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Summary

The main aim of this paper is to set forth some fundamental properties of the
statistical set, the structure of which is changed at random in relation to a definite
characteristic X. In this exposition we shall consider in detail the case where
the set of values of the function induced with X is a finite set. In this case
the structure in question will be represented by an =-dimensional vector A. The
results obtained will be applied to a problem of disintegration of radioactive isotopes.

1. The structure of a statistical set. Let us observe the triple
2 = {w}; o,¥) where ¥ is a probability measure defined over the
o-algebra &/ and suppose that the characteristic X of elements w induce
the numerical function X (w) defined over 2 and measurable with respect
to /. Under the structure # of the statistical set in relation to X the
system u = (2, X, ¥) is understood.

If X induces in a random way the family of functions & = {X}
measurable in relation to o/, then the structure of the statistical set
changes at random in relation to X; for that & = {X} defines the set of
structures U = {u}.

Let us now observe the triple (U, %, &) where & is the measure of
probability defined over the o-algebra % and let us assume that for
every % the funetion X maps £ on the set of real numbers {z;; i = 1,
2,...,n} If we denote by By = {w; X(w) = @;}, where it is obvious

that for every ueU, U By, = Q, then X = Zw@X B, Where X5 is the

indicator of B;,. Further putting p;(w) = !F(B ) we get the n-dimensional
vector A, = {p,(u), p,(%), ..., p,(u)}, whose coordinates satisfy the con-

dition ) p,(u) =1 for every ueU. The vector 4, is called the wvecior of
y=1

structure of the statistical set in relation to X.

In the further exposition the random vector A = (p;, gy ..., Pn)
whose set of realizations is the family {4,; ueU} is called the wvector of
random structure of the statistical set with respect to X.
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2. Distribution function of the vector A. On the basis of the preceding
exposition the conclusion can be made that the vector 4 maps the space
= {u} on that set of points W of the hyperplane

(1) j'w, =1

whose coordinates are non-negative. Accordingly, measure & induces
the measure P(G) = & {u; A,¢G}, where @ is an element of g-algebra %~
of subsets of W.

Let us now observe a sequence of non-negative numbers o, ¢ =
=1,2,...,n and the distribution function ¥ of the random vector A4

F(ay, agy ...y @) = P{Ay;p, < @,y »=1,2,...,0}.

Then the following theorems can be proved.
THEOREM 1. Let a;+a; > 1 for every i # j; then F(ay, agy ..., Gp)
n
=1-— Z: D,(a,) where D,(a,) = P{4y; D, > a,}.
THEOREM 2. Let the first 8 variables a;, t =1, ..., 8, satisfy the condition
a;--oy <1 for every i £j=1,...,8, while the other (n—8) ones have
the property a,+ oz > 1. Then

”
Flay, agy..., 0p) = 1'—2D (a,) 4Ry,
pm1
-1 8

where Ry, = Z' 2 P(By), By B =0, By = {Ay; 2> ai} ~ {44505 > 04}

Let u be the Lebesgue measure defined over %" and let P be absolute-
ly continuous in relation to x; then according to the Radon-Nicodym
theorem there is a non-negative function & defined over W with the pro-
perty P(G) =J¢dy (@eW).

If we have G = {4,;4a, <p,<b,, »=1,2,...,n—1}, then the
following theorem is valid.

n—-1

THEOREM 3. Let ‘Z‘ b; <1 and suppose that for every i =1,2,...,n—~1
the imequality 0 < a; < b; holds. Then

bp—1

P(@) = f f f D(my, Ty ». ’wn)‘/";ﬁdmn
T, = 1— Z z,.

ya]

3. The discrete type. Let us consider vector A and suppose that

the set {A,; we U} is finite; writing P, {4 = A4,} = P, we get > P, = 1.
4
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We shall further consider a random distribution of ¥ elements into »
cells. Let us denote each cell by a natural number from 1 to » and by X}
the number of elements which belong to the »th cell. Because of the rela-

n
tion }' X} = %, it follows that the end-points of the realization of A belong

r=1
to the set of points of the hyperplane

n

(2) | Yo, =k

. 9=l
whose coordinates are non-negative.
Let us write
PAX; =145 v =1,..., 0} = Diiy. 4,5
then it is not difficult to see that

k=%, k=1, k—%1p—Tpp3,n

(3) Zk ka S D by =1,

G=04,_1=0 =0 ip=0 Ty 420
where z,, =j§z‘, and » = 1,..., n. Further, if of, j =1,...,n, is the
sequence of natural numbers such that af +of > & for each ¢ + j, then
the distribution funetion is .
P(af, o}, ...;of) =1— Y Di(a}),

vau]

where
k k-1, k—zq, k-—tl,—r,_,_a’”

D:'(a,‘) == Z 2 ‘e Z s 2 p‘l':z---in'
iv-=a;+1 i,_1=0 i1=0 i,_,_z-o
If the first s variables af have the property of +af <k, ¢ #j =
=1,...,8 and the other (n—s) ones satisfy the conditions ey ay > &,
P #q=n—8 n—s+1,...,n, then we have

n
F(a?, 0;1 EEY) a;) = l—ZDf(a':)-l-RL,
vaal

where
8—~1 =& k—af k- =% keaf—Tpu—%, 130 )
B=d SRy ma=3 S 5
pe=l f=l‘+1 ‘“aa; i”..lno i"+2=0
Finally, let a7 and bf be non-negative integers so that af < b},

n—1
t=1,...,n—1, and > b <k; then according to Theorem 3
yul
b

bn—l
Pl SXI Bl i=1,,n—1}= D ... ¥ pg o

f=0)  ly_jmal_
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Let us write pi4, 4, = P(4y,%,...,%); then various forms
of @ give various density functions of 4. Let us start with the simplest
case, i.e. let @ = C; then according to (3) it is trivially verified that

= 1/(k+" 1) Hence it can easily be seen that

Df(af)=(k+:_1) Z"v (k cnnw;n 2)

n—1 [iy j=at+1

From this follows

L ]
n oy

1 k—in_1+n—2
F(a?,a;,---,a;)=1—[n—mz Z( Mni-;n )l:
n—1 [ r=1 ig =0

when of +af > k.

n
Let us assume that P(iy,,,...,4%,) = [[D,(3,); then for various

r=1

®,(i,) we have various density functions of A. For instance let P,(3,)
=0(1Z) for each »—1,...,n; then & — on( ) and it can be

v=1

shown that € = 1/(11:7) where 2 N, = N. Under these conditions we have
p=] .

k
1 N\(N—X,
*e oy __ y . v
) =m X (F)(58)
(k)i,-a:+l
n
Finally, let &,(i,) = O,(p¥/i,!), where Y p, =1 and 0 <p, for
r=1
v=1,...,n According to the relation
L e T P N
DS ) A
=0 4,;=0 ty2=0 i=1 "
as we already known, it follows that ¢ = k!.

n
THEOREM 4. Let ' p, =1 and 0 <p, for v=1,...,n; then

p=1

k k—fl —-1'+3’”
E E " § l k! p:ff
4!
fymas+1 10 fyi9=0 f=1 1

1-p,

—1—( +1)(,,+1) f (1 — oyia*='dw.

4. Application. In order to apply the above results, let us consider
the following problem: a set of N radioactive particles (N is not a sta-
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tistically large number) and the frequency distribution of the disinte-
grated isotopes are observed in the following way: Let us divide (0, co)
into » subintervals (#;,%,,), ¢ =1,...,% § = 0, #,,, = oo, and let us
consider the frequency distribution of disintegrated particles in relation
to those n sub-intervals. Since it is not possible to predict the number
of particles which will disintegrate in (%, ?;,.), it is not possible to predict
the form of the frequency distribution. Let us denote the number of
disintegrated particles in (4, #;,,) by X,; then A = (X}, X3,..., X))
is a random vector. If the density function of disintegration is f() = Ae™%,

then writing
41

bi = f f@®)di = (e~ Mi— e~ ¥it)
i

we get
n

i "
V4] §Y .
Piji,y.. b, = N! I 1 (T,)’ t = N.
]

We cannot predict the form of the future frequency distribution of
these N radioactive particles, but we can compute the probability of
a certain set of this distribution. For instance, if of+af > N for ¢ + j
we have

P{A; X <a},v=1,...,n}

1"~

_1- Z”:{l—(l—l- &) (o) f (L—a)%a"~~aa).

y=1

5. Appendix. Proof of Theorem 1. Let us prove that f; = {4,;
Pi > agy~ {Ay; p; > o} = 0 if a;+ oy > 1; writing ¢ = (0,0, ..., 0) and
b=(1,1,...,1) we have W < (a,b). Since {4.;p,>a} = W, it is
trivially verified that {4,; p, > o,} < (a,, b,), where a, = (0,..., q,, ..., 0)
and b, = (1—a,,1—a,,...,1,...,1—a,). Therefore, under these con-
ditions we have (a;, b)) ~ (a7, b;) = @ for ¢ # j and the relation

(Aui D, <ty 9 =1, ooy} = () {Aui 7, < )
is valid; hence
aip <@y v =1, = Ui p, <o
{du; p, < o) = {4u;p, > 0},
so that . ‘
W={4,;p,<a,r=1,..,0}v [,EJI{A"”" > a,}],

which proves the theorem.
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Proof of Theorem 2. As we have seen, the following relation

{A'H .pv Qy, Vv = 1 v n} hd ['iL=Jl {Au; pv > av}] e [‘igLail{Au; p‘l' > ai}]

is valid. Since we have
8 8—-1 8
s 9> @ = {dus 20> ad o [U ((4us 4> 2= U Bol,
it is not difficult to see that
1=P{Ay;p, <a,v=1,..,0}+ ZP{Au;pi > a4+

{=8

+ ZP({AM Pi > at}'— U ﬂﬁ)

i=1
which proves the theorem.

Proof of Theorem 4. Let us agsume the function D! (a¥) in follow-
ing form
k k-1, k—zy—Tyt3n

=3 .. ¥ [](”j’

e et R gt

-y 5.

(07
# [ ] ()
=0 4, 1=0 ‘v+z-=° =1

and denote by B, the second of the sums considered; then D} (a}) = 1—B,.
Further, since

—‘; )p’ 2(»-1)

k—ti—Tr48n—1 (

L Tt 2 Y

k—fh—‘f’+s,u-l) fyig
43 By

k- ’1’— v+3m (
i,+3-0 ‘,+2-0

k-7 o—T, g
1- v+3 ﬂ) p‘,+2 pi'-‘-ll
and

k—"l!_ Trisn (

k—'&'l —Ty4+8,n k—1q,~T,
':;_*_2 ' pfv_;l?pvml = (p'+2+pv+l) g '+3'"7

fy4g=0
it is trivially verified that

a®

B, = g,: (f,)pf*(g pet Zn: )" ="_Zo(f) H(1—p,

-yl

1-p,
(1+a.)(.+1) [ a—oyt ot o,
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P. TODOROVIC (Belgrad)
ZBIOROWOSOI STATYSTYOZNE O LOSOWEJ STRUKTURZE

STRESZCZENIE

Autor rogzpatruje w pracy zbiorowodé statystyczng o strukturze zmieniajacej
sie losowo ze wzgledn na pewna ceche. W pierwszym paragrafie podane sa definicje
struktury i losowej struktury zbiorowosei statystycznej, ktéra w pewnych szezegél-
nych przypadkach moze byé przedstawiona jako wektor n-wymiarowy. Autor do-
wodzi kilku twierdzeh o wilasnoéciach rozkl!adu prawdopodobiefistwa tych wektoréw.
W paragrafach 3 i 4 rozwazane sg zmienne losowe typu skokowego. Uzyskane wyniki
zastosowane sa w zagadnieniu rozpadu izotopéw radioaktywnych.

I. TOXOPOBHI (Bearpan)
CTATHCTHYECKHE COBORKYIHOCTH CO CH¥Y YARHOR CTPYEKTYPOU

PEBIOME

B macrosameit paGoTe pacMaTpEBAaeTCS CTATHCTHYECKAA COBOKYMHOCTb, CTPYK-
TYpa KOTOpol u3MEeHAETCA CIOydyalHHMM 06pasoM B OTHONMEHWA K ONPeAeleHHOMY
mpusHary. B § 1 ompepensercs moHATHe CTPYKTYPH M CayvaiiHo# CTPyKTYpH cTa-
THCTHYECKO# COBOKYHHOCTH, KOTOPYI0 B HEKOTOPHX CHENUANHEX CIYyYIaaAX MOKHO
NPeACTABATL KAK n-MEPHHI BexTop. B paloTe JeTaTbHO pacMaTPUBAeTCH 9TOT Caydalt
¥ JKOKABSEIBAETCA PAX TEOpPEM yKAasHBAKOIUX HA HEKOTOpHe cBolicrBa dymrnmmm pacmpe-
HeleHNA HTOro BexTopa. B § 3 m 4 paccMaTpmsaercs AHCKpPeTHHI cayuwait u ero mpu-
MoHeHNe K mpolieme pacnmaja pajHOAaKTHBHHX HB0TOMOB.



