

To Gabor Szegő
on his seventieth birthday

An example in the theory of singular integrals

MARY WEISS and A. ZYGMUND (Chicago)

1. Let $x=(x_1,\ldots,x_n),\ y=(y_1,\ldots,y_n),$ etc. be points in the *n*-dimensional space $E_n,\ \Sigma$ — the unit sphere |x|=1, and $K(x),\ x\neq 0,$ a positively homogeneous kernel of degree —n, i. e., $K(\lambda x)=\lambda^{-n}K(x)$ for $\lambda>0$. In particular, $K(x)=|x|^{-n}\Omega(x'),$ where x'=x/|x| is the projection of x onto Σ . The function Ω is sometimes called the *characteristic* of K (or of the singular integral (1.1) below).

It is by now a familiar fact that if a) $|\Omega| \log^+ |\Omega|$ is integrable over Σ and b) the integral of Ω over Σ is 0, then the convolution integral (singular integral)

(1.1)
$$(K*f)(x) = \lim_{\epsilon \to 0} \int_{|y| > \epsilon} f(x-y)K(y) \, dy$$

$$= \lim_{\epsilon \to 0} \int_{0}^{\infty} \frac{dt}{t} \int_{0}^{\infty} f(x-ty') \, \Omega(y') \, dy'$$

exists almost everywhere for any function f in $L^p(E_n)$, provided p is strictly greater than 1. (There is a corresponding result for p = 1, but then condition a) must be considerably strengthened; we leave this case aside).

While the necessity of condition b) in the above-mentioned theorem is obvious, that of a) is much less clear, and it is the main purpose of this note to show that it cannot be weakened.

A precise formulation of the result is given below (see Theorem 1). Here we only observe that if the kernel K(x) is odd, that is, K(-x) = -K(x), and if, as before, $f \in L^p$, p > 1, then the limit (1.1) exists almost everywhere under the sole condition that Ω is integrable over Σ ; condition b) will then be automatically satisfied. The result holds, and the proof remains unchanged, if Ω is merely an odd mass distribution over Σ , i. e., Ω takes opposite values for sets antipodal on Σ . The integral (1.1) is then

(1.2)
$$\lim_{\varepsilon \to 0} \int_{\varepsilon}^{\infty} \frac{dt}{t} \int_{\Sigma} f(x - ty') \Omega(dy').$$

Let $\tilde{f}(x)$ denote the value of the integral (1.1). Since the latter is a convolution, one could anticipate, after a suitable normalization of f, the formula

$$\hat{f} = \hat{f} \cdot \hat{K},$$

and it can be shown that it is actually so if $f \in L^2$ and K satisfies conditions a) and b); $\hat{K}(x)$ is defined as

$$\lim_{\varepsilon \to 0} \int_{|y| > \varepsilon} K(y) e^{-i(x \cdot y)} dy.$$

The latter limit exists and equals

(1.4)
$$\int_{\Sigma} \Omega(y') \left\{ \log \frac{1}{|\cos \varphi|} - \frac{1}{2} \pi i \operatorname{sign} \cos \varphi \right\} dy',$$

where $\cos\varphi=x'\cdot y'$. In view of the exponential integrability of the logarithm, (1.4) is a bounded function of x if $\Omega\log^+|\Omega|$ is integrable. It is also not difficult to see that for any function $\varphi(u)$, $u\geqslant 0$, non-negative, increasing and $o(u\log u)$ for $u\to\infty$ we can find an Ω such that $\varphi(|\Omega|)$ is integrable over Σ , the integral of Ω over Σ is 0 and (1.4) is essentially unbounded as a function of x. It follows that (1.1) is then an unbounded operation in L^2 and the limit, if it exists, is not necessarily in L^2 (see [1]). We shall, however, prove the following stronger result:

THEOREM 1. Let $\varphi(u)$, $u \geqslant 0$, be a non-negative non-decreasing function of u which is $o(u\log u)$ for $u \to \infty$. Then there is an Ω such that $\varphi(|\Omega|)$ is integrable over Σ and a function f(x) which is continuous, tends to 0 at ∞ , belongs to $L(E_n)$ (and so also to every L^p , p > 1) and such that

(1.5)
$$\tilde{f}_{\varepsilon}(x) = \int\limits_{|y| > \varepsilon} f(x - y) \frac{\Omega(y')}{|y|^n} dy'$$

satisfies

$$\limsup_{x \to 0} |\tilde{f}_{\varepsilon}(x)| = +\infty$$

for almost all x.

We will give the proof of the theorem for n=2 and show later that this implies the theorem for general n>2. If n=2, (1.5) can be written

(1.7)
$$\tilde{f}_{\varepsilon}(z) = \int_{\varepsilon}^{\infty} \frac{dt}{t} \int_{0}^{2\pi} f(z - te^{i\theta}) \Omega(\theta) d\theta,$$

where z = x + iy is now a complex number.

Before we pass to the proof suppose first that Ω is a measure consisting of two point masses -1 at the points $\theta = 0$, π , and two point masses +1 at $\theta = \pm \frac{1}{2}\pi$. Then the last integral can be written

$$\int_{t}^{\infty} \frac{f(z+it)+f(z-it)-2f(z)}{t} dt - \int_{t}^{\infty} \frac{f(z+t)+f(z-t)-2f(z)}{t} dt.$$

Suppose now that f is a function of the variable x only: f(z) = g(x). Then the first integral disappears and the second becomes

(1.8)
$$\int_{t}^{\infty} \frac{g(x+t) + g(x-t) - 2g(x)}{t} dt.$$

Now it is well known that there exists a continuous and integrable function g(x) such that the last integral is unbounded for each x as $\varepsilon \to 0$. The corresponding function f(z), which is independent of the variable y, is only locally integrable in E_2 , but by means of this f it is easy to construct another f, continuous and in $L(E_2)$, such that (1.8) does not tend to any limit as $\varepsilon \to 0$.

The proof of Theorem 1 follows a similar line but its details are more involved. Section 7 contains a result completing Theorem 1.

2. The proof of Theorem 1 is based on a series of lemmas.

LEMMA 1. Let $\varphi(u)$, $0 \le u < \infty$, be non-negative, non-decreasing and $o(u\log u)$ for $u \to \infty$. Then there is a convex non-decreasing function $\psi(u)$ satisfying $\psi(u) \ge \varphi(u)$, $\psi(u) = o(u\log u)$ $(u \to \infty)$.

The meaning of Lemma 1 is that in Theorem 1 it is enough to consider convex functions φ . We postpone the proof of the Lemma to Section 6.

LEMMA 2. Let n_1, n_2, \ldots be a sequence of positive integers satisfying $n_{k+1}/n_k > q > 1$. Let a_1, a_2, \ldots be a sequence of real numbers such that $\sum_{|a_k|} < \infty$. Finally, let $d_1(\varepsilon), d_2(\varepsilon), \ldots$ be a sequence of numbers depending continuously on the parameter $\varepsilon, 0 < \varepsilon \le 1$, such that the sequence is bounded for each fixed ε , and each $d_k(\varepsilon)$ is bounded in ε for fixed k; moreover $\sum_{\alpha_k} d_k^2(\varepsilon)$ tends to $+\infty$ as $\varepsilon \to 0$. Set

$$\lambda_{\varepsilon}(x) = \sum a_k d_k(\varepsilon) \cos n_k x.$$

Then

$$(2.1) \qquad \qquad \limsup_{\epsilon \to 0} |\lambda_\epsilon(x)| = +\infty$$

for almost all x.

This lemma is a simple corollary of the following known result (see [2], p. 231, Ex. 27). Given a number q > 1 and a set E of positive meas-

105

ure contained in $(0, 2\pi)$ there exist two positive numbers λ_q and μ_q with the following property: for any function

$$f(x) = \sum_{1}^{\infty} a_k \cos n_k x,$$

 $n_{k+1}/n_k > q$, $\sum a_k^2 < \infty$, |f(x)| exceeds $\lambda_q(\sum a_k^2)^{1/2}$ in a subset of E of measure $> \mu_q|E|$, provided n_1 is large enough: $n_1 > n_0(q,E)$. For suppose that (2.1) does not hold almost everywhere. We can then find a set E, |E| > 0, and numbers M, ε_0 such that

$$\big|\sum a_k d_k(\varepsilon) \cos n_k x \big| < M \quad \text{ for } \quad x \, \epsilon E \,, \, 0 < \varepsilon < \varepsilon_0.$$

Dropping a sufficiently large number of initial terms and using the fact that each $d_k(\varepsilon)$ is bounded in ε we may assume that n_1 in (2.2) is sufficiently large (this may require a change of M) so that $|\sum a_k d_k(\varepsilon) \cos n_k x|$ exceeds $\lambda_d (\sum a_k^2 d_k^2(\varepsilon))^{1/2}$ in a subset of E of measure $> \mu_q |E|$. Since $\sum a_k^2 d_k^2(\varepsilon)$ tends to ∞ as $\varepsilon \to 0$, this contradicts (2.2) and proves the lemma.

3. Let $0 < h < \frac{1}{4}\pi$ and let $\chi_h(\theta)$ be the characteristic function of the interval $0 \le \theta \le h$ repeated periodically with period 2π . Let

$$\chi_h'(heta) = rac{1}{h} \Bigl\{ -\chi_h(heta) + \chi_h\Bigl(heta + rac{1}{2}\,\pi\Bigr) - \chi_h(heta + \pi) + \chi_h\Bigl(heta - rac{1}{2}\,\pi\Bigr) \Bigr\}.$$

The function Ω of Theorem 1 will be defined as $\sum \delta_k \chi' h_k(\theta)$, where the numbers δ_k are positive, $\sum \delta_k < \infty$, and $\{h_k\}$ is a sequence of positive numbers tending to 0. It is clear that $\Omega(\theta)$ is integrable and its integral over $(0, 2\pi)$ is 0. We will show later that if the δ_k and h_k are chosen suitably, then also $\varphi(|\Omega(\theta)|)$ is integrable, where φ is the function of Theorem 1.

As before, we shall consider a continuous function f(z) which initially will depend on one variable only, f(z) = g(x), and will be periodic of period 2π . We set (see (1.7))

$$(3.1) J_s = J_s(z; f, \chi'_h) = \int_s^1 \frac{dt}{t} \int_0^{2\pi} f(z - te^{i\theta}) \chi'_h(\theta) d\theta$$

$$= \int_s^1 \frac{dt}{t} \left\{ \frac{1}{h} \int_0^h \left[-g(x + t\cos\theta) - g(x - t\cos\theta) + g(x - t\sin\theta) \right] \right\} d\theta.$$

The expression in curly brackets can be written

$$(3.2) \qquad \frac{1}{h} \int_{0}^{h} \left[g(x + t \sin \theta) + g(x - t \sin \theta) - 2g(x) \right] d\theta - \frac{1}{h} \int_{0}^{h} \left[g(x + t \cos \theta) + g(x - t \cos \theta) - 2g(x) \right] d\theta,$$

and if we set

$$g(x) = \sum_{1}^{\infty} a_k \cos 2n_k x \quad (\sum |a_k| < \infty, \ n_{k+1}/n_k \geqslant 2)$$

a simple computation shows that (3.1) is

$$(3.3) \quad \sum a_k \cos 2n_k x \left\{ \frac{1}{h} \int_0^h \int_s^1 \frac{\sin^2(n_k t \cos \theta)}{t} dt d\theta - \frac{1}{h} \int_0^h \int_s^1 \frac{\sin^2(n_k t \sin \theta)}{t} dt d\theta \right\}$$

$$= \sum a_k \cos 2n_k x I(\varepsilon, n_k, h),$$

where

$$I(\varepsilon, n_k, h) = I_1(\varepsilon, n_k, h) - I_2(\varepsilon, n_k, (h),$$

$$I_1 = \frac{1}{h} \int_0^h \int_{\varepsilon}^1 \frac{\sin^2(n_k t \cos \theta)}{t} dt d\theta,$$

$$I_2 = \frac{1}{h} \int_0^h \int_{\varepsilon}^1 \frac{\sin^2(n_k t \sin \theta)}{t} dt d\theta.$$
(3.4)

Our main task now is to find an estimate for $I(\varepsilon, n_k, h)$.

4. We write n for n_k , keep n and ε fixed and consider $I = I(\varepsilon, n, h)$ as a function of h. We set $v = n\varepsilon$ (thus v < n). The O(1) in the lemma that follows are uniform in n, ε, h .

LEMMA 3. a) If $v \leq 1$, then

$$I = \frac{1}{2}\log n + O(1) \quad \text{ for } \quad 0 < h \leqslant 1/n,$$

$$I=rac{1}{2}\lograc{1}{\hbar}+O(1) \quad \textit{ for } \quad 1/n\leqslant h\leqslant 1.$$

b) If
$$v \ge 1$$
, then

$$I = \frac{1}{2} \log \frac{1}{\epsilon} + O(1)$$
 for $0 < h \le 1/n$,

$$I = \frac{1}{2} \log \frac{1}{nh} + O(1) \quad \text{for} \quad 1/n \leqslant h \leqslant 1/r,$$

$$I = O(1)$$
 for $1/\nu \leqslant h \leqslant 1$.

The proof of the lemma is based on the following equation:

$$(4.1) \qquad \qquad \int_{\epsilon}^{1} \frac{\sin^{2}t\alpha}{t} dt = \frac{1}{2} \min \left\{ \log^{+}\alpha, \log \frac{1}{\epsilon} \right\} + O(1).$$

Its verification is simple. If $a \le 1$, the left-hand side is O(1) (since the integrand is $\le ta^2$) and the formula is obvious. Suppose now that a > 1, consider the two formulas

$$(4.2) \int_{1}^{\omega} \frac{\sin^{2} s}{s} ds = \frac{1}{2} \log \omega + O(1), \int_{\pi}^{1} \frac{\sin^{2} s}{s} ds = O(1) \quad (0 < \eta \le 1 \le \omega)$$

and write the integral (4.1) in the form $\int_{\epsilon a}^{a} s^{-1} \sin^{2}s \, ds$. If $\epsilon a \geq 1$, i. e., $a \geq 1/\epsilon$, the first formula (4.2) shows that the last integral is $\frac{1}{2} \log(1/\epsilon) + O(1)$. If $\epsilon a < 1$, the two formulas (4.2) show that the integral is $\frac{1}{2} \log \alpha + O(1)$. In either case we have (4.1).

From (4.1) we easily obtain

$$(4.3) \quad I_1 = \frac{1}{h} \int_0^h d\theta \int_{\epsilon}^1 \frac{\sin^2(t n \cos \theta)}{t} dt = \frac{1}{2} \min \left\{ \log n, \log \frac{1}{\epsilon} \right\} + O(1),$$

$$(4.4)\ I_2 = \frac{1}{h} \int\limits_0^h d\theta \int\limits_{\epsilon}^1 \frac{\sin^2(tn\sin\theta)}{t} dt = \frac{1}{2} \frac{1}{h} \int\limits_0^h \min\left\{\log^+ n\theta, \log\frac{1}{\epsilon}\right\} d\theta + O(1).$$

In the remainder of this section A = B means A = B + O(1). Observe now that, by (4.3) and (4.4),

$$I_1 = \frac{1}{2} \log n \quad \text{for} \quad v \leqslant 1,$$

$$(4.6) I_1 = \frac{1}{2} \log \frac{1}{\varepsilon} \quad \text{ for } \quad \nu \geqslant 1,$$

independently of h. Since, clearly, $I_2=0$ for $h\leqslant 1/n,$ equations $a_1)$ and $b_1)$ follow.

Suppose now that $nh \ge 1$, that is, $1/n \le h \le 1$. If $h \le 1/\nu$, then, by (4.4),

(4.7)
$$I_2 = \frac{1}{2h} \int_{1/h}^{h} \log n\theta \, d\theta = \frac{1}{2} \log nh,$$

and if $h \geqslant 1/\nu$, then

$$(4.8) I_{2} = \frac{1}{2h} \left\{ \int_{1/n}^{1/\nu} \log n\theta \, d\theta + \int_{1/\nu}^{h} \log \frac{1}{\varepsilon} \, d\theta \right\} = \frac{1}{2h} \left[\frac{1}{\varepsilon} \log \frac{1}{\varepsilon} + \left(h - \frac{1}{\nu} \right) \log \frac{1}{\nu} \right]$$
$$= \frac{1}{2} \log \frac{1}{\varepsilon}.$$

Let us consider now separately the two cases $v \leq 1$ and $v \geq 1$. If $v \leq 1$, the equation (4.7) is valid for $1/n \leq h \leq 1$ and in conjunction with (4.5) gives $I = I_1 - I_2 = \frac{1}{2}\log(1/h)$, which is our formula a_2). If, however, $v \geq 1$, (4.6) together with (4.7) show that $I = \frac{1}{2}\log 1/(vh)$ for $1/n \leq h \leq 1/v$, and equation b_2) follows. Finally, if $1/v \leq h \leq 1$, the equations (4.6) and (4.8) give I = 0, which is b_3). This completes the proof of Lemma 3.

5. Let now f(z) = g(x) be a function of the variable x alone and let (cf. (1.7) and (3.1))

$$J_{\varepsilon}(z;f,\,\Omega) = \int\limits_{z}^{1} \frac{dt}{t} \int\limits_{0}^{2\pi} f(z-te^{i\theta}) \Omega(\theta) d\theta \qquad (0 < \varepsilon < 1).$$

Suppose that

$$g(x) = \sum_{k=0}^{\infty} a_k \cos 2n_k x,$$

where $\sum |a_k| < \infty$ and n_1, n_2, \ldots are positive integers satisfying the condition $n_{k+1}/n_k \ge 2$, and let

$$arOmega(heta) = \sum_1^\infty \delta_{r_r} \chi_{r_r}'(heta),$$

where the δ_r are positive, $\sum \delta_r = 1$ and $\frac{1}{4}\pi > h_1 > h_2 > \dots$, $h_r \to 0$. Then, using (3.1), (3.2) and (3.3),

$$\begin{split} J_{\varepsilon}(z;f,\,\Omega) &= \sum_{\mathbf{r}} \delta_{\mathbf{r}} \int_{\varepsilon}^{1} \frac{dt}{t} \int_{0}^{2\pi} f(z - t e^{i\theta}) \chi_{h_{\mathbf{r}}}'(\theta) d\theta \\ &= \sum_{\mathbf{r}} \delta_{\mathbf{r}} \Big\{ \sum_{k} a_{k} \cos 2n_{k} x I(\varepsilon,\,n_{k},\,h_{\mathbf{r}}) \Big\} \\ &= \sum_{\mathbf{r}} a_{k} \cos 2n_{k} x \Big\{ \sum_{k} \delta_{\mathbf{r}} I(\varepsilon,\,n_{k},\,h_{\mathbf{r}}) \Big\}. \end{split}$$

The change in the order of summation is justified since, as we easily see from Lemma 3, $I(\varepsilon, n, h)$ is bounded in n and h for ε fixed (it is majorized by $\frac{1}{2}\log(1/\varepsilon) + O(1)$).

Using Lemma 3 we also see that

$$\sum_{\mathbf{r}} \delta_{\mathbf{r}} I(\varepsilon, n_k, h_{\mathbf{r}}) = \frac{1}{2} d_k(\varepsilon) + O(1),$$

where the O is bounded in ε and k, and

$$egin{align*} d_k(arepsilon) &= \left(\sum_{h_{m{
u}} \leqslant 1/n_k} \delta_{m{
u}}
ight) \log n_k + \sum_{h_{m{
u}} > 1/n_k} \delta_{m{
u}} \log rac{1}{h_{m{
u}}}, & ext{if} & n_k \leqslant 1/arepsilon, \ d_k(arepsilon) &= \left(\sum_{h_{m{
u}} \leqslant 1/n_k} \delta_{m{
u}}
ight) \log rac{1}{arepsilon} + \sum_{1/n_k \leqslant h_{m{
u}} \mid \ell = n_k} \delta_{m{
u}} \log \left(rac{1}{n_k arepsilon h_{m{
u}}}
ight), & ext{if} & n_k \geqslant 1/arepsilon. \end{align*}$$

Assuming that the sequences $\{a_k\}$, $\{n_k\}$, $\{\delta_r\}$, $\{h_r\}$ have the properties already listed we will show that we can select them in such a way that

(5.1)
$$\sum a_k^2 d_k^2(\varepsilon) \to \infty \qquad (\varepsilon \to 0),$$

$$\int\limits_{0}^{2\pi}\varphi(|\Omega(\theta)|)\,d\theta<\infty,$$

where φ is the function of Theorem 1 (and is convex). Since, as we can easily verify, the sequence $\{d_k(\varepsilon)\}$ is bounded for each fixed ε , and each $d_k(\varepsilon)$ is a bounded function of ε , an application of Lemma 2 will give us

(5.3)
$$\limsup |J_{\varepsilon}(z;f,\Omega)| = +\infty$$

for almost all x or, what is the same thing, for almost all z.

Choose for $\{a_k\}$ any sequence such that $a_k \neq 0$, $\sum |a_k| < \infty$. Take for $\{\delta_r\}$ and $\{h_r\}$ sequences such that

(5.4)
$$\sum \delta_{\nu} h_{\nu} \varphi(1/h_{\nu}) < \infty, \quad \sum \delta_{\nu} \log \frac{1}{h_{\nu}} = +\infty.$$

This is feasible since, by hypothesis,

$$\varphi\left(\frac{1}{h}\right) / \frac{1}{h} \log \frac{1}{h} = h\varphi\left(\frac{1}{h}\right) / \log \frac{1}{h} \to 0 \quad (h \to 0).$$

Let now $\{n_k\}$ increase so rapidly that

$$\sum_{h_{
u}>1/n_k} \delta_{
u} {\log rac{1}{h_{
u}}} > rac{1}{|a_k|}.$$

Then $d_k(\varepsilon) > 1/|a_k|$ for $n_k < 1/\varepsilon$ and hence

$$\sum \! a_k^2 d_k^2(arepsilon) \geqslant \sum_{n_k < 1/arepsilon} 1
ightarrow \infty$$

as $\varepsilon \to 0$, which is (5.1).

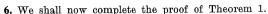
To prove (5.2) we recall the definition of χ'_h and the assumptions that φ is convex and $\sum \delta_r = 1$. Then, using Jensen's inequality, we have

$$(5.5) \qquad \int_{0}^{2\pi} \varphi(|\Omega(\theta)|) d\theta = 4 \int_{0}^{h_{1}} \varphi\left(\sum \delta_{\nu} \frac{1}{h_{\nu}} \chi_{h_{\nu}}(\theta)\right) d\theta$$

$$\leq 4 \sum \delta_{\nu} \int_{0}^{h_{1}} \varphi\left(\frac{1}{h_{\nu}} \chi_{h_{\nu}}(\theta)\right) d\theta = 4 \sum \delta_{\nu} \int_{0}^{h_{\nu}} \varphi\left(\frac{1}{h_{\nu}}\right) d\theta$$

$$= 4 \sum \delta_{\nu} h_{\nu} \varphi\left(\frac{1}{h_{\nu}}\right) < \infty,$$

and (5.2) is established.



Changing the notation slightly, let us denote by $f^*(z)$ the function (depending on x only) for which we proved (5.3). Let Q be any square in E_2 with sides parallel to the axes, and let $\lambda_Q(z)$ be a function of the class C', positive in the interior of Q and 0 outside Q. Let $f_Q(z) = f^*(z)\lambda_Q(z)$. It is not difficult to see that $J_\varepsilon(z,f_Q,\Omega)-\lambda_Q(z)J_\varepsilon(z,f^*,\Omega)$ tends to a finite limit in the interior of Q as $\varepsilon\to 0$, so that $\limsup |J_\varepsilon(z,f_Q,\Omega)|=+\infty$ almost everywhere in Q. Decomposing the plane into a union of congruent but non-overlapping squares Q_m $(m=1,2,\ldots)$ and taking for λ_{Q_m} translates of one another, we easily see that if $\eta_m>0$, $\sum \eta_m<\infty$. the function $f=\sum \eta_m f_{Q_m}(z)$ has all the properties formulated in Theorem 1.

We shall now prove Lemma 1. Let $\omega(u) = u \log u$ for $u \geq 2$, $\omega_n(u) = \omega(u)/n(n=1,2,\ldots)$. Let $2 \leq u_1 < u_2 < u_3 < \ldots$ be any sequence of numbers increasing so rapidly that $\omega_n(u_n) < \omega_{n+1}(u_{n+1})$, $\omega_n'(u_n) < \omega_{n+1}(u_{n+1})$ ($n=1,2,\ldots$). In each of the intervals (u_n,u_{n+1}) we construct an increasing convex function (e. g., a polygonal line) situated between the curves $v = \omega_n(u)$ and $v = \omega_{n+1}(u)$, tangent to the former at the point $u = u_n$ and having the same ordinate as the latter at $u = u_{n+1}$. The totality of these convex curves augmented by the segment $v = \omega_1(u_1)$, $0 \leq u \leq u_1$, constitutes a single convex and non-decreasing (strictly increasing for $u \geq u_1$) curve $v = \psi(u)$. Clearly, $\psi(u) = o(u \log u)$ for $u \to \infty$.

Suppose that $\{u_n\}$ has, in addition, the following properties: $\varphi(u) \leq \omega_{n+1}(u)$ for $u \geqslant u_n$. Then, obviously, $\varphi(u) \leq \psi(u)$ in each of the intervals $(u_n, u_{n+1}), n=1, 2, \ldots$ In the interval $(0, u_1)$ we have $\varphi(u) \leq \varphi(u_1) \leq \omega_2(u_1) < \omega_1(u_1) = \psi(u)$. Hence $\varphi(u) \leq \psi(u)$ for $u \geqslant 0$ and Lemma 1 is established. This also completes the proof of Theorem 1 in the case n=2.

The result for n=2 is easily extensible to higher values of n. The case n=3 is typical and we confine our attention to it.

Suppose that a function f(x,y,z) of 3 real variables is continuous and integrable in E_3 , and suppose that it is a function of 2 variables only, f=f(x,y), in a cube Q. Suppose also that the characteristic Ω , defined on the surface Σ of the unit spere, is a function of latitude θ only, so that $K=\Omega(\theta)/r^3$. If φ is the function of Theorem 1, then the integrability of $\varphi(|\Omega|)$ over Σ is equivalent to the integrability of $\varphi(|\Omega(\theta)|)$ over $0 \le \theta \le \pi$. It is easy to see that at each point (x,y,z) interior to Q the existence of the 3-dimensional convolution of f(x,y,z) and $K=\Omega/r^3$ is equivalent to the existence of the two-dimensional integral

$$\int\!\!\int f(x-\xi,\,y-\eta)\,\Omega(\theta)r^{-2}d\xi\,d\eta$$

near $\xi = \eta = 0$. A routine argument completes the proof.

111

7. One may ask what can be the "degree of continuity" of the function f in Theorem 1. The theorem that follows gives some information on that score, though not a complete answer. We will return to this question on another occasion.

THEOREM 2. Let a and β be two positive numbers of sum less than 1. Then there are a function f(x) integrable over E_n , tending to 0 at ∞ , having modulus of continuity

$$\omega(\delta) = O\left\{\frac{1}{(\log 1/\delta)^a}\right\}$$

and a function $\Omega(x')$ of the class $L(\log^+ L)^{\beta}$ over Σ ,

$$\int\limits_{\Gamma} \Omega d\sigma = 0\,,$$

such that the integral $f * r^{-n}\Omega(x')$ diverges almost everywhere.

The proof of this theorem runs parallel to that of Theorem 1 and we may be brief. It is enough to consider the case n=2. We need the following lemma which is certainly known though it is difficult to give exact reference.

LEMMA 4. Let n_1, n_2, \ldots be an increasing sequence of positive integers, and let the sequence a_1, a_2, \ldots of real numbers and the function $w(\delta)$ decreasing monotonically to 0 with δ have the following properties:

(i)
$$a_k = O(w(1/n_{k+1})),$$

(ii)
$$\sum_{N+1}^{\infty} |a_k| = O(a_N),$$

(iii)
$$\sum_{1}^{N} n_k |a_k| = O(n_N |a_N|).$$

Then the modulus of continuity $\omega(\delta)$ of the function $f(x) = \sum a_k \cos n_k x$ is $O(w(\delta))$.

Let $0 < \delta \leqslant 1/n_1$ and let N be such that $\delta n_N \leqslant 1 < \delta n_{N+1}$. Then

$$\begin{split} |f(x+\delta)-f(x)| &\leqslant \sum |a_k| \left| 2\sin n_k \left(x+\frac{1}{2} \delta\right) \sin \frac{1}{2} n_k \delta \right| \\ &\leqslant \delta \sum_1^N |a_k| n_k + \sum_{N=1}^\infty |a_k| = P + Q, \end{split}$$

say, and

$$P \leqslant rac{1}{n_N} O(a_N n_N) = O(|a_N|) = O\left(w\left(rac{1}{n_{N+1}}
ight)\right) = O\left(w(\delta)
ight),$$

$$Q = O(|a_N|) = O(w(\delta)).$$

Hence $\omega(\delta) = O(w(\delta))$ and the lemma is established. Let now

$$w(\delta) = \left(\log \frac{1}{\delta}\right)^{-a}, \quad n_k = 2^{2^k}, \quad a_k = 2^{-ka}.$$

It is easy to see that the hypotheses (i), (ii), (iii) of Lemma 4 are satisfied so that the function $f(x) = \sum a_k \cos 2n_k x$ has modulus of conti-

nuity
$$O\left\{\left(\log \frac{1}{\delta}\right)^{-a}\right\}$$
.

Let us also set

$$\delta_{\nu} = \frac{1}{\nu^{1+\beta} \log^2 \nu}, \quad h_{\nu} = 2^{-\nu} \quad (\nu = 2, 3, \ldots).$$

Then (see (5.4) and (5.5))

$$\sum \delta_{\nu} \left(\log \frac{1}{h_{\nu}} \right)^{\beta} = C \sum \nu^{-1} (\log \nu)^{-2} < \infty,$$

so that the function Ω of Section 5 is in the class $L(\log^+ L)^{\beta}$.

Finally, let $0 < \varepsilon < 1$, $n_k < 1/\varepsilon$. Then the function $d_k(\varepsilon)$, considered in Section 5, satisfies the inequality

$$d_k(\varepsilon)\geqslant (\log n_k)\sum_{h_{\boldsymbol{\nu}}\leqslant 1/n_k}\delta_{\boldsymbol{\nu}}=2^k(\log 2)\sum_{r=2^k}^{\infty}\frac{1}{v^{1+\beta}\log^2 v}\geqslant c\,\frac{2^k}{2^{\beta k}k^2}.$$

It follows that

$$a_k d_k(\varepsilon) \geqslant c(2^k)^{1-\alpha-\beta} k^{-2}$$

and hence $\sum a_k^2 d_k^2(\varepsilon) \to \infty$ if $\alpha + \beta < 1$. The rest of the proof is the same as in Theorem 1.

References

[1] A.P. Calderón and A. Zygmund, On singular integrals, American J. of Math. 78 (1956), p. 289-309.

[2] A. Zygmund, Trigonometric series, 2nd ed., vol. I and II, Cambridge 1959.

DE PAUL UNIVERSITY, UNIVERSITY OF CHICAGO

Reçu par la Rédaction le 12.11.1964