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THEOREM. For a Banach space B the following statements are equivalent:
i) E is reflexive.
(ii) E has property .

(iii) E has property ws.

In the arguments of [2] the essential positivity of T plays a funda-
mental role. Our proof is different from that of [2], being based on a pro-
found result of A. Pelezyniski ([3], theorem 2) concerning basic sequences.

Proof of the theorem. For (i) => (ii), see [2]. (i) => (iii) is obvious.

(iii) = (i). Assume that B has property ws and let {w,} be an arbitrary
basic sequence (i. e. a basis of a closed linear subspace) in F. Then the
closed linear subspace E, = [x,] of F has property ws (by the theorem
of S. Magur [1], according to which the o(H, B*)-limit of any o(E, E*)-
convergent sequence in E,; belongs to F,). Hence, by [2], theorem 3, the
basis {x,} of B, must be boundedly complete (). Thus every basic sequence
in F is boundedly complete, whence, by [3], theorem 2, F is reflexive,
which completes the proof.

n
() 1. e. for every sequence of scalars {un} such that sup|| ¥ esmi]| < oo, the
h n o i=1

o)

series 3 azo; converges.
i=1
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The results of Nishiura and Waterman [2], and Singer [4] suggest
the following

THEOREM. Let W be o weakly closed bounded subset of a Banach
space B. Then the following conditions are equivalent:

(o) W is weakly compact;

(00) for every sequence (z,) of elemenis of W there is a matriz (Cm, )

such that

1) Cun =0 and Cpp =0 for n>n{m) (n,m=1,2,...),

n(m)

2) _2 Cnn = 1 (m = 1, 2, ...),
A=1
n(m)

3) the sequence (2 CrnZn) 1S COMDErgent;

=1

(000) for every sequence (z,) of elements of W there is a regular matriz
o0

(6mn) such that the sequence (3 Gma2s) is weakly comvergent to an
n=1

element of E.

Proof. (0) — (00). Let (z,) be an arbitrary sequence in W. According
to the Eberlein-Smulian theorem ([1], p. 48) the sequence (z,) contains
a subsequence (2,,) which is weakly convergent to an element z of W.
Then a theorem of Mazur ([1], p. 40) implies the existence of finite averages

k(m)

m = 2 tm,kzﬂ.k
k=1

such that e— wn| < m ™ (m =1,2,...). Let us seb cuyp = bz f0r n == ny
(k=1,2,..., k(m); m =1,2,...) and ¢,, = 0 in the other case. Then
the matrix (¢n.) has the desired properties 1)-3).

(00) = (000). This implication is trivial.

non (o) -»non (0oo). It follows from [3] that non (o) implies the
existence of a basic sequence (z,) of elements of W and a linear functio-
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nal 2*<F* such that liminfz*z, > 0. Since the sequence (z,) is bounded
n
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((2,) being replaced, if necessary, by suitable subsequence), one can as-
gume that there exists a limit limz*z, > 0. Let us suppose that for this

n
sequence (2,) there is a regular matrix (e,,) such that the sequence
o0
(> 6mn) weakly converges to an element 2 in E. Let (25) denote the ge-
n=1

quence of linear functionals in E* biorthogonal to (z,). Then (by the re-
gularity of (¢,.)) we have,

e = hmzp(Zcmnzn) = hmZG,,mzpm = hm Cmp =0 (p=1,2,...).

=1 M p=1

Thus

I
be

oty =0

3
[
-

(because z belongs to the closed linear subspace spanned by the basic
sequence (z,)). Therefore

0 = 2% = (2 cmnzn) = lim VGmnz 2.
m n=1 n n_l
But this leads to a contradietion, because the regularity of (¢,
implies

o
0 < lime*e, = ]JmZ O 2
n m p_1
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