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A generalized group algebra for compact groups
by

LARRY C. GROVE* (Minneapolis)

1. Introduction and preliminaries.

. Definition. An H*-algebra 4 is a Banach algebra, with an in-
volution, that is also a Hilbert space, with the properties

1) (wy, =) = (&, 24™),

2) |2 = llll,

3) if © s 0, then zz™ # 0
for all =, y,zed.

Perhaps the most important example of an H*-algebra is the group
algebra of a compact group, i.e. I*(§) with convolution as multiplica-
tion. In § 3 we shall consider a generalization of I*(®), viz. the algebra
of square-integrable functions on @ that have values in an arbitrary H*-al-
gebra. The structure of this algebra will be described in terms of a tensor
product of H*-algebras, which is discussed in § 2. In § 4, some of the re-
sults of § 3 are extended to non-compact groups via a study of algebra-
valued almost periodic functions.

Ambrose [1] proved the following structure theorems for any H*-
algebra 4. 4 is the orthogonal direct sum of all of its minimal closed two-
sided ideals &, each of which is isomorphic with a full matrix algebra
(possibly infinite dimensional). Each minimal closed ideal N has an ortho-
gonal basis {a;} of “matrix units”, with the following properties:

1) {a;} is a maximal collection of orthogonal irreducible self-adjoint
idempotents in N;

ag if j =k,
0 if j s k;
3) (@)" = ay;

2) agom =

* This paper constitutes part of a Ph. D. thesis submitted to the Graduate
Faculty of the University of Minnesota in the spring of 1964. It was written under
the supervision of Prof. B. R. Gelbaum while the author was a National Science
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and express his gratitude to Professor Gelbaum for his encouragement and helptul
suggestions.
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4) |layll =l for all 4, j, &, L.

I 4 = @A, is the decomposition of 4 as the direct sum of its
minimal closed ideals, and if {af;} is a basis of matrix units for each 4,,
then the collection {af}, as a is also allowed to vary, is obviously an ortho-
gonal basis for 4. We ghall call such a basis a canonical basis; it should
be borne in mind that for each fixed o the subscripts of af; vary over an
index set that depends on a.

Every H*-algebra is semi-simple, in the sense that its Jacobson ra-
dical is (0) ([10], p. 272). The concepts of strong radical and strong sems-
simplicity (see [10], p. 59) will be of interest in what follows. The next
two theorems provide several characterizations of strong semi-simplicity
for H*-algebras.

TawoREM 1.1. The sirong radical R of an H*-algebra A is the orthogonal
complement of the (Hilbert space) direct sum of all the finite dimensional
manimal closed ideals in A. .

Proof. An ideal M in 4 is maximal if and only if its orthogonal
complement M- is a minimal closed ideal, and M is regular if and only
if the quotient algebra A /M has an identity. But 4 /M is easily seen to
be isometrically isomorphic with M+, and a minimal closed ideal has an
identity if and only if it is finite dimensional ([6], p. 105). Thus if {¥,}
is the collection of all finite dimensional minimal closed ideals in 4, we
have R = (M, where M,= N&, and so R = NN} = (Z,®N)*,

since the ideals N, are orthogonal.

TemoreM 1.2. If A ds an H*-algebra, the following conditions are
equivalent:

1) A is strongly semi-simple. )

2) Bach minimal closed ideal of A is finite dimensional.

3) Bach mazimal ideal of A is regular.

4) Bach closed ideal in A is the intersection of all the regular mawimal
ideals in which it is included.

B) A is a completely continuous algebra (i.e. every left regular repre-
sentation operator s compact).

Proof. The equivalence of 1) and 2) is immediate fror Theorem L.1,
and the equivalence of 2) and 3) is implicit in the proof of Theorem 1.1.
That 3) and 4) are equivalent follows from the fact that each closed ideal
in any H*-algebra is the intersection of all the maximal ideals in which
it is included ([6], p. 103). Ambrose [1] showed that 1) follows from 5),
and the converge was proved by Nakano ([9], p. 20) in the more general
context of Hilbert algebras.

2. Tensor products of H*-algebras. In their first paper [7] on rings
of operators, F. Murray and J. von Neumann defined a tensor product
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of Hilbert spaces which was again a Hilbert space. In this section we shall
consider the corresponding tensor product when the Hilbert spaces under
consideration are H*-algebras. The discussion in [7] applies to the tensor
product 4,®A4,®...®4, of an arbitrary finite number of Hilbert spaces
A;. In order to simplify the notation we shall consider only the tensor
product of two H*-algebras. However, the arguments used will apply
to the more general situation, and we shall, in the sequel, make occasional
uge of the results obtained in this section as applied to tensor products
of three or more H*-algebras.

Suppose then that .4 and B are H*-algebras, and that their decompo-
gitions into direct sums of minimal closed ideals are given by: 4 = X,® 4.,
B = Z;@®B;. We shall denote canonical bases for 4 and B by {eg}
and {b%;}, respectively. ,

Definition (following [7]). A®'B is the linear space of all con-
jugate bilinear functionals on 4 x.B of the form

T(a,b) = D) (as, a)(bs,h)

n

\ 7
T = Z @;®b;, where
i=1 i=1

for all pairs <a,b)ed xB. A®'B has an inner product, defined by:

m

(an a,£®b¢,20,-®d,) = Z (@, ) (biy dy)-
i1 (%3

7 J=1

A®B is the completion of the inner product space A®'B with respect

to the metric induced by the norm [|T|| = V(T,T).
The collection {a%@bﬁ,} is an orthogonal basis in A®B ([7], p.132).
We define a multiplication in A®B as follows. If

8= Y Moty and T = Dlifuleh ® ¥,
then
ST = D Afartmpa( %07n® biabie) -
By virtue of the properties of canonical bases,

8T = Z ( 2 1%:1’7751” (a2, @bh,) -
i

Tf we denote [ja%|? and b5 by 7. and $;, respectively, then the Par-
seval expansions of |§|°, ||IT)}, and (I8T|?, in terms of the orthogonal

basis {(ai@bf)[Vr.ss} are:
ISIE = ) [A%hal*rass,

I = > Inul'rass,
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and
2
TaSp-

ST = 3| 3 2ifanifua
7,1
By Schwarz’s inequality,
18T < 3 X 138hal) ( 3 i) s
[

M, .
2
< ) 10l 1npal” 7y 3450 = ISIPTIE,

and so AQB is a Banach algebra.

We define an involution on A®B in the obvious fashion, viz. (a®b)*
= a*@b*, and the definition is extended by linearity.

THEOREM 2.1. A®B is an H*-algebra.

Proof. It remains only to be established that the three technical
conditions imposed on H*-algebras hold for A®B. The first two involve
easy caleulations and will be omitted. As for 3), suppose that TeA®B,
and T’ s 0. We wish to prove that 77 s 0. By [1], p. 370, it will suffice
to prove that A®B is proper, in the sense that the only element § of
A®B with the property that §-(A®B) = (0) is 8 = 0. Thus suppose that

8 = D Aha(af@bf)

annihilates the whole algebra A®B on the left. Then for each o ®bl
we have

0 = 8-(a5@bh) = D Afa(a®bfy).
1,k

Choose m, n and p, ¢ from the index sets determined by « and B,
respectively. Then

0 = (3 M0t @), 2, @bh) = Afllatnl Ll
ik

from which it follows that 43,,, = 0, and so § = 0. The theorem is proved.

Since it has been established that A®B is an H*-algebra, the next
task is to determine the structure of its minimal closed ideals. For a fixed
pair {a, £, let I and I’ denote the linear span and closed linear span,
respectively, of the set {af;®bf;} in AQB. Fach clement 7' of I can be
considered as an element 7" of A ®By, simply by restricting the funectional
T to A,xB,. It is immediately evident that the mapping f: T'— 1" is
well defined, linear, and an isometry, so that it can be extended to an
isometry from I' into A.®B;. The extension f’ is, in fact, surjective.
For suppose that

T' = ) Kfal(afy @) e4,03B,.
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Then T" is the limit of a sequence of finite sums of the same form,
each of which is an image under f of an element of I. Since fis an isometry,
the corresponding sequence of elements of I converges to an element 7'
of I'. Obviously f'(T) = T'. It is easily verified that I' is a closed ideal
in A®B, and that f' is multiplicative and involution preserving. As
a result, we may and shall identify the ideal I' of A®B with the H*-al-
gebra 4,®B;.

THEOREM 2.2. A®B = Z,,®(4,0B,) is the decomposition of AQRB
into the direct swm of its minimal closed ideals.

Proof. It has already been established that each 4,®B; is a closed
ideal in A®B, and it is obvious that if {a, B> #<a’, f’> then ARBy
and A,®B; are orthogonal. It remains only to show that each 4,88,
is minimal, since it is also obvious that the collection {4.®B;} spans
A®B (in fact, each element of a canonical basis for A®B lies in some
-Aa®Bﬂ)'

Thus suppose that I # (0) is a cloged ideal in 4,®B;, and that

0 # T = 3 (Aha(afs®b): 5,5, &, lel.
Then some
M # 0, (af®b)- T (af;@bf) = Aha (a5 @) eI,

and so af®@bfyel. Thus if a2,®b%, is any basis element in A,®B;, we
have

(07: @Y%) (a5 ®bf) (a7, ®by) = 4 @bhy e,

i.e. I contains a basis for A,®By;, and hence equals 4,8.B;.
COROLLARY. AQ®B is strongly semi-simple if and only if both 4 and B
are strongly semi-simple.
Proof. The dimension of 4,®B, is the product of the dimensions
of 4, and B;. The corollary follows from Theorem 1.2.

3. The generalized group algebra. In this section we shall discuss
a generalization, B*(@, 4), of L*(Q), where G is a compact group. The
generalization is broad enough to include all H*-algebras, in the trivial
sense that an arbitrary H*-algebra A4 is isometrically isomorphic with
B*(@, 4), where ¢ is the one element group. Throughout this section 4
will denote an H*-algebra and & a compact group with Haar measure m
normalized so that m(G) = 1.

Definition. B*(@, 4) is the space of all equivalence classes (modulo
null functions) of functions f: ¢ — 4 such that f is Bochner measurable
and f|f(w)|fde < + oo
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Ag usual, we shall speak of the functions themselves rather than the
equivalence classes to which they belong. If B*(¢, A) is normed by 1If1F
— f”f )| dz, then B*(@, A) is a Banach space. If multiplication is defined
to be convolution,

frgle) = [f@) g 0)de = [flay ™))y,

then it is easily seen that ||f+gll < [f+glle < [Ifllllgl, so that B*(&, 4) is
a Banach algebra. Observe that if f,geB (&, d), or if feI*(§) and
geB(@, A), then fxg is continuous (the proof is the same as the one given
in [11], p. 4, for f, geI*(@)).

For each feB' (G, 4), define the function f* B (@, A) by the for-
mula f*(x) = f(&™")*. It is easily verified that f** = f, (f-+g)* = f*- g%,
and (of)* = af* for all f, geB* (@, A) and all scalars a. In order to show
that (fxg)* = g*+f*, and hence that the map f-f* is an involution,
observe that the involution on A4 is a bounded linear transformation
on A. Thus we have (by [3], p. 113) [f(a)*dw = ([f(#)dx)* for all f B*(G, 4).
Applying this fact, we see that

= ([fwgl e dy)" = [(f g™y
= [¢" @y dy = g*f* (@).

(f*g)* (=

Ag a further application of the theorem cited above, note that when-
ever feB* (G, A) and acA, we have [(f(#), a)dz = ([f(z)dw, a).

B*(@, A) is a Hilbert space, since its norm satisfies the parallelo-
gram law. The polarization identity shows that (f, ¢) = [(f(»), g(x))dw
for all f, geB* (@, A). It is not difficult to show directly that B*(@, 4}
is, in fact, an H*-algebra, but this will follow from the next theorem, which
also provides the key to the minimal ideal structure of B2(G, 4).

THEOREM 3.1. B(@, 4) is isomorphic and isometric with I (G)®A.

Proof. We shall map L*(G)®'A into B2(¢, d). If

n
T= th@mu

d==l

define

S‘fi

1,|=1

YaeB (G, A).

In order to show that @ is well-defined (i. e. independent of the re-
presentation chosen for the functional 7' it suffices to prove that ¢(T) = 0
ecif T =0, sin ¢ is obviously linear. Thus suppose that 7T = 0.
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Then
(P, 1(-)a) = D) (fil+) o, £(-)a)

= 2 [ (fut)

- Effi(w)ﬁc)dw(ai, a)

a;, f(z) a)dw

= D Ui Pla, ) = T(f,a) =
i

It follows that ¢T' is orthogonal to all linear combinations

m

S_‘gn bi:y-LEL (@, bied.

These are dense in B*(@, 4) since, for example, the collection con-
tains all simple functions, and so ¢T' = 0. Observe also that each simple
function is in the range of @, 80 that the range of ¢ is dense.

Routine computations show that ¢ is multiplicative and involution
preserving. Thus it remains only to prove that @ is an isometry. If

m
8= Zg:@bj:
=1

and

T = ﬁ:fi@ai

q=1

then

(¢T', 8)

Zf fi(@) e, g;() by) d

= (T, §).

= Z(f'b )a'u g:’
9
= Z(fu gi)(ah b])

The mapping ¢ can now be extended to an isometric isomorphism
from I*(G)®A onto B*(G,A).

CorROLLARY 1. If I*(G) = Z,®N, and A = X, A, are the decomposi-
tions of I (@) and A into direct sums of minimal closed ideals, then B* (G, A)
05D Pog, where Pyy is isometrically isomorphic with N,®A4,, is the
decomposition of B*(G, A) into the direct sum of minimal closed ideals.

COROLLARY 2. B*(G, A) 4s strongly semi-simple if and only if A 4s
strongly semi-simple.

‘We are now in a position to discuss some of the properties of B*(@, 4).
Let us first observe that the Plancherel Theorem for a compact group,
as stated in [8], p. 436, has a direct generalization to B*(G, A) when A
is strongly semi-simple. In fact, the proof given in [8] applies, with minor
modifications, not only to LXG) but to any strongly semi-simple H*-
algebra. If {f;’,} and {af;} are canonical bases for L*(¢) and 4, with |fl
= n, and {jafy|| = 75, then the statement of the theorem for BZ (@, A) is:
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If A is strongly semi-simple and feB* (G, A), then
[If@Pdw = D) nary trace(T{TH),
wp

where T is the restriction of the left 're;qulcw representation operator T; {o
the minimal left ideal B*(G, A)x(fa(-)al). o '

It should perhaps be emphasized thafu t’hls is a rather SlI%lple con-
sequence of Parseval’s Theorem, and that it is of interest only in that it
easts the formula of Parseval’s Theorem into the same form as the formula
in a general Plancherel Theorem for possibly non-abel}an and non-compac't
groups. The formula does not seem to apply W(hen A is not stro_ngly semi-
simple, for then, by Theorem 1.2, some T?” is not a compact operator,
from which it follows (see [9]) that T}‘ﬁT}‘. is not a compact operator, and
hence is not in the trace class of operators (seg [121).

TaEoREM 3.2. A closed left ideal I of BX(@, A) is a left translation
invariant subspace of B*(G, A), i. e. if feI then fyel for every e, wﬂere
fo(y) = flwy). A similar statement holds for closed right ideals and right
translation. ' N

Proof. Let {¢,} be a maximal collection of irreduel'ble self—ad].m'nt
‘orthogonal idempotents in B*(G, 4), let {J} be the collection of a}l finite
subsets of the index set {a}, and let u, = }/{e,: aeJ} for each J. Then

f = Zf*ea = Zea*f7

and so u,*f—;f for every fe B*(@, 4). If f eI, then we have (wy)oxf = (Ugrf)s

— feel. A similar argament yields the corresponding result for right ideals.
COROLLARY. If I is a closed left ideal in B*(G, A) and heI* (@), then

hafel for every fel. Again a similar statement holds for right ideals.
Proof. Let g be any element of I-. Then

(hef ) = [ ([ R D)y, () do = [ [ 1) (F, (@), g (@) dyda

= [h@)(f,-1, 9y = 0,

since f _,eI. Thus hsfeltL = I. . - :

The converse of Theorem 3.2 is also true when A is the field K of
complex numbers, i. e. for I*(§) (recall that the converse, a8 stated for
I, is instrumental in one proof of the Wiener Tauberian Theorem, see
(6], p. 148). A simple counter-example shows that the converse may fail
to be true for B2(@, 4). Let & = {e} be the one element group, and let
4 = K@K, with operations defined pointwise. Observe that then B @, 4)
can be identified with 4, and that translation invariance in B*(@, 4)
means nothing at all. Thus the subspace I = {(¢, ¢): ceX} is closed and
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translation invariant, but I is not an ideal.
that B*(@, 4), in thig example, i3 isomorphic with I*(H), where H is
the two element group, and that the converge of Theorem 3.2 holds for
I*(H). The difficulty is that the isomorphism is not the

phism on K@K, and that translation invariance doeg not have the same
meaning for the two gpaces.

When BQ(G, 4) is commutative (i. e. when both @ and 4 are commu-
tative) an analogue of the Wiener Tauberian Theorem can be stated,
but it is not always true, The statement is:

If feBYG, 4) has the property that | (the Gelfand transform of §)
never vanishes, then the linear span of the translates of f is dense in
B*(@, A).

If we choose f = (¢, ¢), with ¢ = 0, in the example in the preceding
paragraph, it is easy to see that the statement above is falge. A has just
two maximal ideals, viz. the two copies of K, and f (E) = ¢ s 0 for each
of these. But the linear Span of the translates of f is just the subspace I,
which is closed and proper. It is interesting to observe that the ‘Wiener
Tauberian Theorem for the L algebra of a locally compact abelian group
@ follows from the fact that each proper closed ideal of L'(@) is included
in a regular maximal ideal. It is an immediate consequence of Theorem 1.2 "
that every proper closed ideal of B2 (@, 4) is included in a regular maximal
ideal, when 4 ig strongly semi-simple. The reason that the analogue of
the Wiener Theorem does not follow from this fact is that closed transla-
tion invariant subspaces may fail to be ideals.

Definition. A function feB (G, A) is called almost invariant if
and only if the ideal generated by the collection of all translates faoff
is finite dimensional.

It is interesting to observe

THEOREM 3.3. If A is strongly semi-simple, then every continuous
Sunction on @ to 4 can be uniformly approximated by almost invariant
Junctions from B*(@, A). Oonversely, if every continuous function on @
to A is a uniform Uimit of almost invariant Sunotions, then A is strongly
semi-simple.

Proof. Suppose that f: @ — 4 is continuous, and that & > 0 is given.
The mapping y — If,~1—fllo 18 continuous, and so there exists % neigh-
borhood W of e¢e@ such that IIf,~1—flle < /3 whenever ye¢W. Choose
a neighborhood V of e such that V2 W, and then a continuous function
» on @ to the complex numbers which is non-negative, has its support
in V, and is such that Jo(@)dz =1. Let u = v%9, and observe that «
is a non-negative continuous function with support in W such that
fu(mydw = 1. 1t I (@) = Z,®N, is the decomposition of I*(@) into thé
direct sum of its minimal ideals, and if v = }' »,, v,e N,, then we haye
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3= 3 (0000) = Sty ey a0d Il < ol = P < oo Fur-

thermore,
If @ —usf @) < [u@)If @) —F, 2 @)dy < /3,
w

and 50 [[f—u+fl < /3.
It B*(G, 4) = Z,,®P, is the decomposition of B“(Gz A) into the
direct sum of its minimal closed ideals, let f = %faﬂ, with f.peP . There
i i ! 0 or f.s 5= 0, and at
are at most countably many a for which either u, # af :
most countably many # for which f,, s 0. Let these be enumerated as
{o;} and {B;}, respectively, and choose n, m such that

m
.
oS
i=1

<Vefs,

and

j < min{l/ﬁé, P { 3 2 ||u.,,£H}-

Hf—g; :gl:f"iﬁi

Observe that

n m m oo

(u_suﬂi)*(f—ﬁ quiﬂj) = u*f_,g A un*faiﬂj*i;:;ixn-)-

ay* Fugp;
1

Thus

|

w

m
uf— Zuﬂt*f“iﬁi”w
i=1 i=1

<|u— 2m e | [ 5 S|+ 3 (1wl

<ef3+ fj e (213 ( 3 e} < 2213,

)

[==]
2 Fay
Jemm1

and so
m n

= 3 Dty <

i=1 i=1

By the corollary to Theorem 3.2, each u,,x Jop; eP,,W, Whicl} is finite
dimensional since 4 is strongly semi-gimple, 80 each u,xfup, is almost
invariant. Since a finite sum of almost invariant, funetions is again almost
invariant, the first statement in the theorem is proved.
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To prove the converse, suppose that 4 is not strongly semi-gimple.
Then B*(G, A) has an infinite dimensional minimal closed ideal . Choose
an element ¥ = f(-)a from a canonical basis for N, such that f is conti-
nuous. Then ¥ is also continuous. Since any almost invariant funetion g
must lie within a finite sum of finite dimensional minimal ideals, g and
are orthogonal. Thus [[F—g|® = P2+ g > 1P >1.

To conclude this section we shall discuss a generalization of
E. Schmidt’s class of integral operators.

Definition (see [12]). The Schmid Class, sc(H), of operators on
a Hilbert space H is the collection of all operators 7 on H with the
property that 7| = 3||Tu,)f < +co for any complete orthonormal set

a

{w;}. The norm |- |, is called the Sehmids Class norm.

The Schmidt Class is a simple H* -algebra (see [10], p. 287). It is
shown in [12] that when H = I (0,1), sc(H) ean be identified as the
class of integral operators studied by Schmidt. In fact, the proof given
there shows that for any compact group 6, sc(Lz(G)) is exactly the class
of operators {7z} defined by

(Tef)(@) = [E(@, y)f(y)dy for all feLx(@),

where K is a measurable and Square integrable complex-valued function
on Gx@.

Since B* (&, 4) is a Hilbert space, se[B*(@, 4))is a well-defined simple
H*-algebra. Because of the special nature of B*(@, 4), however, it is
possible o consider a somewhat more ditect generalization of the class
of operators studied by Schmidt.

Definition. 8(@, 4) is the set Bg(GxG,A), with addition, sealar
multiplication, and the inner product defined as usual, but with:
1) (K K,) (@, y) = [E; (2, wE,(%, y)du, and 2) K*(z,y) = K(y, @)*.
8C(@, A) is the collection of all operators Tz on B*(G, 4) defined by

(TeN (@) = [ K (v, 9)f(y)dy

for all feB*(&, A), where K eS8(G, 4).

If 80(@, 4) is normed not with the operator norm but by | T=||
= ||K], then it is easy to see that the algebras §(@, 4) and SC(G, 4)
are isometrically isomorphic under the mapping K — Tg. As a result,
we shall sometimes consider §(G, 4) rather than the algebra SC(@, 4)
of operators, which is actually the algebra of interest. Since 8@, A)
and B*(G'x @, A) are one and the same Hilbert space, it follows immediately
from Theorem 3.1 that §(@, 4) and F(GxH®A are isometrically iso-
morphic Hilbert spaces. By the remarks preceding the definition of & (@, A),
L?(G®G), with multiplication and involution defined as in § (G, 4),
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can be identified with sc(L*(&)) = SC(@). Thus S(&, 4) and SC(&)®4
are isometric and isomorphic as Hilbert spaces. It is easily vgmﬁed that
the mapping which identifies them is also multiplicative and involution-
preserving, and we have o

TaEOREM 3.4. SO(G, A) is isomorphio and isometric with SC(G)®4.

CoroLLARY 1. SC(G, 4) is an H'-algebra; its decomposition into
the direct sum of minimal closed ideals s given by 8C(G, 4) = Z, @(SC(G)@
®A,), where {A.} is the collection of minimal closed ideals of A, so that
SC(G, A) can be identified with Z,®8C(G, 4,).

COROLLARY 2. SC(G, A) is strongly semi-simple if and only if A is
strongly semi-simple and @ is a finite group; it is simple if and only if A
is stmple.

Observe that B*(G, 4) can be embedded in S§(G, 4) as follows:

given feB*(G, A), define K;eS(G, 4) by K;(»,y) = f(wxy~"). This cor-
responds to the fact that the left regular representation operators on
B*@, A) are elements of SC(G, A). This shows immediately that if 4
is not strongly semi-simple, then SC(@, 4) is not a subset of sc (B*(&, 4)),
for then some left regular representation operator is not compact, whereas
all Schmidt class operators are compact ([12], p. 32). The opposite in-
clusion may also fail to hold when A is not strongly semi-simple. For
example, let G be the one element group and let A be an infinite dimensio-
nal simple H*-algebra. Then SO (&, A) can be identified with 4. If sc(B* (G,
A)) were included in SO(@, 4) it would be a proper closed ideal, since 'it
is an ideal in the algebra of all bounded operators on B*(@, A). This,
of course, would contradict the simplicity of A.
- Suppose now that A is strongly sémi-simple. Then each minimal
ideal of A is isomorphic with a finite dimensional full matrix algebra.
If the matrix algebra is given the Euclidean norm, then there exists
a constant r >>1 such that if the matrix algebra is renormed by simply
multiplying the Euclidean norm of each matrix by 7, then the isomorphism
is also an isometry. In each minimal ideal ¥, of L*(@), the constant r =,
is equal to 1/;;;, where n2 is the dimension of N,.

Definition. A strongly semi-simple H*-algebra A is said to Dbe
natural it and only if the constant r, of the preceding paragraph is equal
to I/E for each minimal ideal A4, of dimension nl.

Observe that if {af} is a canonical basis in a natural H*-algebra,
then |jag|® = n,. ) .

THEOREM 3.5. If A is o natural H*-algebra, then SC(G, A) is a closed
subalgebra, of sc(B*(@, 4)), and |Tgl, = |E|| for every K<S(&,4).

Proof. Since SC(G, 4) is complete, it is closed, and so we need

only establish the set inclusion and the equality of the morms. Given
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TgeSC(G, 4), we must show ([10], p. 285) that -
D (T, ) < oo
At

for some complete orthonormal get {4}. Thus let {
bases for L*(@) and 4, and let

afys ‘ -
Cihimnpq = (Teff @, £ “;zq)/ W .
We wish to show that ‘ ‘

i} and {gf;} be canonical

2]0'?7"91?:’121“1@(1]2 = ”Kuz'

Let us first compute [|K|. Johnson {5] showed that if @ and H are
lo.ca,]ly 1compawt abelian groups, then I'(Gx H ) is isomorphic and isometric
with B (G, L'(H)), the algebra of integrable Bochner measurable functions
on G with values in L*(H). His proof carries over with few changes to
the Present situation, and shows that L}(GxH) is isomorphiec and iso-
metric with B*(&, I*(H)), and hence with LI*(@)®L*(H). Since §(& A)
is the same Hilbert space as B2 (GG, A), which can be identified v’vith
F(@eI* ()04, 8@, A) hag a8 a basis {fizfgd;n}. The Parseval expan-
sion of |K|® with respect to this basis is -

ML = )0, i) ramgm,: a, i, 5 B, By 1 9, m, )
= /] 5 @)K @, ), ) dway ]! fnmpm: a5, 5 8, 5,15 3y m, n}

Observe that cifipp, = 0 unless Y =20 and ¢ =n. Thus we have

xls = 3 {16fmonl®: a5 6,5 B, %, 15 y, m, m, p}
= D JS & @, )85 )0, fir(2) at) dwviy [ [nanyni: a,i, s 8, 8, 1;

Vs My Ty p}
= E{'ffﬁy(y)mK(w; ), a';m)de?/r/nanﬂni: e, 4,558, k,1;

7:"”’5“7?}'

Since the index # does not appear in the latter summands, and the
cardinality of its index set is n,, the latter sum is seen to be equal to
K|, and the theorem is proved.

The inclusion SC(&, 4) c s¢(B'(G, 4)) may well be proper. Tt is
alwajys proper when 4 is not simple, for then, by Theorem 3.4, Corollary 2,
SC(G, 4) is not simple, whereas s¢(B*(@, 4)) is always simple. ‘Equality
may fail to hold even when A is simple. Suppose, for example, ‘that @
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is a finite group of order %, and that 4 is the natural full matrix algebra
is a
of dimension m?, where 1 <m < +oo. Then

dim (S0(@, 4)) = dim (SC(G)®4) = (dim I (@) dim (4) = nim?,

whereas

2

dim (se(B*(, 4)) = [@mB* (@, A)' = (aim (@®4))
= ((:liml}z(GF))z(dim(A.))2 = n*m',

so that SO(G, 4) is a proper subalgebra of sc (B*(@, 4)).

4. Algebra-valued almost periodic fun.cti-ons, 8. Bochnf.er (;md
J. von Neumann have studied (in [2]) almost perlo.dm f}mctlons de 1}1(3 1;}(1)11;
a group G and with values in a complete topologleall linear slpage.l nmu
section we shall consider the special case where G is a topological group
and the linear space in question is & Banach .algebra. -

Definition. A bounded continuous functlon. F. on a tOIl)Ol?fglt(ﬁh
group & to a Banach algebra A is called almost psmodw .1f andnonby 1nde§
collection of all left and right translates &, and F of F is tota yt 0;«'0(110
with respect to the uniform norm. The cf)llectlo?l of all alm{;s P 1berg
functions F is denoted by AP (G, A). If 4 is the field of complex num IS

rite si AP (G). ‘
s S?Silihzz;t:ns;nxlr?glieuin;nn proved that AP(G, 4) is & B.anach space
under the uniform norm. It is easily verifiecll that APFG, .A) is e;lso ?—:‘(ia;_
nach algebra, where multiplication is pointwise mult‘tlphcaml'on of ?Jnc 1;* (x;
If A has an involution, then AP(G, 4) hajs an*lnvolutlon,.hlxlrlzla r
= F(x)*. Recall that AP(G) is & commgtatlve B -a.lgebra_mth i febrz’
(161, § 41), so that it is isomorphic and isometric Wlth.O (Cf).,d i} Sa ice 2
of all continuous complex-valued functions on the maximal 1 fa pm o
of AP(@). G, the Bohr compactification of a, has- the structurGe 0 tz; c% }N ot
group, and there is a continuous homomorphism « from G in y
ense in G
@ nge shall have occasion now to consider another normed tensor
roduct of Banach spaces. '

! Definition (following [4]). If 4 and B are Banalc-h spaces, W}th ciu%
spaces A’ and B, then A®’B is the linear space of bilinear functionals
on A'xB’ of the form

T = 2 a,;@b,i,
iz
for all <a’,b'yeA’xB'. The operator norm of t.aach guch functional €
is denoted by A(T), and the completion of 4 ®'B with respect to the norm
is denoted by A®,B.

n
where T(a',b') = 2“'(%)5'(51')
=1
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If X is a compact Hausdorff Space and ¥ is a Banach
Grothendieck ([4], p. 90) has shown that ¢ (X, B) and O(X)®,FE are iso-
morphic and isometric Banach spaces. In particular, 0(@, 4) and ¢(F)®, 4
can be so identified. A simple computation shows that the mapping used
is also multiplicative. Thus we have an isometric isomorphism between
the algebras AP(@)®,4 and C(G, 4)

THEOREM 4.1. AP (G, 4)
and hence also with (G, A).

Proof. We define a mapping g on AP(§)®'A into AP(@, 4), as
follows:

space, then

18 isomorphic and isometric with AP(®, 4,

ﬂ(é’f;—@ai):i’fi(-)ai.

It is obvious that 8 is linear. Thus to show that £ is well defined it
will suffice to show that BT =0 when T = 0. Suppose that

T = jfi®ai = 0.
i=1

This means that the linear transformation Vi

from the dual space
of AP(G) into 4, defined by

() = DF (Fas,
i=1
is the zero linear transformation. Thus
BD) @) = D flw)a; = ¥ halfi)as = T (h,) = o,
T i

where %, is the multiplicative linear functional on AP(@) corresponding
to the maximal ideal «(x)<@. Simple computations show that g is multi-
plicative, and that if 4 hag an involution, then B is involution-preserving.
Bochner and von Neumann proved that there exists an invariant mean
on AP (G, 4), and that it is unique. Using the invariant mean, they proved
([2], p. 37) that if Fe AP(Q, A) then F can be uniformly approximated
arbitrarily closely by functions of the form

Zfi(')ai,

where each a;¢ 4 and each f; is a matrix element in an irreducible unitary
representation of @, from which it follows ([13], p. 465) that fi AP (G).
As a result, the image under f of AP ()®'A4 in AP(G, A) is dense.
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1t remains only to prove that g is an isometry. If
n
T= 2fi®a'z’:
=1
then
ar) = sup{| D' F (Faas|: £ eAR(@Y, IF1 <1},
and

18Tl = | DA = sup{Hé;'ji(w)a@”:weG}
(|| e} <a(m)

= supf|| X ha(fi)as

since each h,eAP(G@) and (lh,)] <1. In the other direction,

II

sup lZf‘(f@ a) |: (', &'> < unit ball of AP (@) x4’}

{
s ({3t
{

< sup ”Za a;)fi H o' eunit ball of A’}

I

f', a'>eunit ball of AP(Q) ><A'}

= sup sup (ai)f,-(w)‘: msG}: a’ eunit ball of A’}

frup|
— sup fsup| me(w @): @
< sup {“ ;fi(w)ai

<6}: o/ cunit ball of A}

s 0] = BT,

and the theorem is proved. _
Sinee @ is a compact group, we can now utilize the fact that (&, 4)
is a subset of B*(@, A) to obtain further information about AP(G, A).
I FeAP(G, 4), let us denote its image in C(G, 4) by F, and let us denote
a generic element of @ by w. If we define a function M on AP(G, 4) by

= [F(wydw for all FeAP(6, A),
3

integration being with respect to normalized Haar measure on G, then
it is easily verified- (using Theorem 17, [2], p. 30) that M is the invariant

mean on AP(@, 4) (in this connection, observe thit |(F,)" = (lf’)a(m))-

Group algebra for compact groups 89
If 4 is an H*-algebra, with ;
BY@, 4) = Z,,®P.,

the decomposition of B*(G, 4) into the direct sum of its minimal closed
ideals, then for each F'eAP(@, A) let us denote by F,; the image of the
projection of 7 into the minimal closed ideal P,; under the isometric
isomorphism between O(GF, 4) and AP (G, A). The next theorem
now follows immediately from the discussion in §3 as applied to
B* @, A). :

THEOREM 4.2. If @ is a topological group with Bohr compactifica-
tion @, A is an H*-algebra, and F cAP (G, A), then F has an expansion

F= )Ty '
@B

meaning that

M(Hz«’—zﬂ"ﬂﬁ 1) -0,

M being the invariani mean on AP(G) and the net being defined on the di-
rected set of finite sums 2 Foy. The expansion is unique in the sense that

if B\ and F, have the same expansion, then Fy = F,. If A is strongly semi-

simple, then each F,; is a minimal almost invariant function (4. e. F
almost inoariant and lies in a minimal ideal in BY(@G, A)).
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Charakterisierung der Quotienten
in der zweidimensionalen diskreten Operatorenrechnung

von

W. JENTSCH (Halle/S.)

1. Einleitung. J. Mikusingki hat in [1] eine algebraisch begriindete
Operatorenrechnung entwickelt. Ausgehend von der Menge € aller fiir
t >0 erklirten und dort stetigen, komplexwertigen Funktionen, wird
nachgewiesen, da8 € mit der gewdhnlichen Addition und der Faltung

i
(1) FOHeW} = [F@g—7)dr

als Multiplikation einen Integritidtsbereich bildet. Der zugehorige Quo-
tientenkdrper, der ,, Korper der Operatoren”, dient als Fundament fiir
den Aufbau der Theorie und fiir die Anwendung aunf Differentialglei-
chungen.

In [2] hat S. Bellert eine ,diskrete Operatorenrechnung” aufge-
baut. Der Ausgangspunkt ist die Menge D aller komplexwertigen Funktio-
nen {a,} der diskreten Variablen m =k, %k-+1,... mit kel' (I' Menge
der ganzen Zahlen). In ® wird die Addition in der gewdhnlichen Weise
und die Multiplikation dureh

@) {ant{on} = D) Gubns

p=—00
erklirt, woraus folgt, daB @ nicht nur ein Integritétsbereich, sondern
sogar ein Korper, der ,Korper der diskreten Operatoren” ist. Wiirde
man sich auf den Fall ¥ = 0 beschrinken, konnte die Multiplikation (2)
in der Form

(3) {8} (b} = 2 I -

als digkretes Analogon zu (1) geschrieben werden. Die Menge dieser spe-
ziellen Funktionen wire aber nur ein Integritdtsbereich und kein Korper.
In Analogie zu [1] koénnte man zum zugehdrigen Quotientenkérper tiber-
gehen. Von formalen Abweichungen abgesehen, wurde dieser Weg in [3]
bzw. [4] beschritten.
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