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where h(z) is a polynomial over K. By the hypothesis of the theorem,
taking x to be a suitable integer, we infer that & is the norm of an element
a of K. Putting w(x) = ah(z), we obtain f(z) = Ngj(w(w)), identically,
q.e. d.
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Quadratic Diophantine equations with a parameter
by

H. DAvENPORT (Cambridge), D.J. LEWIS (Ann Arbor, Mich.)
and A. ScHINZEL (Warszawa)

‘We have proved in [2] the following result: Let f(?) be a polynomial
with integral coefficients and suppose that every arithmetical progres-
sion contains an integer ¢ such that F(w, y,1) = #*+4*—f(f) = 0. Then
P(u(t),y(),t) = 0 identically, where x(f) and y(f) are polynomials with
integral coefficients. This can be extended to F(z,y,?) = Ay —F (1)
provided z(f), y(t) are allowed to have rational coefficients. An example
is given in [5] showing that an analogous theorem does not hold for a gen-
eral polynomial F(z, y,f) even if we assume solubility for all integers i,
and the question is raised there of the connection between the solubility
of F(x,y,t) = 0 in rationals =, y for a suitable ¢ from every arithmetical
progression and the solubility in rational functions z(#), ¥ (?) (cf. also
[4], Problems 5 and 6). In this paper we prove (Theorem 2) that such
a connection does exist if F(x, y, t) is of degree at most two in # and .
‘Whether, under the last assumption, the solubility in integers implies
the solubility in polynomials with rational coefficients we do not know
even in the simple case

F(z,y,t) = a(t)oy+b{H)z+c(i)

(a solution in polynomials with integral coefficients need not exist as is
shown by the example a(f) = 0, b(t) = 2, ¢(f) = #(t+1)). On the other
hand, it is easy to deduce from our Theorem 2 the result on sums of
two squares mentioned at the beginning.

We start with a theorem on quadratic forms over Q (t), where @ de-
notes the rational field.

TeroREM 1. Let a(t), b(t) be polynomials with integral coefficients.
Suppose that every arithmetical progression contains some integer t such
that the equation

(1) at)*+b(t)y* ==
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has a solution in integers m, y, 2, not all 0. Then there exist polynomials
x(t), ¥(t), 2(t) with integral coefficients, not all identically 0, such that

(2) a(t)z (@)’ + bRy O} = =2(t)
identically in 1.

Proof. We can obviously suppose that neither a(f) nor b(?) is iden-
tically 0, since then the conclusion holds trivially. We can also suppose
that a(f) and b(f) are not both constant, sinee then the conclusion is con-
tained in the hypothesis. Thus if |a|, [b] denote the degrees of the polyno-
mials a, b, we can suppose that [a]-+|b] > 0.

We proceed by induction on |a|4-[b]. We suppose that the result
holds for all polynomials a(t), b(t) satisfying |a|-+[b] < &, where % is some
positive integer, and we have to prove the result when |a|+|b] = &.
We can suppose withount loss of generality that |a| = [b].

If a(t) is not square-free, say a(t) = ¥*(t)a,(t), then the hypothesis
is satistied for the polynomials a, (¢), b(t), since every arithmetical progres-
sion contains infinitely many integers ¢ (ef. [2], p. 109) for which (1) is
properly soluble in x, ¥, 2z and among these there are at most finitely
many for which k(¢) = 0. Since |a,j+4 [b] <%, the inductive hypothesis
implies that there exist polynomials 2 (t), ¥1(f), #(t), not all identically 0,
such that

a (B2, () + b ()5 (1) = 21 (1)
On taking

o) =z (), Y@ =kDpn@), =0 =*k@)al),

we obtain an identical solution of (2). Hence we can suppose that a(f)
is square-free.

Now a(f) and o'(f) are relatively prime, and therefore there exist
polynomials M (i), N(f) with integral coefficients such that

(3 Mt)a)+N(t)a'(t) = D,
where D is a non-zero integer.

Let
(4) a(t) = aepy(8)...om(3),

where @, is an integer and p,(t), Ps(t), ..., Pn(f) ave distinet irreducible
polynomials with rational coefficients and highest coefficient 1. Let p (%)
be any one of the polynomials p;(¢) and let 6 be one of its zeros. There
are infinitely many prime ideals q of the first degree in the field Q(6)
generated by 6, and for all but a finite number of them, ¢ = Nq does not
divide a,D. Since q is of first degree and does not divide the denominator
of 0 (because it does not divide a,), there exists a rational integer ¢, such
that #, = 6(modq), and therefore

a(ty) = 0(modg).

hn..@
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On noting that g cannot divide a’(fy) by (3), we see that by choosing %,
to be either t, or {,--¢, we can ensure that

a(t,) = 0(modg), a(ty) = 0(modg?).

By hypothesis the arithmetical progression t = ¢,(modg®) contains
an integer ¢, such that the equation

a(t) @5+ b)Y = 2

has a solution in integers @, ¥s, 7, not all 0. These integers can be taken
relatively prime. Since a(f,) is divisible by ¢ but not by ¢°, we have
y, == 0(modg), whence

b(t,) = w*(modg)
or some integer w. Since ¥, = 6(modq), this implies
b(8) = w?(mod g).

This holds, with some w depending on g, for all but a finite number
of the prime ideals of the first degree in Q(6). It follows from a known
theorem () on the density of the prime ideals for which a given number
of the field has a prescribed quadratic character, that

b(6) = B(6)*,

where S(t) is & polynomial with rational coefficients. Since 6 is a zero of
p(t), this implies that

b(t) = f*(t)(modp (2)).

We apply this to each of the factors p;(t) in (4). Since the polynomials
pi(t) arve distinct and irreducible, it follows that for some polynomial
B(t) with rational coefficients we have

b(t) = £*(¢){moda(t)).
We write(2)

Bt)—b(t) = *a()4 (1),

() See [38], Batz 169. The theorem as stated does not assert that the prime
ideals are of the first degree, but this is apparent from the nature of the proof, since
prime ideals of higher degree contribute only a bounded amount to L(s) as s — 1.
Further, the theorem as stated is for an integer of the field, and b(6) may be fractional;
but we can put b(6) = ¢(0)/d* where ¢(0) is integral and & is a positive integer, and
apply the theorem (with m = 1) to ¢(8).

(2) The argument which follows is due essentially to Legendre; see, for example
{11, pp. 156-158, -
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where h is a suitable positive integer and A has integral coefficients.
In particular, 2B(t) has integral coefficients.

Since we can plainly suppose that either (f) = 0 identically or
18] < |al, we have either A(f) = 0 identically or |A| <lal. If A(t) =0
identically we can satisfy (2) by taking #(3) = 0, y(§) = hy 2(t) = hB(t),
so we can suppose that A(f) is not identically 0.

We now prove that the hypotheses of the theorem are satistied for
the polynomials 4 (), b(t). We know that every arithmetical progression
contains infinitely many integers ¢ such that the equation (1) has a so-
lution in integers @, ¥, 2, not all 0. Taking X = az, ¥ = h(—fy+=),
Z = h(by— Bz), we obtain

AXPLBY -7 = B (F2—D)(aa®+ by’ —2") = 0.

Also X, Y, Z are integers not all 0 provided a(?)(8(1)°—b(z)) # 0, which
holds for ¢ sufficiently large. This proves the assertion.

The inductive hypothesis applies to the polynomials A (2), b(f), since
14|+ b} < |a}-+|b| = k. Hence there exist polynomials X(3), ¥ (i), Z(?)
with integral coefficients, not all identically 0, such that

ADOX)+ bR TE) = Z°(1).
Putting
o) = A@X®), y@) =r{pEOTH+ZW),
2(t) = h(p(1) YO +B(MZ (),
we obtain the identity (2). Further, »(t), y(f), 2() do not all vanish iden-
tically since neither A(f) mor b(t)—p*(f) vanishes identically.
THEOREM 2. Let F(x, 4, 1) be any polynomial with integral coefficients

which is of degree at most 2 in = and y. Suppose that every arithmetical
progression contains an integer t such that the equation

(5} Flz,y,1) =0
is soluble in rationals x, y. Then there exist two rational functions z(t),
y(t) with rational coefficients such that
(6) Plz(), y(t),7) =0
identically in i
. Proof. If F is of degree at most 1 in both # and ¥, the conclusion
is immediate. If F' is of degree 2 in one of the variables, say «, it can be
expressed either in the form

F(z,y) = A@)(@+a®)y+ O +BO [+ 7O +C (1),
or in the form

Flw,y) = A@W)(@e+a®)y+ @) +Bi()y+C (),

hn..@
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where 4, B, By, C, a, B, y are rational functions of ¢ and AB, is not iden-
tically 0, but BC may be. In the second case, there is an identical solution

a(t) c(1)

==, X =a) o — B

By(1) B,(®)
Tn the first case, by an obvious change of variables, which does not affect
the hypothesis or the conclusions, it will be sufficient to prove the result
for

Fz,y) = A@QF+BHy +0(0)-

We can suppose that C(f) is not identically 0, since then there iz the ob-
vious identical solution () =y(f) = 0.

We write

b(t)
— DT(tf ,

a(?)

4000 = —Zas

B(t)O(t) =

where a, b, D are polynomials with integral coefficients. It follows from
the hypothesis that every arithmetical progression contains an integer ¢
such that the equation

a®&+b)y =1

has a solution in integers £, #, £, not all 0. By Theorem 1 there exist po-
lynomials £(t), n(t), £(#) with integral coefficients such that

a®) &0+ b7 ¢) = ()

identically, and &(t), n(f), Z(f) are not all identically 0.

T £(t) and £(f) are both identically 0 then b(#) is identically 0, and
go is B(t). The hypothesis then implies that every arithmetical progres-
sion contains an integer ¢ such that —C(t)/4 (¢) is a square. This implies(®)
that —C()/A(f) is the square of a rational function of #, and this gives
the desired identical solution of (6).

If Z(¢) is identically 0 but &(3) is not, we take

 0W+AQ) =AW 1)
*O=—Z1m  YO="%am 6’

and since A1) E{)+-B@E)7*(t) = 0 we obtain
A@Z ) FBOY (M) = C()
identically.

(%) See the Corollary to Theorem 1 of [2]. This must be applied to the polynomial
obtained from —OC(f)/4(f) by multiplying by the square of a suitable polynomial.
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Finally, if ¢(f) is not identically 0, we fake

o E® ci) 9
)= ——"'——, = e
o(t) 0 Q) y (@) o) 0
and obtain the same identity.
References

[1]1 H. Davenyort, The Higher Arithmetic, London 1952.

) {21 H. Davenport, D.J. Lewis and A. Schinzel, Polynomials of certain
special types, Acta Arith. 9 (1964), pp. 107-116.

3] E. Hecke, Vorl ii i i i
1923.[ 1 ecke, Vorlesungen iiber die Theorie der algebraischen Zahlen, Leipzig
[4]1 A. Schinzel, Some unsolved problems on polynomials, Matematicka Biblio-
teka 25 (1963), pp. 67-70.

- [5] — On Hilbert’s 1drreducibility theorem,
pp- 333-340.

Ann. Polon. Math. 16 (1965),

Regw par la Rédaction le 19. 3. 1965

hn..@

ACTA ARITHMETICA
X1 (1966)

Sur un résultat de Jarnik
par

J. Lesca (Grenoble)

Dans cet article, tous les nombres considérés sont réels. Dans
Tarticle suivant, nous étudierons des problémes analogues p-adiques.

L Introduction. Dans un article [1] paru en 1959, V. Jarnik démontre
Pexistence, dans certains cas, de systémes libres(*) admettant une appro-
ximation continuelle donnée; il obtient:

,,Etant donnés deux entiers m et m>1, m+n>2 et une fonction
d’approximation ¢(t), soit M,,, Densemble des (n, m)-systémes @ tels
que:

@ est libre,

© admet Dapproximation continuelle ¢(#).

Alors M,,, n'est pas vide dans les cas suivants:

m =2,

m =1 et im {{p{l)} = +oo.

Lroo
Plus précisément, dans chacun des cas précédents, si G est un ouvert

non vide de #™, la projection sur chacun des axes de G N M., a la puis-
sance du continu’.

Dans le cas d'une signature (m,1) (m > 2), nous démontrons un
résultat qui eompléte le précédent.

THkoRAME. Efant donnés un entier m > 1 et une fonction &’ approwi-
mation o(t) telle que limsup{ip(})} = oo, soit M, Pensemble des (1, n)-
o0
systémes O tels que:
© est libre,
@ admet Vapproximation continuelle ¢(t).

Alors M, nlest pas vide; plus précisément si G est un ou-
vert non vide de A" la projection sur chacun des axes de M, O G a la puissance
du continu.

(*) Pour les définitions et notations, se reporter au § IL.


Pem




