

### STUDIA MATHEMATICA, T. XXVI. (1965)

# A remark on reflexivity and summability

bу

## I. SINGER (Bucharest)

Let us recall that a summability method T is a real matrix  $(c_{mn})$ ,  $m=1,2,\ldots,n=1,2,\ldots$  The T-means of a sequence  $\{z_n\}$  in a Banach space E are

$$t_m = \sum_{n=1}^{\infty} c_{mn} z_n.$$

T is said to be regular if  $z_n$  real,  $z_n \to z$  (finite), implies that  $t_m$  exists and  $t_m \to x$ . According to the Toeplitz-Silverman theorem, T is regular if and only if

- 1)  $\sum_{n=1}^{\infty} |c_{mn}| < M$  for all m,
- 2)  $c_{mn} \to 0$  as  $m \to \infty$ , for all n, and
- 3)  $\sum_{n=1}^{\infty} c_{mn} \to 1$  as  $m \to \infty$ .

A regular method T is said to be essentially positive [2], if

4) 
$$\sum_{m=0}^{\infty} |c_{mn}| \to 1$$
 as  $m \to \infty$ .

A Banach space E is said to have property  $\mathscr{S}(w\mathscr{S})$  [2] if for every bounded sequence in E there exists a regular method T and a subsequence whose T-means converge strongly (weakly); or, equivalently [2], if for every bounded sequence  $\{z_n\}$  in E there exists a regular method T such that the T-means of  $\{z_n\}$  converge strongly (weakly).

Recently, T. Nishiura and D. Waterman have proved ([2], theorem 2) that for a Banach space E the following statements are equivalent:

- (i) E is reflexive.
- (ii) E has property & with essentially positive T.
- (iii) E has property  $w\mathscr{S}$  with essentially positive T.

The purpose of the present Note is to show that in this result the essential positivity of T can be omitted, i. e. that we have the following studia Mathematica XXVI.

I. Singer

114

THEOREM. For a Banach space E the following statements are equivalent:

- (i) E is reflexive.
- (ii) E has property  $\mathcal{S}$ .
- (iii) E has property wS.

In the arguments of [2] the essential positivity of T plays a fundamental role. Our proof is different from that of [2], being based on a profound result of A. Pelczyński ([3], theorem 2) concerning basic sequences.

Proof of the theorem. For (i)  $\Rightarrow$  (ii), see [2]. (ii)  $\Rightarrow$  (iii) is obvious. (iii)  $\Rightarrow$  (i). Assume that E has property  $w\mathscr{S}$  and let  $\{x_n\}$  be an arbitrary basic sequence (i. e. a basis of a closed linear subspace) in E. Then the closed linear subspace  $E_1 = [x_n]$  of E has property  $w\mathscr{S}$  (by the theorem of S. Mazur [1], according to which the  $\sigma(E, E^*)$ -limit of any  $\sigma(E, E^*)$ -convergent sequence in  $E_1$  belongs to  $E_1$ ). Hence, by [2], theorem 3, the basis  $\{x_n\}$  of  $E_1$  must be boundedly complete (1). Thus every basic sequence in E is boundedly complete, whence, by [3], theorem 2, E is reflexive, which completes the proof.

(1) I. e. for every sequence of scalars  $\{a_n\}$  such that  $\sup_{i=1}^n |\sum_{i=1}^n a_i x_i|| < \infty$ , the series  $\sum_{i=1}^\infty a_i x_i$  converges.

#### References

- S. Mazur, Über konvexe Mengen in linearen normierten Räumen, Studia Math. 4 (1933), p. 70-84.
- [2] T. Nishiura and D. Waterman, Reflexivity and summability, ibidem 23 (1963), p. 53-57.
- [3] A. Pełczyński, A note on the paper of I. Singer "Basic sequences and reflexivity of Banach spaces", ibidem 21 (1962), p. 371-374.

INSTITUTE OF MATHEMATICS, RUMANIAN ACADEMY OF SCIENCES

Reçu par la Rédaction le 14.12.1964



# STUDIA MATHEMATICA, T. XXVI. (1965)

# A remark on the preceding paper of I. Singer

(From a letter to R. Sikorski)

b

# A. PEŁCZYŃSKI (Warszawa)

The results of Nishiura and Waterman [2], and Singer [4] suggest the following

THEOREM. Let W be a weakly closed bounded subset of a Banach space E. Then the following conditions are equivalent:

(o) W is weakly compact;

(00) for every sequence  $(z_n)$  of elements of W there is a matrix  $(c_{m,n})$  such that

1) 
$$c_{m,n} \ge 0$$
 and  $c_{m,n} = 0$  for  $n > n(m)$   $(n, m = 1, 2, ...)$ ,

2) 
$$\sum_{m,n=1}^{n(m)} c_{m,n} = 1 \ (m = 1, 2, ...),$$

3) the sequence  $(\sum_{n=1}^{n(m)} c_{m,n} z_n)$  is convergent;

(000) for every sequence  $(z_n)$  of elements of W there is a regular matrix  $(c_{m,n})$  such that the sequence  $(\sum_{n=1}^{\infty} c_{m,n} z_n)$  is weakly convergent to an element of E.

Proof. (o)  $\rightarrow$  (oo). Let  $(z_n)$  be an arbitrary sequence in W. According to the Eberlein-Šmulian theorem ([1], p. 48) the sequence  $(z_n)$  contains a subsequence  $(z_{n_k})$  which is weakly convergent to an element z of W. Then a theorem of Mazur ([1], p. 40) implies the existence of finite averages

$$w_m = \sum_{k=1}^{k(m)} t_{m,k} z_{n_k}$$

such that  $||z-w_m|| < m^{-1}$  (m=1,2,...). Let us set  $c_{m,n} = t_{m,k}$  for  $n=n_k$  (k=1,2,...,k(m); m=1,2,...) and  $c_{m,n}=0$  in the other case. Then the matrix  $(c_{m,n})$  has the desired properties 1)-3).

 $(00) \rightarrow (000)$ . This implication is trivial.

non (o)  $\rightarrow$  non (ooo). It follows from [3] that non (o) implies the existence of a basic sequence  $(z_n)$  of elements of W and a linear functio-