.1) under the assumption of » > 0, v > 0, u % ». Now because
(12.1) is symmetnc with respect to » and v it ig enough to prove (12.1)
by assuming 0 < 4 < . -

- By tht.a co.n(.)ayity of w(t) the point (u+v), w(u--v)) must lie on or
: ;em]i;fn Zh(;ol?n.e ]01(1:)111%)1:11@ é)o(mts (%, w(w)), (v, w(v)), and also on or below
ining and (u, w(u)). These mean 4 i in-
oqualitios, , , w(u)) ean the following two in
(v—u) e (w4 v)

< vo (v)—uw(u),
o (u+v) <

(%) (u).
Adding these two inequalities and then dividi o
oo} Loty iding by v we obtam
From (12.1) we deduce the following 'inequality-
(12.2)

]w(ul)——w(uz)l So(lu—wl), w > 0, 4, = 0.
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In fact, if u; > u,, We set 4 = u,, v = 4; — %, in (12.1) and thus obtain

o) — o(U;) < o(U—u), wy =>u 20.

If u, > u,, we set % = w4y, » = U,—, in (12.1) and thus obtain

o(U)— 0 () < 0(Us—wy), U = U 2 0.
This completes the proof of (12.2).

Reverting to Lemma 5 let us first deal with the special ease in which
the function f(z) is real-valued by proving the following

PROPOSITION. If we make the additional assumption that the function
f(x) in Lemma 5 is real-valued, then there exists a periodic and real-valued
extension f(z) of f(zx) to the whole space By such that

(12.3) @) —F@)l <ewlz—y) for z,yeb.

To prove this we construet the extension F(=) by

(124)  f(@) = Sup {f(y) — (ly—2} = %@X{f(y)—w(!y—w])}
and then show that 7(«) satisties all the properties mentioned in the above
Proposition.

First we show that in the formula (12.4) the symbol “Sup” may
be replaced by “Max’ because the supremum is actually attained. This
follows easily from the fact that the expression fly)—o(ly—m=l), with
kept fixed, is a continuous real-valued function in yeO (since f(y) and
o (ly—x|) each is a continuous function in y<C) and the set O is aclosed
and periodic set in Fy; hence f(y)— w(ly—u|) attains its supremum at
some point in C.

Next we show that j(z) is indeed an extension of f(z), 1. e. flz) = f(x)
for all points weC. For this purpose it suffices to show the following two
conditions:

(a) For some point y,e0 we have f(yo)— w([yo— %) = f(x),

() fly)— o(ly—=]) < fz) for every point yeC.

Clearly (a) is satisfied with the choice of y, = z. The assumption
(11.1), namely |f(z)—f(¥)| < w(jz—y|) for any z, yeC, implies

for @,yeC

fy)—fz) < w(ly—al)
(since F(y)—f(@) <|f(®)—F)) and so condition (b) is also satisfied.
Let

6= (0y..,0,27,0,...,0) (j
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where the non-zero coordinate 2= is in the j-th place. For each j =1,
.,k we have, by (12.4) and using the periodicity of f,

f(erea —Sup{f w(ly—s—el)}

= Sup{same expression as above but with y replaced by y-+e}
veC

= Sup{f(y+)—oly— w!}—SuD{f ofly—u|)} = f(a).

This shows that the extension f(z) is a periodic function.
We now come to the proof of (12.3) which is equivalent to

(12.5) Ho)—Fy) < ollo—yl), o yeb,
and

(12.6) —o(le—y)) <f@)—Fy), @, yeb,
together.

From the definition of the extension f by (12.4) we have
(@) =f(u)— o(lu—=z|) for some point ueC,
and for this point u we have the inequality

Hy) = fluy—e (lu—yl).
Subtracting,

fla)—F(¥) < o(ju—y))— o (lu—al).
Now (12.2) implies
— o) < a(ly—ul)  for  w >0, u, > 0.
Setting u, = |u—y|, 4, = |u—x| we have
Ho)—Hy) < o(lu—yD)—o(u—2) < o(lu—y|—lu—2)) < o(jo—y]).
In the last step above we have used the fact that w(t) is monotone:
increasing and that |lu—y|—|u—al| < [(u—y)— (u—2)| = lz—y|. This
proves (12.5).
From the definition of the extension f by (12.4) we have
@) =f@)—w(v—y|) for some point zeC,
and for this point v we have the inequality
@) = f(o)— o (jo—al).
Subtracting,
F@)— Y} 2 of{lb—y))— w(jv—al).
Now (12.2) implies

—o(lh—u) So(w)—oly,) for  w >0; 4 > 0.
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Setting u; = |[v—y|, %, = [v— x| we obtain
Ho)—f®) = o(v—y))—a(v—a)) = —o(v—yl—lv—al) = —o(z—y]).

In the last step above we have used the fact that —w(f) is monotone-
decreasing and that |jv—y|—[v—a| < |[(v—y)— (v—=)| = [¢—y|. This
proves (12.6) and hence the above Proposition.

In the general case where f(z) is complex-valued we write

fla) = glx)+ih(w)

where ¢(z) and h(z) are the real and imaginary parts of f(x) respectively.
It is clear that the inequality

flo)—f@) < o(jz—y) for @,ye0
implies
lg(@)—gW) < w(lz—yl), [h@)—-b@) <w(w—y) for z,yeC.
Applying the real-valued functions g(z) and h(x) to the above Pro-

position we see that there exist real-valued, periodic extensions 7 and 3
of g and % respectively to the whole space Ej such that
(@) -7l <o(lz—yl), Ek@)—-b@<o(z—y) for ,y0.

Define F(x) = (#)-+ik(z), then f(z) is a periodic extension of f(=)

to the whole spaee Ey. For any two points =, ¥ in E; we have
F@)—1@W)P = [§l@)—g@)F + k@) — k)P
<o (1m—yl)+w2(-lw—yi) = 20" (jo—yl|)

from which (11.2) follows at once.

§13. Proof of Lemma 6. First we prove the asymptotic formula

(13.1) A(a) =~ A(fa) as a >0 for any 6> 0.
In fact by confining a to both 0 < a < 1/¢* and 0 < 6a < 1/¢* we
have
1 1 1
Aa) = 1/log;‘, A(fa) = 1/10g—§a— = 1/(—10g0+10g;).
Hence

@) _, logo

=1—(log6)A(a).
7(60) 1—(log8)i(a)

log "

Pagsing to the limit @ —0 and noting that Ma)y—>0 as a—0 we
get A(a)/A(0a) >1 a8 a — 0.
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Reverting to the statement of Lemma 6, the inequality (11.4) there
clearly needs no proof since it follows readily from (11.3). Now the agymp-
totic formula (11.3) is equivalent to

13.2 Jimsup A ) g
( - ) a0 p a’ml(a) =
and
.. .mB(m, a)
. liminf ——r—"—~ > 1
{18.3) wa @@ T
together. We first prove the inequality
(13.4) mF(m, a) < a"(a) for all a>0.
In fact, since A(t) < A(a) for all ¢ in 0 <t < a, we have
a a
mF(m, a) f m(a— )" A At < Ala f m (a— 1) dt
0 [

= Ma){—(a—t)™}i=} = a™A(a) for all a> 0.

This proves (13.4) from which (13.2) follows at once.
To prove (13.3) we first establish the following inequality:

mF(m, a) n A(0a)
TP TP

To see this we write

(13.5) for all a>0, all 0in 0 < 0 <1.

F(m,a) = fm " 1A(L) f—|— f> fm a—t)™1A(t)de

A(6a) fm(a—t)m—ldt = 2(6a){— (a—t)"i=5.}

= 2(00) {(a— 60)"} = A(6a) {a™(L—0)"}

from which (13.5) follows at once.

To prove (13.3) it is enough to show that to every ¢ > 0 thele exists
a 0 > 0 such that

mB(m, a)

13.6
(15.6) o™i (@)

21l—¢ for O0<a<d.

Given ¢ >0 we can choose a number 0, 0 < 6 < 1, such that
L—0)">1—¢

because 2™ — 1 as & — 1 (since m > 0). Thus we have 1 > (1L — &) /(L— )™
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Referring to (13.1) we have A(fa)/A{a) -1 as a — 0. Hence to the
number (1—e¢)/(1—6)™ which is <1 there exists a number 6>0 such
that

A(Ba) 1—¢

13.7 —_—

(18.7) i(a) ~ a—o)"
Thus (13.6) follows readily from (13.5) and (13.7) and the proof of

(13.3) is now complete.

for 0<a<d.

§ 14. Proof of Lemma 7. By the asymptotic formula of Lemma 6
we have

1
F(m,a) =~ (—'r;) a™i(a) a8 a—0,

1
F(m, 0a) z(;;) (6a)"A(6a) as fa —>0,ie. as a—0.

Hence
. F(m,a) 3 m a™A(a) e A(@) _
L = L = §~"™L =6
T m, 6a)  ane M- (0a)"A(0a) T (6a)

by (13.1). Therefore to the number 26~™ (which is > 6~™) there exists
a constant &y, depending on 6 and m, such that

F(m, a)
F(m, ba)

which is the desired result (11.5).

§ 15. Proof of Lemma 8. For any cube € in E; we say O' is good
if dist(C,P) > diag(0), and bad if dist(C,P) < diag(C) (here diag(C)
denotes the diagonal of O). The sequence {@;} of cubes is constructed in
the following manner.

Step 1. Let IT; be the system of the 2% cubes obtained by bisecting
the edges of K. We select all the good cubes from I, and carry over the
bad cubes to the next step.

Step 2. Let IT, be the system of all cubes obtained by bisecting
the edges of all the bad cubes left over from step 1. We select all the good
cubes from I7, and carry over the bad cubes to the next step.

Step 3. Let IT, be the system of all cubes obtained by bisecting
the edges of all the bad cubes left over from step 2. We select all the good
cubes from I7, and carry over the bad cubes to the next step, and so
forth.

We remark that all the cubes in step 1 are always bad since P < K,
50 that the first good cubes start in step 2. The set of good cubes is cer-
tainly non-empty because P < K° implies that P is bounded away from

< 267™ for all @ in 0 < a < dpm,

Studia Mathematica XXVL 4
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the boundary of K. Thus for some sufficiently large integer m those cubes
in the system II,, touching the boundary of K will be good.

Let {Q;} = {@:, s, ...} denote the infinite sequence of all the good
cubes selected in the order of their selection in the above process. Clearly
all these cubes are non-overlapping (see the paragraph preceding Lemma 8
for the definition of non-overlapping). Let d be the diagonal of K; then
each good cube selected from the system I7,, (i. e. in step m) has its dia-
gonal = 2 "d and hence d; — 0 a8 j — oo

Since each selected cube is good, we have clearly &; <s; (j =1,
2,3,...). We now prove that s; <3d; (j =1,2,3,...). Let @ be a cube
selected in step m and let ¢ be the bad cube in step m—1 such that @
is obtained from C by bisecting the edges of C. Let s = dist (@, P), d
= diag(Q). We now prove that s < 3d. For this purpose we first prove
the inequality

(15.1) dist(Q, P) < dist(C, P)+ diag(Q).

It is enough to show that there exist a point <) and another point
yeP such that

(15.2) le—y| < dist (0, P)+- diag(@)

because dist(Q,P) < |z—y| and so (15.2) implies (15.1).

Because O and P are compact sets there exist therefore two points
yeP, z¢C such that dist(C, P) = |y —=|. Let « be the center of C. Clearly
zeQ since Q is one of the 2* cubes obtained by bisecting the edges of C.
Now 2 being the center of C and zeC imply

lz—a| < diag(@).

Here we have used the easily proved fact that the distance from any
point in a cube O to its center is < half of the diagonal of C. Hence

l—y| < |y—2|-+ [s—2| < dist (0, P)+ diag(@).

This proves (15.2) which implies (15.1). Note that the proof of (15.1)
here uses only the fact that @ is one of the 2* cubes obtained by bisecting
the edges of O but not the good or bad property of ¢ and Q.

From (15.1) and recalling that dist(C, P) < diag(C) (since C is bad)
we have

s = dist(Q, P) < dist(0, P)+ diag(Q) < diag(C)+ diag(@)
= 2diag(Q)+ diag(Q) = 3diag(Q) = 3d.

Lastly we come to the proof of

I-P = U
f=1
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Sinee @; = K—P for each j it is enough to prove |J @ » K—P,
j=1

i. e. to say any point z <K —P implies that x<Q; for some j =1,2,3, ...
For this purpose we first prove this assertion: If € is a bad cube in By
and 2 is any point in C, then

(15.3) dist (z, P) < 2diag(C).

Since C and P are compact sets there exist two points y <P, z¢C such
that dist(C,P) = |y—-=2|. Now dist(z,P) < |z—y| because y<P. Hence
dist(z, P) < [2—y| < [o—2|+ly—2| < diag(0)+diag(C) = 2diag(0).

Here we have used the following two obvious facts:
#eC and zeC imply |z—2| < diag(0),
|y —2| = dist(C, P) < diag(C) (since C is bad).
‘ Suppose e K —P. Let § = dist(z, P); then é > 0 because P is closed.
Let d = diag(K). We select the least positive integer m such that 2(d/2™)

< 8.Let (@1, Qs ..., @m} be all the good cubes selected in steps 1 through m
(here we assume that there are altogether m’ such selected good cubes).

Let B,, By, ..., By~ be all the bad cubes in II,. From the process of
gelection we have clearly
(15.4) E=Quv@u..uv@QuwuB uB w..uBpy.
We now claim that
(15.5) #¢By, ¢By, ..., 2¢Bn;

for if zeB for some bad cube B in {B;, By, ..., By}, then it would follow
from (15.3) that ) :
d
8 = dist(z, P) < 2diag(B) = 2(2—m)
which contradicts to the choice of m for which we had 2(d/2™) < 6.
Since weK—P implies wekK, it follows from (15.4) and (15.5) that
2@y u Qy ... U Qp, 1.6 © belongs to some one of @y, @y, ey Qs
§16. Proof of Lemma 9. First we observe that 6(¢) = 0 if and
only if ¢<P. Hence A(6(¢)) = 0 if and only if teP. To prove the conclusion
of Lemma 9 it is enough to show that [I(x)dr < co. Now
P

(16.1) sz(as)dm = f{f—[%(_i_(i—)]),;dt}dw =‘Qfl(5(t)) {if\m—d_w—ﬁ} i

P Q

' _—ﬁoﬂfl)z(a(t))ul—gw} it

(since A(8(2)). =0 for teP).
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Let a be the diagonal (= diameter) of the cube @. For any point
te{Q—P} it is clear that P is contained in the spherical shell consisting
of all points « satisfying the inequality 6(¢) < [v—1%| < a. Mence

dx dz dx
(16.2) S T = T
f lz—1] sy<ie~ti<a le—1i s<iai<a ]
f 7y ~dr ) a
= gy, — = 0 f—~=ak 0g ——.
iy " oy T A (%)
From (16.1) and (16.2) follows
(16.3) f I(#)dz < o f A(8())log —— 6(1

We now decompose @—P into two parts S, and 8, in such a way
that:

8, consists of all points t in @—P for which 0 < 8() < 1/¢;
8, consists of all points ¢ in @ —P for which &(f) >1 Jé".
In order to prove

[I@)ds < oo
P

t is enough, because of (16.3), to prove

(16.4) Sfl(é(t))log—é%dt < oo,
(16.5) fz(a ))log 5':; t < oo
Now for all te§, we have
0< loga—a'-— <10g—“—,,« = log2-+loga
) 1/e*

which shows that log(a/8(#)) is bounded for teS,. Olearly A(8(t) is also
bounded for ¢eS, (indeed for teQ) since 4(1) < diag(Q) = ¢ and i(s)
is an increasing function of the variable 8). Thus the integrand in (16.5)
is bounded for teS, and so we obtain (16.5).

To prove (16.4) we have, for all g,

a 1
log —— loga+log ——
l(é(t))log%)-__ 6;‘) - S0 _yy loge

1 1
log ——— e .
5 o853 TN
+ (loga) A(6(2)).
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The last term (loga,)ﬂ(é(t)) above is bounded for t¢8,. In fact, we
have ’

(loga)A(8(2)) <
Thus

(loga)A(1/e*) = }loga if a1,
0 if <1

a
A4 (8))log ——

(8(2))log— o
is bounded for #¢8; and so we obtain (16.4). (16.4) and (16.5) together
imply

fI(m)dm< oo
2

which proves the Lemma.

IV, Proof of the main theorem

§ 17. We begin with two trivial remarks. Firstly, because of the
periodicity of the function f we may assume, without loss of generality,
that the set ¥ is contained in the fundamental cube

Qe = {(m, ...

Secondly, because the conclusion of Theorem 1 concerns almost
every point  in £ we may remove from E any set of points of measure
zero, in particular we may remove from # the intersection of B with
the boundary of @;. Combining these two remarks we may assume now,
without loss of generality, that the set B is confained in @f, the
interior of Q.

‘We shall prove Theorem 1 by showing that the following condition
is satisfied:

(*) To every 5 > 0 there exists a closed set P < F with |B—P| <7
such that S[f(»)] is summable (B-R,a) at almost every point
% in P.

Condition (*) implies that S[f(2)] is summable (B-R, a) at almost
every point « in P since 5 > 0 is arbitrarily small. We shall prove ()
by establishing the following:

To every 5 >0 there exists a closed set P c F with |[E—P| <7
and there exists a decomposition of the function f(x) into two parts, say

fl@) = o(@)+y (@),

with f(z) = ¢ (=) for all points msf', where P is the smallest periodic set
containing P such that the following two conditions are satisfied:

yo)—rm <@ <n,j=1,2,...,k}.

17.1) weBy,
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CoxpITION L @(3) i8 periodic, continuous everywhere and satisfies
the inequality

17.2) lp (w4 h)—@(z)| < AI(|R])
for all ze By, and for all he By, with |h| < 1. Here A is some constant depend-
ing on >0 only.

CoxprrioN II. There exists a number ¢ > 0 (¢ depending on % only)
such that |y(x)| < co (i.e. y(x) is finite-valued) for almost every point x
in P, and that the ineguality
Iy (@+1)—

ul"

Iple+1)]
|£|7r

(17.3)

1t|<e |tj=sn

holds for almost every point  in P. (The term (%) in the integrand above
may be dropped since w(x) = 0 at every point weP).

It is now easy to see that the above two conditions I and IT together
imply condition (). In fact, because of condition I and by Theorem 7
it follows that S[p(x)] is summable (B-R, o) at almost every point «
in B, From condition IT and by Theorem 3 it follows that S[y(z)] is
summable (B-R, a) for almost every point x in P. Thus, by adding
up the two Fourier series S[p(x)] and S[y(#)] we see that S[f(x)]
= 8[e(z)]+8[y(x)] is summable (B-R, a) for almost every point & in P.
The applicability of Theorem 3 is justified by the fact that

f(@)eLlog"L(Qw), w(w)eLlog*L(Qw), w(z) = f(®) —p ()
together imply y(z)eLlogtL(Qy).
Suppose 1 > 0 has been given. We now show that there exists a closed

set Pc B with |[E—P| <7 and two positive numbers M > 0, & > 0
such that

1
(17.4) w f If(w+8)—Ff(z)|dt < MI(h) for all @eP, 0 <h <.
e
To see this we define a set H,, n =1,2,3,..., by
(17.8)

Bo=lolaeB, = [ It )i <

{H<n
It is clear that B, < B, c B,

1
wl{h), for all B in 0 < h <~ﬁ-}.

. We now show that

(17.6) U B, = leL’ =I.

Ne=]

Clearly

Cs

B,k

=1
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since B, < F for each n. Hence it is enough to prove that every point
xel belongs to B, for some m. By hypothesis (1.8), we® implies that
there exist two positive numbers ¢ > 0, a« > 0 such that

ann  — [ Ifle+n)—f(@)|dt <Gy for all kin 0 <h < a.

&
L) |<h

Choose an integer m so large that m > @, m > 1/a. Inequality (17.
remains valid if we replace ¢ by m and a by 1 /m This gives prec1se1y
wel, and so (17.6) is proved.

From (17.6) it follows that |E,| — [E| as n — co. We now choose
7y 80 large that |E|—|EB,| < #/2. There exists now a closed set Pc B,
such that (B, |—|P| < n/‘? Hence

n..n
\B—P| = |B|—|P| = (1B] = [Bay]) + (1ny| — [P]) <5 45 =17
Now for any point z<P we have weE, (since P c E,) and so =
satisfies the condition expressed in (17.5) with n = n,, i.e.

1 1
— [ If@+)—f(@)ldt <ml(h) for all hin 0 <h < —.
k H<n Mo

This shows that (17.4) is satisfied with M = n,, 6 = 1/n,.
We may assume that the number § > 0 in (17.4) is so small that

8 < 2dist(P,0Q:), 0 <1/é,

since (17.4) remains valid if we replace ¢ by any smaller positive number.
The next step is to deduce from (17.4) that there exists a constant M,
(depending on #) such that

(@) —Ffy)l < Myl

To prove this we may assume x =<y since (17.8) is trivial if © = y.
Let therefore |z—y| =h >0, 2 = (x+y)/2. Let

(17.8) (le—yl) for =,yeP with h = |x—y| < d.

i
I ={u | weBy, lu—2| < é}

denote the sphere centered at the point ¢ with radius 4 /6. Clearly we have

h 2h .
<lu—o <—, §< |w—1y| <—3— for any point wel.

el ™
w‘lgi
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The k-dimensional volume of I is |I| = O,h* where O}, is a constant
depending on % only. Define two functions &(u), n(u) by

for all w with [u—a| < 1,4 # =,

1
éw) = If(W~f@)llog .~

for all u with ju—y| <1,% #y.

) = ) —f o) log o=

The domains of definition of &(w) and #(w) certainly contain all

points % in I since h < & < 1/¢* and so

2h<2<1<1
3 T 32 10 )

For any real number ¥ > 0 we define two subsets Hy, Ky of I by

Hy = {u|uel,é(u) >N}, Ky ={u|uel, y(u) > N}.
The function £(u) is non-negative at all points u<I and so by Tsche-
bychef’s inequality we have
1

Hy < N If f(w)du = N-ljf [f)—s(@)l10g 7= du

< N“‘(log %) [ 1100 —f@)au.
I

In the last step above we have used the inequality |u—a| > h[3

for all uel.
Since the sphere I is contained in the sphere centered at » with

radius » we have, using (17.4),

[ifw—f@lde < [ [f(u)—F(@)du
I

fu—a|<h
= [ Ifle+t)—f(@)| @ < W Mi(h).
lt|<h

A combination of the preceding two inequalities gives

3
log —
3 MHh* h MKk log3
Hy| < N~ '{log —) K*MI(h) = = 4
\Hy] (ogh) == — |- (“101)
€% 85
MK log3 MpE [log3\ 2m#*
< = e
SN ( -10ge”) N (-1+ 2 )< N

Bochner-Riesz summability a7

In the last step above we have used the inequalities
1

1
0<h<d<)é, I>ez, logh > loge® = 2.

Recalling that |I] = 0,h* we can rewrite the inequality |Hy|

< 2MEEIN as
2M |1

%

Hy| <

In an entirely similar way we can prove
2M\1) -

K
Enl < Oy

Choosing N to be N, =4M|C, we then have

" I
i <, me <2 g < 11
2 2

From the last inequality and from H. ¥y © I, Ky = I it follows that
there exists at least a point u,el such that
U¢Hy,, U%¢Ky,.
Hence &(ug) < Ny = 4M(Cy, 5(u) < N, = 4M/C; which mean the
following two inequalities respectively:

aM 1 4aM 4M
o=@ <G (08 ) = S ttun—ai) < 2 aga—y,

4M 1 M 4M
o)~ < G108 ) = o) < 3.

Here we have used the fact that I(z) is strictly increasing, |uo— )
< lo—y| and |u,—y| < jz—yl.
Adding up the last two inequalities we have
8M
(@) —F ] < If (o) — (@) + 1 (40) — f ()] < *O,k—l(!w“yl)
for z,yeP with 0 < jz2—y| < 4,

which shows that (17.8) is satisfied with M, = 8 M /Ce
Let P be the periodic set; generated by P, i. e. P is the smallest periodic

set containing P. On P we define a function ¢(z) by
@(®) = f(x) * for meP.

Clearly the function ¢(z) is periodie since f(z) is so.
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Let X denote the system of all cubes of edges 2= in E) obtained by
the dividing hyperplanes

ey @y = —8m, = —m, =T, & = 3%, & = B, ...

Because of 4 < 2dist(P,0Q;) we claim that

(17.9) meP~, g/sf’, lz—y| < 6 > » and y belong to the same cubein X.

To prove this we let 0,, 0, be the cubes (from X) to which the points «
and y belong respectively. We now show that the supposition of 0., C,
being distinet cubes would lead to some contradiction.

Suppose C,, O, were distinet cubes. From the agsumption of P < @,
(8ee the remarks at the beginning of this Section) and from wel:‘, y»sl;
it is clear that we would have not only z¢C,, y<0, but actually z<Cf,
yeCy (here OF, CF denote the interiors of ¢, C, respectively). With ¢,
0, being distinet cubes from the system X the point 4 is in the exterior
of C, and the point z is in the exterior of C,.

Let L be the straight line segment joining the points # and y. As we
pass along L from the point # to the point ¥ we first meet a point b, on
the boundary of C; and then a point b, on the boundary of
O, (it could happen that b, and b, are the same point). Thus by the
additivity of the length of the straight line segment L in B, and
noting that

|m_b1| = diSt(P5 6@7«); |y—b21 = diSt(P; anc)

we have
le—y| = |[&—by|+ by —by| + b —y| = |y —y|+ |~ by
> dist (P, 0Qy)+ dist (P, Q) = 2dist(P,3Q;) > 6
which contradiets to the assumption [#z—y| < 8. This completes the
proof of (17.9).

Because of (17.9) and the periodicity of the function ¢ (), inequality
(17.8) carries over to the inequality

lp () —@(y)|

which can also be written as

o(y)]

since the two functions 1(i), A(t) coincide when 0 <t < 1/e* and we cer-
tainly have |x—y| < 1/ here (since 6 <1/é by assumption).

Our next step is to show that the restriction |#—y| < ¢ in inequality
(17.10) can be removed provided that the constant M, on the right-hand

< Mil(jw—y]) for @, yeP with p—y| < 6

(17.10)  |p(z)— < MyA(je—y|) for m,yeP with |z—y| < 6

icm°
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side is replaced by B = Max(M,, 2G/1(8)) where
@ = Sup{lp(@)| | 2<P} = Sup{lp(#)| |2<P} < oo

(the finiteness of & follows from the continuity of ¢(z) in zeP and the
compactness of the set P). In other words, we are claiming validity of
the inequality

(7.1) lp(@)— g ()] <Bi(jz—y]) for any ,yeP

without any restriction on |z—y|.
In fact, (17.11) is obvious when |[#—y| < 6. When |z—y|
yeP we have A(jz—y|) >4

>0, Jb‘el;,
(6) (since A(f) increases with ¢) and so

lp(@)—e@) _ le@)l+lel)l G+6 ( 2¢ )
< < < Max | M, B
Ho—y) = Mo—g) A0 o UAE)
which proves (17.11) when |z—y| > 8. The proof of (17.11) is now com-

plete.

Because of (17.11) we can now apply Lemma 5 (Extension Lemma)
and conclude that ¢(x) can be extended to a periodic and continuous
function to the whole space Ej such that the extension function, which
we now denote by the same symbol ¢(z), satisfies the inequality

(17.12) <V2BA(jr—y|) = AA(js—y|) for any ,ye<Ey.

lp(#) —a(

Since A(z) <1(t) for all ¢in 0 <t < 1 we can replace the 1 function
in (17.12) by the I function provided that |z — y| << 1. This shows that (17.2)
is satisfied with A = V2B. The proof of condition I is now complete.

‘We now come to the proof of condition II.

First we claim that in order to prove (17.3) it is enough to prove

lp ()]

(17.18) —_—
O |l —1t|

dt < oo for almost every z in P

because (17.13) implies (17.3) provided that the number ¢ in (17.3) is
taken to be ¢ = dist (P, 0 Q). To see this we fix on the point z<P and apply
the translation 4t = ¢ to the integral in (17.3). This gives

[ty f\ L \J‘llwt)l

[t .
ti<e -z <e t~zi<s
In the last step above we have used the obvious fact that the sphere
consisting of all points ¢ satisfying |t—#| < e is contained in the fun-
damental cube @ because ¢ = dist(P, 9Qy).
We now apply Lemma 8 (Decomposition Lemma) by setting the cube K
there to be the fundamental cube @;. This yields the conclusion tbat there
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exists an infinite sequence of non-overlapping cubes {Cj} (j =1, 2,3,...)
such that

[~

Qlc—-P = U Oﬂ
7=1

1<s/d; <3

Limd; =0 as j — oo,

forall j=1,2,38,...
Here d; = the diameter (= diagonal) of C; and s; = dist(C;, P).

Let 6(2) = dist (¢, P), teEy, be the distance function from. the set P.
Our next step is to establish the following three inequalities: There exist
three constants M,, M;, M, each depending on the numbers % and %
. (see condition (*) at the beginning of this section for the meaning of the
number %) such that the inequalities

(17.14) [lw@las < My(a)a(dy),
Oy
(17.15) (@) 2(dy) < My [ 4(8(2)dt,
Oy
(17.16)

Jle@lde < M, [ a(s(e)at
%] G
hold for all those cubes 0; from the sequence {C;} (j =1, 2, 3,...) with
sufficiently small diagonals d;, say for all d; satistying d; < f where § > 0
depends on % and 7.

Let us prove (17.14) first. Consider any cube C; from the sequence
{0} (j=1,2,8,...). Since C; and P are compact sets there exist a point
a;eP and another point b,¢C; such that

Sf = dist(()’j, .P) = ]by'—aj] .
We now assert that

[t—a; <4d; for any te(;

which is easily proved by writing
b=y < =Byl + [by— oyl < dy+8) < dj-+3dy = 4d;.

Noticing that (a;) = 0 (since a;¢P) and from f = p-u we have
now
A717) @] = [p(t)—p(a)| = {F (&) — (1)} — {f(as) — p (a)}

< IF@—Fla) +lp ) —o(a)]-
By inequality (17.12) we have

e —@lay)| < AA(i—ay]) < AX(4dy) < 44A(d)) for ‘ali iso,.

icm
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In the last step above we have used the inequality A(4f) < 44(1)
for ¢ > 0 which follows from the concavity of A(t) for t > 0 and 2(0) = 0.
Integrating the above inequality with respect to ¢ over C; we get

(1718)  [lp()—o(a)|dt < 44L(d) [dt = 44K (@) (a;).
S G

Here we have used the simple formula that the volume of a cube in
By with diagonal d; is given by ¥ *?*(d)". The estimate (17.18) is of
course valid for all j =1, 2,3, ...

The inequality [¢— a;| < 4d; for t<(C; shows that the cube 0; i8 con-
tained in the sphere consisting of all points ¢ satisfying [t—a;] < 44;.
Hence

[Fo—f@la< [ 1fo—Flalat.
G

li— aj]<ddy
The integral on the right-hand side above is equal to

[ If+a)—fla)as
1f<ad;
by a translation of variables. Applying inequality (17.4) with & — 4d;,
@ = @; we have
d

J fOta)—fla)ld < (44 MI4d)  for all & < —
1tl<ad; 4
where ¢ is the number oceurring in (17.4). In the above inequality we can
replace 1(4d;) by A(4d;) since 4d; < 8 <1/¢*. A combination of the last
two inequalities together with the concavity inequality A(4dy) < 4(d;)
yields

. )
(17.19) [ If(0)—F(a)lds < 472 (&)
G

for all d;<—z.

It now follows from (17.17), (17.18), (17.19) that
[lw@lat < [1f0—f(aldt+ [ o) —pla)idt
C’]' Cj Cj
< (4ART"P 4 4571 M) (d;)*A (&)

for all cubes C; with diagonals d; < 6/4. We have thus shown that (17.14)
is satistied with M, = 44k "R 4"+ Y, § = /4.

Before passing to the proof of the mext inequality (17.15) let us
revert to Lemmas 6 and 7 which eoncern some inequalities satisfied by
the funetion F(m, a). In both Lemmas we now specify m to be the di-
mension k and write F(a) for F(k, a), i. e. to say F(a) is now defined by

a
F(a) = [(a—t)a)dt,

0

(17.20) a>0.
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Lemmas 6 now reads: There exists a congtant J, (depending on %
only) such that

(17.21) )a’%(a) for all ¢ in 0 < & < &;.

P> (5
@) > 5%

By further specifying the number 6 in Lemma 7 to be 6 = 1/21/%
Lemma 7 now reads: There exists a constant ¢, (depending on & only)

such that

(17.22)  F(a) < 2(27&/2)"1«"(23,_) for all @ in 0 < a < &.

k

Let 8(w,, @) denote the sphere in B, centered at the point x, and with
rading a, i. e. (%, @) = {& | weHy, |v—u| < a}. When we do not wish
to specify the center @, or when the position of the center x, is immaterial
we write §(-, a). For any real number a > 0 we define a function @(a) by
(17.23) ®(a) = [ A(o(w

8(-,9)

)de, where o(w) = dist(e, 38(-, a)}.

Clearly. @(a) depends only on.a but not on the position of the center
of the sphere §(-, a). We now claim that ®(a) can be expressed in terms
of F'(a) by the very simple formula

(17.24) ®D(a) = o '(a) for any a>0.

In fact, if we specify the center of the sphere S(-, a) in (17.23) to
be the origin (0,...,0) we have o(#) = a— |#| for all points z<8(0, a).
Using polar coordinates we get

[ Mow@)de =

a
f Ma— o) de = akf7'k“1l(a~w)dr
zj<a 1

|e|<a

= akf(a—t)k—‘z(t)dt = o, F(a).
. ;

With all these auxiliary remarks we are now ready to prove (17.15).
Setting @ = d; in (17.21) and noting (17.24) we have

21
(@)A(d) < (.;i)qs(d,) for all d; with 0 < d; < 6.
k
Setting @ = d; in (17.22) and using (17.24) we have

d
&(d) < 2(27&/2)’@( }/%) for all d; with 0 < d; < 6.
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Combining -the last two inequalities we have

(17.25)  (d;)*4(dy) < M,® (jf—

for all d; with 0 < d; <

where
Zk 1/2\k 1/2 k42
Br = Min(dy, &) and M= — 22K = (28*)* 2 gy,
%

Our next step is to show

(ol <)

[a(s)a

By the definition of the function @ by (17.23) we have

q)(g’]?) - f REOLE
8(-d;/2Vk)
where o;(t) = dist(t, 08 (-, &/2VE)).

Let 2; be the center of the cube C; and let I; = §(x;, @/2]@) be the
sphere inscribed in the cube C;. (Clearly the inscribed sphere has radius
= d/2V’%.) In the integral in (17 27 ) we now specify the sphere 8(-, d; /Zf)
to be the inscribed sphere I; = 8§ (x;, d]/ZI/k). Recalling that () = dist (£,
P) and observing that the set P ]ies in the exterior of the cube C; and a for-
tiori in the exterior of its inseribed sphere I; we have clearly o;(2) < (%)
for all ¢ in the inseribed sphere I;. Hence A(o;(f)) < A(8(2)) for all tely
and so

@ (2?%) fl(a,(t) fz

In the last step above we have used the obvious fact that I; < 0;
and that the integrand A(8(2)) is non-negative for all t¢C;. This proves
formula (17.26).

From (17.25) and (17.26) follows

*lae

which is precisely (17.25). Incidentally, we have also shown that both
M; and B in the above inequality depend only on % but not on #. This
point, however, is of no importance to us here.

Finally -the .inequality .(17.16) is a direct- consequence of (17.14).and
(17.15) and hence needs no proof.

for all j =1,2,3,...

(17.27)

§=1,2,3,...

< [a(sm)ar,

Gy

)< M, [A(s(p)@  for all & with 0 < & < fi
Cj
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Our next step is to prove that there exists a constant M, depending
on 7 such that the inequality

lp(t)
l ~tl" f | —tl"

holds for all points zeP and for all cubes ; with sufficiently small dia-
gonals d;, say for all d; with d; < # where § > 0 depends on k and 7 only.

To prove (17.28) we fix on any point zeP and let g; = disti(z, C;).
‘We now claim that

(17.28)

(17.29) ¢ < lz—1| < 2¢; for all points ¢teC;, forall j =1,2,...
The first half of this inequality is obvious since ¢; = Inf{|x—1| [ teCy}.
To prove the second half we note that C; is a compact set and so there
exists a point y;e(; such that o; = dist(w, ¢;) = [v—y,l. We then have
o=t <lo—yl+ Iy~ <

Qi+di<97'+0f=2gi for t€0¢, aﬂj=1,2,...

Here we have made use of the two inequalities

y—t <d, d<g.

The first inequality follows from

Y3¢0; and teC; imply |y;—i| < diam(C)) =

The second inequality follows from d&; < s; (since 0, is a good cube)

and

= Qist (P, C;) < dist(z, 0)) = o; (since zeP).

Using (17.29) and (17.26) we have
@,

lc
g =1l

< f]tp B)d < —% fa(a (1))

lm—tlk

for all cubes C; from the sequence {C;} with d; < p where B > 0 is the
nunmber oceurring in (17.16) and depending on % and 7. This proves (17.28).
The next step is to prove the following implication:

(17.30) ’1(‘3 tl" H0) 4 o :>Ji“" Dl 2 < 0o

e for any point zeP.

Bochner-Riesz summability 65

Since Z(é(t)) = 0 and y(¢) = 0 for all {<P we can, in the two integrals
on both sides of (17.30), replace the domain of integration @, by Q,—P
without changing the value of the integrals. Thus (17. 30) is equivalent to

A CIG) A ()]

(17.31) [m——t|’“ T

dt < oo, xeP.
Qp—-P

We now revert to inequality (17.28) which holds for all cubes C;
from the sequence {C;} with sufficiently small diagonals d;, say d; < B.
Because of d; -0 ag j — co the phrase “for all cubes with sufficiently
small diagonals d;” is equivalent to “for all cubes C; with all sufficiently
large indices j”. Hence there exists a positive integer N, where ¥ like B
depends on k and 7, such that (17.28) holds for all indices j = N. Summing
the inequality (17.28) for all j == N, N1, N+2 ... we have

2 {|W(tt|k y f[m t]k zeP.

0o

Z’fl;(‘s(gk it < oo :>2 f{"” tt)l'k 0o, weP.

j=N C;

Hence

(17.32)

Using the decomposition @ —P = U C; we have

tﬁz f{wa(t

5) . (@) 4,
‘E[tm T 21 —

j=1

(17.33) f !

w—t]

Now for each fixed j =1, 2, 3, ... the cube (; is bounded away from
P and so 1/jz—t|* is bounded for aﬂ points ¢ in C;. Therefore

f A6(1) it < oo,
@

k
C']- ] _t|

and so the term

j=1,2,3,..,

O [ As)

M 200 g,

~ |z

Fa=1 C')-

on the right-hand side of (17.33) has finite value. We have thus proved
Alo(t A(8(8))

(17.34) f (00 g <:>Zf ( ()k 0o, weP.
lo— ¢} — 1

Qp—P

Studia Mathematica XXVI.
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In an entirely similar way we can prove

(17.35) f[‘ tt)ll,cdt< <—_—>Zf| t|kdt<oo, weP.

(17.32), (17.34) and (17.35) together imply (17.31) and hence (17.30).
We are now practically at the end of the proof. By Lemma 9 we
know that

6(t)
[a. tlk

for almost every « in P. Hence it follows from (17.30) that

lp@)I

x—1|"
& |z— 1]

dt < oo

for almost every » in P. This proves (17.13) which, as we have already
seen, implies (17.3). This completes the proof of eondition IT stated at
the beginning of this section and hence completes the proof of Theorem 1.
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On quasi-Fredholm ideals
by

D. PRZEWORSEKA-ROLEWICZ and 8. ROLEWICZ (Warszawa)

Let X be a linear space. Let A be a linear operator (briefly: an ope-

-rator) mapping the space X into itself. By a nullity of the operator 4

we will call the number a4 = dimZ,, where

Z4={zeX: Ax = 0}.

By a deficiency of the operator A we will call the number
By = dimX/4X, where X/AX is a quotient space. The pair of numbers
(a4, B4) is called the d-characteristic of the operator A. We say that the
d-characteristic of an operator A is finife if numbers a,, f4 are both finite.

Let an operator T be given. We say that 1is a d-point of the operator 7'
if the operator A = AI—T possesses a finite d-characteristic.

Suppose we are given an algebra % of linear operators mapping
space X into itself. Let # be a two-sided ideal in the algebra Z%.

‘We say that the ideal # is a gquasi-Fredholm ideal if, for each T <.,
I4-T is an operator with a finite d-characteristic. We say that the ideal .#
is a Fredholm ideal if we have also xg,p = friq = ar 7 = 0.

The aim of this note is a characterisation of quasi-Fredholm ideals
in operator algebras. The terminology and motation in this paper are
the same as in paper [6].

We say that an operator A% possesses a simple reqularizer B e %
to the ideal .~ if

AR, = I+T,, R A =1I1+T,, where T,,T,ef.

If A possesses a simple regularizer to a quasi-Fredholm ideal #, then A
possessses a finite d-characteristic ([9], proposition 5.7).

ProrosITION 1. If T belongs to a guasi-Fredholm ideal I, then each
number 2 # 0 is a d-point.

Proof. The operator

MA4T = Z(I—}— —}—T)

possesses a finite d-characteristic because T/AeS.
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