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1. Lebt @ = (%, ..., Bu)y ¥ = (Y1 .-+, Yn), eLC. e points in the n-di-
mensional space B,, £ — the unit sphere |z| =1, and K (), # 0,
a positively homogeneous kernel of degree —n, i e., K(Az) = A7"K (x)
for 2> 0. In particular, K (z) = |o|~"Q(«"), where o' = »/|z| is the pro-
jection of # onto X. The funetion £ is sometimes ealled the characteristic
of K (or of the singular integral (1.1) below).

It is by now a familiar fact that if a) |Qlog* || is integrable over X
and b) the integral of 2 over X is 0, then the convolution integral (singular
integral)

(L) (Le)(o) =lim [ fla—y)E@)dy

&0 [wi>e

3 wdt r ! 7
—tim [ £ [fla—w) QW)

MB t z

exists almost everywhere for any function fin IP(E,), provided p is strietly
greater than 1. (There is & corresponding result for p =1, but then con-
dition a) must be considerably strengthened; we leave this case agide).

While the necessity of condition b) in the above-mentioned theorem
is obvious, that of a) is much less clear, and it is the main purpose of this
note to show that it cannot be weakened.

A precige formulation of the result is given below (see Theorem 1).
Here we only observe that if the kernel K (z) is odd, that is, K(—)
= —K(#), and if, as before, feL”, p > 1, then the limit (1.1) exists al-
most everywhere under the sole condition that £ is integrable over X
condition b) will then be automatically satistied. The result holds, and the
proof remains unchanged, if Q is merely an odd mass distribution over
Z, i.e., Q takes opposite values for sets antipodal on X. The integral
(1.1) is then

~d
1.2) limf Tt ff(w—~ty’)!2(dy').
& P

&0
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Letl ft (#) denote the value of the integral (1.1). Since the latter is
a convolution, one could anticipate, after a suitabl ot .
the formula ’ able normalization of f,

(1.3) f=}K,

and it can be shown that it is actuall i isfi
K v 80 if feL? and K satisfies conditi
a) and b); K (z) is defined as ieHies conditions

lim [ K (y)e =y

&-0 Wi>z

The latter limit exists and equals

(1.4) 2y’ {lo S !
Ef y') g[COS(p[ 5 misigneosprdy’,
where cosp = 2'-y’. In view of the ex ial i
h . . ponential integrability of th, -
:fmhm,(7 (;jffi is a bounded function of w if Rlogt| Q] is intngblee Ilt? lgirs
80 1o icult to see that for any function .
: ’ ®(4), 4 > 0, non- i
Increasing and o(wlogu) for u — co we can find a’n Q/sl{ch th;? g;f flgla;
fn?::izaj;le ove¥ Z, the integral of Q over 3 is 0 and (1.4) is essentially
a8 a function of 2. It follows that (1.1) is the:
nded of . It follc . n an unbounded
%gerazo?l in I and the limit, if i ewists, is not necessarily in I* (see [1?)
e shall, however, prove the following stronger result: .
o EijOR:.I\I] 1.. Let p(u), u >0, be a non-negotive non-decreasing func-
o ¢ ;1) ich s ?(ulogu) for w — co. Then there is an Q such that o (12))
o egrable over X and o function f(w) which 4s continuous, tends to 0 at co
ngs to L(E,) (and so also to every LP, p > 1) and such that 7

(L. fw) = [ flo—p 29 4y
N Wie [yl

satisfies

(1.6) limsoup f(@)| = oo

for almost all z.

his iV;’ie Evi]l give the proof of the theorem for n = 2 and show later that
Plies the theorem for general n > 2. If 5 — 2, (1.5) can be written

) ~ Oodt an '
(1.7) Fle) = f Tff(z—te”’)g(e)da,

where 2 = 4y is now a complex number.

©
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Before we pass to the proof suppose first that 2 is a measure con-
gisting of two point masses —1 at the points § = 0, =, and two point
magses +1 at 6 = 43n. Then the last integral can be written

f Sl fle— =) 5 f fet ) fe= )= 5,

Suppose now that f is a function of the variable z only: f(2) = g(x).
Then the first integral disappears and the second becomes

(1.8) ;

fg(w+t)+g(w—t)—2g(w> i
Now it is well known that there exists a continuous and integrable
function g(#) such that the last integral is unbounded for each z as
e —0. The corresponding function f(z), which is independent of the
variable ¢, is only locally integrable in E,, but by means of this f it is
easy to construct another f, continuous and in L(®,), such that (1.8)

does not tend to any limit as e — 0.
The proof of Theorem 1 follows a gimilar line but its details are more

involved. Section 7 contains a result completing Theorem 1.

2. The proof of Theorem 1 is based on a series of lemmas.

TiEmma 1. Let p(u), 0 <u < oo, be non-negative, non-decreasing and
o(ulogu) for u — co. Then there is a conves non-decreasing function w(u)
satisfying p(w) > p(w), p(w) = o(ulogu) (u—>c0).

The meaning of Lemma 1 is that in Theorem 1 it is enough to consider
convex functions g. We postpone the proof of the Lemma to Section 6.

LevmA 2. Let my, Mg, ... be a sequence of positive integers satisfying
Mipr [T > g > 1. Let @y, 8,y ... be o sequence of real numbers such that
Slazl < oo. Finally, let dy(z), dy(e), ... be a sequence of numbers depending
continuously on the parameter &, 0 < ¢ <1, such that the sequence is bounded
for each fimed e, and each dy(e) 4s bounded in & for fiwed To; moreover

Yaidi(e) tends to +oo as &—>0. Set
() = Z ardy () cos Ny .
Then
(2.1) HIYEUUPMB(WN = 400

for almost all .
This lemma is a simple corollary of the following known result (see

[21, p. 231, Ex. 27). Given a number ¢ > 1 and a set F of positive meas-
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ure contained in (0, 2x) there exist two positive numbers 4, and u, with
the following property: for any function

0
flz) = 2 @y, COS My, 8,
1

Mt > ¢y Dai < oo, |f(w)] exceeds A, (Y af)"* in a subset of B of measure
> po|B|, provided n, is large enough: n, > (g, E). For suppose that
(2.1) does not hold almost everywhere. We can then find a set B, |B| > 0,
and numbers M, & such that

(2.2) ]Zahdk(a)cosnkm‘ <M for weEH,0< e < g.

Dropping a sufficiently large number of initial terms and using the
fact that each dj(s) is bounded in ¢ we may assume that ny in (2.2) is
sufficiently large (this may require a change of M) so that [ 3 ar,dy () cos x|
exceeds 2, Y aidi(s))'" in a subset of 77 of measure > y,|B|. Since Dlajdi(e)
tends o oo as £ - 0, this contradicts (2.2) and proves the lemma.

3. Let 0 <h < }r and let y,(6) be the characteristic function of
the interval 0 < 6 <& repeated periodically with period 2r. Let *

’ l 1
m(8) = E{“‘X}L(O)‘[‘Xh (0-1-—2—7:) —xn(0+7r)-l—x;b(0—~-12—n)}.

The function £ of Theorem 1 will be defined as Za,cx,’,k(e), where
the numbers d; are positive, 28, < oo, and {k} is a sequence of positive
numbers tending to 0. It is clear that 0 6) is integrable and its integral
over (0, 2r) is 0. We will show later that if the O and hy; are chosen suit-
ably, then also ¢ (|2(0))) is integrable, where @ is the function of Theorem 1.

As before, we shall consider a continuous function f(2) which initially
will depend on one variable only, f(2) = ¢(x), and will be periodic of period
2r. We set (see (1.7))

1 om
(1) J,=d.(3f, 1) =f%ff(z—te“’)x;,(0)do

h

=f-d—t{lf[—g(m+tcos€)—g(m~tcos@)+
)T,

+g(m+tsin0)+g(w—ts'mﬁ)]}d@'
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The expression in cwly brackets can be written

I

(3.2) %f [g (- t8in 0) g (z— tsin §) — 29 ()] A6 —
0

1
———]1»~f[g(m—[—ieos,0)+g(m—tcosﬁ)—2g(w)]d0,
"l]

and if we set

g(w) = 2“}«0052”%% (Xlax] < 00, Mpga /g = 2)
1
a simple computation gshows that (3.1) is
1/ * sin® (ngtcos 0) 147 sin®(nytsin 0) dtdﬁl
(3.3) Za,ccos2nkw{fff—————t—~—dtdﬁ—%;ff——t——*—— J
0 s &

= Dlagcos2m,x (e, ng, h),

where
I(g, ngy ) = Ip(&y Ny h)—Iy(e, ng, (R),
R o1
1 sin® (nytcos 6)
== ———— dtdf
: L= hf f 1 !
0 &
a1l
1 sin? (ny, tsin )
== - dtdf.
(3.4) L=} of f : d

Our main task now is to find an estimate for I(e, ny, h).

4. We write n for ng, keep n and ¢ fixed and consider I = I(e,n, h)
as a function of k. We set » = ne (thus » < n). The 0(1) in the lemma that
follows are uniform in =, &, k.

LeMMA 3. a) If » <1, then

1
a,) I = —2—10gn+0(1) for 0<h<1/n,

L ! 1/n<h<1.
%) = Elog%-}-O(l) for <h <

) If v =1, then

1 1
b,) I= Elog—s—JrO(l) for 0 <h<1/n,
b I =i10gi+0(1) for 1jn <h <1y,

2) 2 vh

bt I=0@Q) for 1p<h<1.
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The proof of the lemma is based on the following equation:
1

in®# 1
(4.1) fsm il Emin{log“La,log%} +0(1).

t

Its verification is simple. If @ <1, the left-hand side is O(1) (since
the integrand ‘is < {d’) and the formula is obvious. Suppose now that
o > 1, consider the two formulas

2

(4.2) fSi’;“?

1

sin’s

ds=0(1) (0<7<1<o)

8

1
1
ds = Slogw+0(1), f
7

and write the integral (4.1) in the form [ s 'sin’sds. If sa >1, i.e.,

a > 1/¢, the first formula (4.2) shows that the last integral is Hog(1/e)+
+0(1). If ea < 1, the two formulas (4.2) show that the integral is Hoga+-
+0(1). In either case we have (4.1).

From (4.1) we easily obtain

h 1
1 sin’®(tncos 6 1
“3) I =zfd8f——-—(t————)dt = Emin{logn,logi}+0(1),
0 I €

h 1 h
. 1 8in’(tnsin §) 11 | 1
44) I, = — — —_— i +
(44) I, hufdo‘f = hofmm o no,log—s-}dwoa).

In the remainder of this section 4 = B means 4 = B4-0(1).
Observe now that, by (4.3) and (4.4),

1
(4.5) I, = Elogn for »<1,

1 1
(4.8) Il=§log— for »>1,
&

independently of h. Since, clearly, I, = 0 for h < 1/n, equations a,)
and b,) follow.

Suppose now that nh >1, that is, 1/n <h <1. If % < 1/», then,
by (4.4),

1} 1
4. = _
(4.7) 1, oh 1/£10gn0d0 =3 lognh,
and if » > 1/», then

1y

13
1 1 171, 1 1 1
(4-8)I=-~{ logn@de 1 _d}z..._ - N | PPl
=55 . g +“ og—db 0 e1c>g£-{- h » logv

1

€

1
= Elog

icm
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Let us consider now separately the two cases » <1 and » > 1. If
v < 1, the equation (4.7) is valid for 1/n < & <1 and in conjunction with
(4.5) gives I = I,—1I, = }log(1/h), which is our formula a,). If, however,
» = 1, (4.6) together with (4.7) show that I = $logl/(vh) for 1/n <h <1/,
and equation b,) follows. Finally, if 1/» < h <1, the equations (4.6)
and (4.8) give I = 0, which is b;). This completes the proof of Lemma 3.

5. Let now f(2) = g(«) be a function of the variable # alone and let
(cf. (1.7) and (8.1))

1 a
dt .
Jo(z f, Q) = fof(z—tew).Q(G)dG (0 <e<1).
s 0
Suppose that
(@) = D arcos2ma,
1

where Y'|ay| < oo and m;, n,, ... are positive integers satisfying the con-
dition ng.1/n; > 2, and let

Q(0) = D' 8,1(6),

where the §, are positive, 26, =1and iz >k >k > ..., b, — 0. Then,
using (3.1), (3.2) and (3.3),

1 2
di ion 1
Jeif, @ = 370, [ [ fe—te)73,0)a0
v & 0 |
= 2 d, [‘§,; agcos2ngzl (g, ny, h,,)}
! 1
= akcownkw{ 6,I(eyngy b))
el |

The change in the order of summation is justified since, as we easily
see from Lemma 3, I(e, %, h) is bounded in » and h for & fixed (it is ma-
jorized by 4log(1/e)+0(1)).

Using Lemma 3 we also see that

D) 8,1(e, my ) = Hdu(e)+0 (1),
where the O is bounded in ¢ and %, and

1
& (s) =( 2 6,,)10gn,c+ > blog=—, it m <1,

hy<1yny, hy>1jmy
1 .
di(e) = ( 2 6,)10g; + 2 6”10g(nksh,)’ it omg=1/e.
Ry L1 Inp<h<lleng,
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Assuming that the sequences {a;}, {nz}, {6,}, {h.} have the properties
already listed we will show that we can select them in such a way that
(5.1) Daidi(e) > oo

an

[ (2000 < oo,

0

(e > 0),

where ¢ is the function of Theorem 1 (and iz convex). Since, as we can
easﬂy‘ verify, the sequence {d(e)} is bounded for each fixed ¢, and each
dy(e) i3 a bounded function of ¢, an application of Lemma 2 will give us

(5.3) limgup [/, (z; f, 2)] = 400

for almost all # or, what is the same thing, for almost all 2

Choose for {ak} any sequence such that a; 0 E]ak[ < oo. 1
] . Take
for {(5,,} and {h,,} sequences such that ’

(5.4) S8hp(Lh) < oo, hlog—= = tco.

This is feasible since, by hypothesis,

()/ log 7- ”’“P( )/10g7—>0 (h = 0).

Let now {ng} inerease so rapidly that

1 1
dlog — > —
R, gl

hy>1jng

) > 1/|ag] for n; < 1/e and hence

Z“}idlzc(b‘) = 2 1— o0

Np<lle
as ¢~ 0, which is (5.1).
To‘ prove (5.2) we recall the definition of y;, and the assumptions
that @ is convex and '8, = 1. Then, using Jensen’s inequality, we have

27 Ry
65 [ o000 =4 [ p(38,50,0)0
0 ] d

Then di(e

ny,

<426va (Hxh(e)dewJ.,Yaf ( )

1
—425hq)(h)<oo,

and (5.2) is established.

icm
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6. We shall now complete the proof of Theorem 1.

Changing the notation slightly, let us denote by f*(#) the function
(depending on # only) for which we proved (5.3). Let @ be any square in
E, with sides parallel to the axes, and let 1¢(z) be a function of the class

¢, positive in the interior of § and 0 011ts1de Q. Let fQ z) = f* (®) Ao (2).
Tt is not difficult to see that J,(2,fo, @)— Ag(@W.(2,f*, ) tends to
a finite limit in the interior of @ as ¢ — 0 so that hmsup (2, fo, )|

= +-o0o almost everywhere in §. Decomposing the plane into a union
of congruent but non-overlapping squares @, (m =1,2,...) and taking
for 1o, translates of one another, we easily see that if 7, > 0, Ynm < o0,
the function f = Dnmfo,(?) has all the properties formulated in The-
orem 1,

We shall now prove Lemma 1. Let o(u) = ulogu for w =2, w,(u)
=omn=1,2,...). Let 2<u <u <u;<.. be any sequence
of numbers increasing so rapidly that o, (u,) << Onp1 (Unp1), 0 (ty) <
< wpp(Ung1) (B =1,2,...). In each of the intervals (u,, %,.;) We con-
struet an increasing convex function (e. g., @ polygonal line) situated
between the curves o = w,(u) and v = wy,,,(%), tangent to the former
at the point 4 = u, and having the same ordinate as the latter at u = Uyqy-
The totality of these convex curves augmented by the segment v = w,(u,),
0 < u <, constitutes a single convex and non-decreasing (strietly in-
creasing for u > u,) curve v = p(u). Clearly, y () = o(ulogu) for u — oco.

Suppose that {u,} has, in addition, the following properties: ¢(u)
< gy (w) fOr © > u,. Then, obviously, ¢(u) < y(u) in each of the in-
tervals (ty, Uny1); # = 1, 2, ... In the interval (0, ;) we have ¢ (u) < @ ()
< wytty) < () = p(u). Hence p(u) < y(u) for % >0 and Lemma 1
is established. This also completes the proof of Theorem 1 in the case
n =2

The result for n = 2 is easily extensible to higher values of n. The
case m = 3 is typieal and we confine our attention to it.

Suppose that a function f(z,y,2) of 3 real variables is continuous
and integrable in #;, and suppose that it is a function of 2 variables only,
f =f(z,y), in a cube Q. Suppose also that the characteristic 0, defined
on the surface X of the unit spere, is a function of latitude 6 only, so that
K = Q(6))r°. If ¢ is the function of Theorem 1, then the integrability
of ¢(|2) over X is equivalent to the integrability of ¢(|2(6)]) over 0 < 0
< = It is easy to see that at each point (%, y, 2) interior to ¢ the existence
of the 3-dimensional convolution of f(x,y,#) and K = Q/r’ is equivalent
to the existence of the two-dimensional integral

[[f@—¢&, y—me(8)rasdn

near £ = = 0. A routine argument completes the proof.
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7. One majy ask what can be the “degree of continuity ”of the funection f
in Theorem 1. The theorem that follows gives some information on that
seore, though not a complete answer. We will return to this question on
another occasion. )

THEOREM 2. Let o« and § be two positive numbers of sum less than 1.
Then there are a function f(x) integrable over By, tending to 0 af oo, having
modulus of continwity

1
(log1/6)*
and a function Q(x') of the class L(log™ L)’ over Z,

w(6) = 0{

[ @ds =0,
z

such that the integral frv™"Q(x') diverges almost everywhere.

The proof of this theorem runs parallel to that of Theorem 1 and
we may be brief. It is enough to consider the case # = 2. We need the
following lemma which is certainly known though it is diffieult to give
exact reference.

Levma 4. Let ny, 1y, ... be an increasing sequence of positive iniegers,
and let the sequence ay, ay, ... of real numbers and the function w(3) decreas-
ing monotonically to 0 with & have the following properties:

(i) ax = Ofw (1)),
(i) X laxl = O(ay),
N

1
N
(i) 12%!%! = O(ny|ay]).

Then the modulus of continwity w(8) of the funtcion fl@) = 3 apcosnz
is O(w(s)).
Let 0 < 6 <1/n, and let N be such that dny <1 < dnyyy. Then

ifl@+0)—f(@)l < Dol

. 1 o1
2 8in ny m—{——2—6 sm—2—fnk¢5

N o0
<8 Yladmet Dlal = P+Q,
1 N+1
say, and

P < 0(ayny) = O(layl) = O(w( !
Ny

'nN+l

)) — 0fu(®),

@ = O(lay]) = O(w(3)).

icm
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Hence o(8) = 0(w(6)) and the lemma is established.
Let now

1\ 5 ke
w(6) = (logg) y Mg = 2, @ =27".

It is easy to see that the hypotheses (i), (ii), (iii) of Lemma 4 are
satisfied so that the function f(z) = Za,cos2n;x has modulus of conti-

nuity 0 {(log -13)_}

Let us also set
1

= ——a— h, =27
»+logh ’ !

3,
Then (see (5.4) and (5.5))
]

s, (log%—) = 03 (log»)™? < oo,

so thai the function £ of Section 5 is in the class L(log*L)”. .
Fi_ﬁa]ly, let 0 < ¢ < 1, n; < 1fe. Then the function di(e), considered
in Seetion 5, satisfies the inequality

00
1 2k
dule) > (logmy Y 8, = 2¥(log2) > ey S o
R0y, v=ok

It follows that
aydy(e) = e(2°) "R,

and hence Yaidi(e) — oo if a+p < 1. The rest of the proof is the same
as in Theorem 1.
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