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In an entirely similar way we can prove

(17.35) f[‘ tt)ll,cdt< <—_—>Zf| t|kdt<oo, weP.

(17.32), (17.34) and (17.35) together imply (17.31) and hence (17.30).
We are now practically at the end of the proof. By Lemma 9 we
know that

6(t)
[a. tlk

for almost every « in P. Hence it follows from (17.30) that

lp@)I

x—1|"
& |z— 1]

dt < oo

for almost every » in P. This proves (17.13) which, as we have already
seen, implies (17.3). This completes the proof of eondition IT stated at
the beginning of this section and hence completes the proof of Theorem 1.
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On quasi-Fredholm ideals
by

D. PRZEWORSEKA-ROLEWICZ and 8. ROLEWICZ (Warszawa)

Let X be a linear space. Let A be a linear operator (briefly: an ope-

-rator) mapping the space X into itself. By a nullity of the operator 4

we will call the number a4 = dimZ,, where

Z4={zeX: Ax = 0}.

By a deficiency of the operator A we will call the number
By = dimX/4X, where X/AX is a quotient space. The pair of numbers
(a4, B4) is called the d-characteristic of the operator A. We say that the
d-characteristic of an operator A is finife if numbers a,, f4 are both finite.

Let an operator T be given. We say that 1is a d-point of the operator 7'
if the operator A = AI—T possesses a finite d-characteristic.

Suppose we are given an algebra % of linear operators mapping
space X into itself. Let # be a two-sided ideal in the algebra Z%.

‘We say that the ideal # is a gquasi-Fredholm ideal if, for each T <.,
I4-T is an operator with a finite d-characteristic. We say that the ideal .#
is a Fredholm ideal if we have also xg,p = friq = ar 7 = 0.

The aim of this note is a characterisation of quasi-Fredholm ideals
in operator algebras. The terminology and motation in this paper are
the same as in paper [6].

We say that an operator A% possesses a simple reqularizer B e %
to the ideal .~ if

AR, = I+T,, R A =1I1+T,, where T,,T,ef.

If A possesses a simple regularizer to a quasi-Fredholm ideal #, then A
possessses a finite d-characteristic ([9], proposition 5.7).

ProrosITION 1. If T belongs to a guasi-Fredholm ideal I, then each
number 2 # 0 is a d-point.

Proof. The operator

MA4T = Z(I—}— —}—T)

possesses a finite d-characteristic because T/AeS.
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By the radical B(Z,) of an algebra %, with unit ¢ we will call the set
of such elements x that for each a, be %, the element e axd is invertible.
The radical is a two-sided ideal (Jacobson [6]).

Suppose we are given an algebra 2 of linear operators. A set of all
finite dimensional operators belonging to % will be denoted by 2. I
is eagy to check that " is a two-sided ideal.

We divide the algebra Z by the ideal " Let 2, = &/ be the quo-
tient algebra. By R(%,) we denote the radical of the algebra %,. By A
we denote the set of all operators which belong to the cosets belonging
to R(Z,).

THROREM 1. The ideal Ay is a quasi-Fredholm ideal.

Proof. Let Uex,. From the definition of the radical in the algebra '

Z,, the element; I + U is invertible, Whe}‘e I denotes the coset containing I
and T — the coset containing U. Let V be a coset inverse to 1 -+ U. Then
for each VeV

I+0)V =I+K,, V{I+U)=I+K,,
where K, and K, belong to . Therefore proposition 5.7 of [97] implies
that I4U possesses a finite d-characteristic, q. e. d.

COROLLARY. Operators belonging to 2y are perturbations of operators
with finite d-characteristics belonging to % (theorem 3.2 of [9]).

TurorEM 2. If each operator with a finite d-characteristic belonging
to & possesses a simple regularizer to the ideal A, then each quasi-Fredholm
ideal £ is contained in A ,.

Proof. Let Ues. Then for arbitrary 4, BeZ, AUBe<.#. The operator
I4-AUB possesses a finite d-characteristic. Therefore the assumption
implies that it possesses a simple regularizer V. But the coset induced
by V is inverse in &, to the coset induced by I+.4 UB. The arbitrariness
of 4, Bimplies that ﬁbelongs to the radical R(%,). Therefore U ¢y, q. e. d.

Example 1. Tet & be an algebra of all linear operators. Theorem
6.2 of [9] implies that % satisfies the assumption of theorem 2.

Example 2. Let & be an algebra of all linear operators preserving
a certain conjugate space 5 [11]. Then % satisfies the agsumption of
theorem 2.

Indeed, in the proof of theorem 6.2 of [9] we can assume that I—IK
is a Ds-operator (see [9], proposition 4.2) and that € can be described
by a finite system of functionals. Moreover, B, = AX ig also described
by a finite system of functionals. Hence we can extend the operator A7*

~d

to an operator preserving the space 5.

Example 3. Let X be a linear metric complete space. Let % be a set
of all continuous linear operators. Then & satisfies the assumption of
theorem 2.
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The proof is similar to that of theorem 6.2 of [9]: it makes use of the
Banach theorem on the continuity of an inverse opera.tbr.

Remark 1. Let 2 be an algebra of operators opera,ting in X. Let #
be an arbitrary quasi-Fredholm ideal. Let each operator A # with a finite
d-characteristic possess a simple regularizer to the ideal .#. Let 2. = Z/[F.
Let R(Z) be the radical of the algebra %,. Let .#, be the set of operators
which belong to the cosets belonging to R(%;). Then Sy = K.

In fact, repeating the arguments of theorems 1 and 2 and replacing £~
by # we find that .#, is a maximal quasi-Fredholm ideal. Therefore " 0= Fos
q.e. d.

PROPOSITION 2. Let X be a locally bounded space (Aoki [1], Rolewicz
[12]). Let X be an algebra of bounded operators. Then each quasi- Fredholm
ideal is a Fredholm ideal.

Proof. Basing ourselves on theorem 3.1 of Gochberg and Krein [4]
and [10] we find that for each A 5= 0 the index x;; 5 = Bir—m— ayr_p 18
constant. But for sufficiently large 1 an operator AI—7 is invertible.
Therefore »;_5 = 0, q.e.d.

ProOPOSITION 3. Let X be a locally bounded space. Let & be an algebra
of bounded operators. If T'et'y, then the set of eigenvalues of T either is
Jinite or forms a sequence tending to 0. Moreover, for each A the set of corres-
ponding eigenvectors is of finite dimension.

It is a simple consequence of theorem 3.3 of Gochherg and Krein [4]
and [10].

PROPOSITION 4 (). Let X be a locally bounded space. Let & be the al-
gebra of all bounded operators. Let # be an arbitrary ideal of such operators
that the spectrum of T'e.# either is finile or forms a sequence tending to zero
and, moreover, for each eigenvalue 1 the set of eigenvectors is of finite dimension ;
then S < o,.

The above trivially follows from theorem 2.

ProOPOSITION 5. Let X be a locally bounded space. Let % be an algebra
of all bounded operators. Then the ideal A, is closed.

Proof. Basing ourselves on remark 1 we will construet the ideal o,
starting from the ideal # = %" (= the closure of ). Algebra &; = &/F
is a locally bounded algebra, whence (see Zelazko [15]) the radical R(Z;)
of the algebra 7 is closed. Therefore %, is closed. But £, = 7, q. e. d.

COROLLARY. If X =17, 0 < p < +oo, then the ideal A, of the al-
gebra & is an ideal of compact operators. :

Proof. In the space I, 1 < p < oo (where I®° = ¢y), there is only one
closed two-sided ideal (Gochberg, Markus, Feldman [5]) the ideal of com-

(1) See Kleinecke [7] and Yood [14] for Banach spaces.
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pact operators 7 (X). It iy also true for I, 0 < p < 1. Therctore Ay
=7 (X), q.e.d.

But there are spaces X for which the ideal ' is essentially larger
than 7 (X).

Example 4. Let X be either the space C(8) or the space L'(§, X, u),
where 8 is a compact set, ' is a ¢-algebra of subsets of § and u is & meagure
determined on X (). In these spaces each weak compact operator belongs
to 7.

Proof. The Dunford-Pettis [2] theorem (see also [3]) implies that the
square 7° of each weakly compact operator 7' is compact, Therefore, since
(I+TYI 1) = I —~1*,
the operator I'+T possesses a simple regularizer to the ideal of compact
operators, whence it possesses a finite d-characteristic. But all weakly
compact operators constitute a two-sided ideal. Therefore theorem 2 implies
that the ideal of weakly compact operators is contained in o 0y Q. e d.

Since there are weakly compact operators acting in the space ¢ (8)
of L'(8, X, u), which are not compact, it follows that Ay i8 essentially
larger than the ideal of compact operators.

TrmoreM 3. Let X be a space C(8) (I'(8, Z, u)). Let & be the algebra
of all bounded operators. Then A, is the ideal of all weally compact operators.

Proof. Let X = €(8). If T is not a weakly compact operator, then
there are subspaces X,, ¥, = ¢(S) such that X and Y, are isomorphic
to tl}e space ¢, and 7' transforms X, and ¥, in a one-to-one manner [8].
Obviously the operator 7! determined on Y, is continuous. Basing
ourselves on Sobgzyk theorem [13] the operator T~ can be extended
to the opemtclr T~ determined on the whole space C(8). On the space
X, we have T7'T = I. Hence the operator I—7~'T does not possess
& finite d-characteristic. Hence T ¢f,.

IfX = .L.I(AS’. » 2, u) and an operator T is not weakly compact, then
there are projections X,, ¥, = I*(§, X, u) such that X, and ¥, are iso-
morphie to the space I and 7' transformg X, on ¥, in a one-to-one manner
[8]. Further proof is the same, q.e.d.

The authors would like to express their thanks to Mr. A. Pelezynski
for the proof of theorem 3.
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