I. Singer

114

THEOREM. For a Banach space E the following statements are equivalent:

- (i) E is reflexive.
- (ii) E has property \mathcal{S} .
- (iii) E has property wS.

In the arguments of [2] the essential positivity of T plays a fundamental role. Our proof is different from that of [2], being based on a profound result of A. Pelczyński ([3], theorem 2) concerning basic sequences.

Proof of the theorem. For (i) \Rightarrow (ii), see [2]. (ii) \Rightarrow (iii) is obvious. (iii) \Rightarrow (i). Assume that E has property $w\mathscr{S}$ and let $\{x_n\}$ be an arbitrary basic sequence (i. e. a basis of a closed linear subspace) in E. Then the closed linear subspace $E_1 = [x_n]$ of E has property $w\mathscr{S}$ (by the theorem of S. Mazur [1], according to which the $\sigma(E, E^*)$ -limit of any $\sigma(E, E^*)$ -convergent sequence in E_1 belongs to E_1). Hence, by [2], theorem 3, the basis $\{x_n\}$ of E_1 must be boundedly complete (1). Thus every basic sequence in E is boundedly complete, whence, by [3], theorem 2, E is reflexive, which completes the proof.

(1) I. e. for every sequence of scalars $\{a_n\}$ such that $\sup_n \left\| \sum_{i=1}^n a_i x_i \right\| < \infty$, the series $\sum_{i=1}^\infty a_i x_i$ converges.

References

- S. Mazur, Über konvexe Mengen in linearen normierten Räumen, Studia Math. 4 (1933), p. 70-84.
- [2] T. Nishiura and D. Waterman, Reflexivity and summability, ibidem 23 (1963), p. 53-57.
- [3] A. Pełczyński, A note on the paper of I. Singer "Basic sequences and reflexivity of Banach spaces", ibidem 21 (1962), p. 371-374.

INSTITUTE OF MATHEMATICS, RUMANIAN ACADEMY OF SCIENCES

Reçu par la Rédaction le 14.12.1964

STUDIA MATHEMATICA, T. XXVI. (1965)

A remark on the preceding paper of I. Singer

(From a letter to R. Sikorski)

A. PEŁCZYŃSKI (Warszawa)

The results of Nishiura and Waterman [2], and Singer [4] suggest the following

THEOREM. Let W be a weakly closed bounded subset of a Banach space E. Then the following conditions are equivalent:

(o) W is weakly compact;

(00) for every sequence (z_n) of elements of W there is a matrix $(c_{m,n})$ such that

1) $c_{m,n} \ge 0$ and $c_{m,n} = 0$ for n > n(m) (n, m = 1, 2, ...),

2)
$$\sum_{n=1}^{n(m)} c_{m,n} = 1 \ (m = 1, 2, ...),$$

3) the sequence $(\sum_{n=1}^{n(m)} c_{m,n} z_n)$ is convergent;

(000) for every sequence (z_n) of elements of W there is a regular matrix $(c_{m,n})$ such that the sequence $(\sum_{n=1}^{\infty} c_{m,n} z_n)$ is weakly convergent to an element of E.

Proof. (o) \rightarrow (oo). Let (z_n) be an arbitrary sequence in W. According to the Eberlein-Šmulian theorem ([1], p. 48) the sequence (z_n) contains a subsequence (z_{n_k}) which is weakly convergent to an element z of W. Then a theorem of Mazur ([1], p. 40) implies the existence of finite averages

$$w_m = \sum_{k=1}^{k(m)} t_{m,k} z_{n_k}$$

such that $||z-w_m|| < m^{-1}$ (m=1,2,...). Let us set $c_{m,n} = t_{m,k}$ for $n=n_k$ (k=1,2,...,k(m); m=1,2,...) and $c_{m,n}=0$ in the other case. Then the matrix $(c_{m,n})$ has the desired properties 1)-3).

 $(00) \rightarrow (000)$. This implication is trivial.

non (o) \rightarrow non (ooo). It follows from [3] that non (o) implies the existence of a basic sequence (z_n) of elements of W and a linear functio-

nal $z^* \in E^*$ such that $\liminf_n z^* z_n > 0$. Since the sequence (z_n) is bounded $((z_n)$ being replaced, if necessary, by suitable subsequence), one can assume that there exists a limit $\lim_n z^* z_n > 0$. Let us suppose that for this sequence (z_n) there is a regular matrix $(c_{m,n})$ such that the sequence $(\sum_{n=1}^{\infty} c_{m,n} z_n)$ weakly converges to an element z in E. Let (z_n^*) denote the sequence of linear functionals in E^* biorthogonal to (z_n) . Then (by the regularity of $(c_{m,n})$) we have,

$$z_p^*z = \lim_m z_p^* \Big(\sum_{n=1}^{\infty} c_{m,n} z_n \Big) = \lim_m \sum_{n=1}^{\infty} c_{m,n} z_p^* z_n = \lim_m c_{m,p} = 0 \quad (p = 1, 2, \ldots).$$

Thus

$$z = \sum_{n=1}^{\infty} z_n^* z \cdot z_n = 0$$

(because z belongs to the closed linear subspace spanned by the basic sequence (z_n)). Therefore

$$0 = z^*z = \lim_{m} z^* \left(\sum_{n=1}^{\infty} c_{m,n} z_n \right) = \lim_{m} \sum_{n=1}^{\infty} c_{m,n} z^* z_n.$$

But this leads to a contradiction, because the regularity of $(c_{m,n})$ implies

$$0 < \lim_{n} z^* z_n = \lim_{m} \sum_{n=1}^{\infty} c_{m,n} z^* z_n.$$

References

[1] M. M. Day, Normed linear spaces, New York 1962.

[2] T. Nishiura and D. Waterman, Reflexivity and summability, Studia Math. 23 (1963); p. 53-57.

[3] A. Pełczyński, A proof of Eberlein-Šmulian theorem by an application of basic sequences, Bull. Acad. Polon. Sci., Série math., astr. et phys., 12 (1964), p. 543-548.

[4] J. Singer, A remark on reflexivity and summability, Studia Math. 26 (1965), p. 113-114.

Reçu par la Rédaction le 4.1.1965