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Sum-free sets of integers
by

H. L. Assorr and L. MOSER (BEdmonton)

A seb § of integers is said to be sum-free if &, beS then a+b¢S. The
case where a = b is not excluded, that is, aef implies 2a¢8.

A well known theorem of I. Schur ([4]) gtates that if the integers
1,2,..., [nle] are split in an arbitrary manner into n sets, at least one
of the sets fails to be sum-free. This leads us to define f(n) as the largest
positive integer m for which there exists some way of splitting the in-
tegers 1,2,...,m into n sum-free sets.

It is easy to verify that f(1) =1, f(2) = 4 and f(3) = 13. In 1961,
1. D. Baumert ([1]), with the aid of a high speed computer, showed that
f(4) = 44. Since Baumert’s work has not been published we exhibit one
of the ways he found of splitting the integers 1, 2, ..., 44 into four sum-

-free sets.

4 B | o | »
1 2 4 9
3 7 i 10
5 8 13 11

15 18 20 12

17 21 22 14

19 24 23 16

26 27 25 29

28 33 30 31

40 37 32 34

42 38 39 35

44 43 41 36

The value of f(n) is not known for n > 5 and it seems to be quite difficult
to determine f(n), even for n = b.
From Schur’s theorem we get

(1) fln) < [nle]—1

and no general improvement on this upper bound for f(n) has been ob-
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tained up to the present time, although the known values of f(n) indicate
that (1) is not best possible. On the other hand, Schur proved that

(2) fln+1) > 3f(n)+1

and from (2) and the fact that f(4) = 44 we get, for n > 4,

89(3)"4—1

3) fn) > ———

The main result that we wish to establish in this paper is that

—clogn

n
(4) f(n) > 89*
for some absolute constant ¢ and all sufficiently large n. (4) is clearly
better than (3).

We find it convenient to define a function g as follows: If f(n—1)
<1< f(n), then g(I) =n. g(1) is thus the smallest number of sum-free

sets into which the integers 1,2,...,1 can be partitioned. It follows
from (3) that for I sufficiently large
(8) g(l) < logl.

In order to prove (4) we shall need the following
THEOREM 1. For all positive integers m and k,

(6) F(lm+-g (1 (m)) > (2f (m) +1)" 1.
If we set m = 4 in (6) and use the fact that f(4) = 44 we get
(7 F(4k+ g(44R)) > 89*—1

and it is not difficult to see that (5) and (7) imply (4).

Proof of Theorem 1. Let X = 2f(m)+1 and write the numbers
1,2,...,X*~1 in base X. Call a number good if each of its digits does
not exceed f(m) and call a number bad if at least one of ifs digits exceeds
f(m). We shall show that the good numbers can be partitioned into
g(kf(m)) sum-free sets and the bad numbers into km sum-free sets. The
theorem will then follow.

Let A,; 4,,..., A4ym) be disjoint sum-free sets containing the
numbers 1, 2, ..., kf(m). Divide the good numbers into sets B,, B, ...,
Bugyomy by placing a number in class B; if the sum of its digits belongs
to 4;. This can be done since the sum of the digits of a good number

does not exceed kf(m). It is not difficult to see that the sets B,, B,, .

Byymy are sum-free, v
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Divide the bad numbers into % classes €y, Cs, ..., Or by placing
0=+ X+ X+ ...+ X X in dass O i a; < f(m)
fori =1,2,...,j—1 and a; > f(m)+1. Next divide each of Oy, Osy ey O
into m sets as follows: Let D,, D,, ..., Dy be disjoint sum-free gets con-
taining the numbers 1,2, ...,f(m), and split the numbers in O into m
sets D1, Djsy - -y Djm bY placing ¢ = a;+a, X + a5 X3 4-...+ G X
L0, X5 in Dy it a5 = —u (mod X) for some ueD;. Since ¢; is one of
the numbers f(n)+1, f(n)+2, ..., 2f(n) exactly one such u can be found.
It remains to be shown that D is sum-free. Suppose that we can find
a,b,ceD; such that a+b =c. We have

3 k 3

a= Za,;Xi‘l, b= ZbiXi"l, ¢ = Zc,—Xi‘1

i=1 i=1 i=1
where a;, by, ¢; <f(m) for i=1,2,..,5—1, a;, b0 = f(m)+1 and
@ = —u(mod X), b = —v(modX), and ¢=—w (mod X) where
u,v,weD,. Since a;+b; = X+¢, it follows that utov=w (mod X),
and since u,v,w < f(m) we must have u+v = w. However, this con-
tradicts the fact that D, is sum-free. The bad numbers have therefore been
partitioned into km sum-free sets and the proof of the theorem is complete.

Tt seems likely that (4) could be improved even further if one knew
the value of f(n) for some value of n > 5.

While the upper and lower bounds for f(n) are quite far apart, we
can still gain a little more insight into the behavior of f(n). We show,
using (6), that Lim f(n)’" exists, although we cannot decide whether

N—r

the limit is finite or infinite. Let
a = liminff(n)" < limsupf(n)’™ = §.
N300 N—00

Suppose first that § < co. Let ¢ > 0 be given, and let m be the smallest
integer for which

(8) flm)™ > g—s.

It k> ky(e),

(9) Tm+ g (kf (m)) < [km (14 )]
Let

(10) [fm (1+¢)] <n < [(B+1)m(1+e)].
Then ’

F(n) = f(lkm(14-6)1) > f (km + g{kf (m))) = (2f (m)+1)*—1 > f(m)*
where we have used (10), (9) and (6). Finally, using (10) and (8) we get
Liminf f(n)" > (§— )0+,

It follows that a = 8. The case § = oo can be disposed of in a gimilar manner.
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In conclusion, we mention an application to a problem in graph
coloring. Let g(n) be the largest positive integer for which there exists
some way of coloring the edges of a complete graph on g(n) vertices in
n colors without foreing the appearance of a monochromatic triangle.
That g{n) exists follows from a well known theorem of F. P. Ramsay ([3]),
and in fact in [2] it is proved that

(11) g(n) < [nle].

However, it seems that no lower bound for g(n) appears in the literature.
Here we prove thatb

(12) g(n) = f(n)+1

and hence, in view of (4), that

En-c logn

(13) ' g(n) > 89°

Tn order to prove (12), let 4,, 4,,..., 4, be disjoint sum-free sets
containing the integers 1,2, ...,f(n). Let G be a complete graph with
vertices Py, Py, : .., Pymy- Color the edges of G in the n colors Gy, Oy, ..., O,

by coloring the edge joining P, and P, color 0; if |s—t]e4;. Suppose .

there results a triangle with vertices Ps, P; and P, all of whose edges are
colored ¢;. We may assume s >?>7. Then s—1, s—7, t—red;. But
(s—t)+(f—r) = (s—7) and this contradicts the fact that A4, is sum-
-free.

It is interesting to observe that (11) and (12) afford an independent
proof of (1).
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On the difference =(z) — li(x)
by

R. Sherman LemMAN (Berkeley, Cal.)

1. Introduction. The prime number theorem states that n(xz), the
number of primes less than or equal to x, is asymptotically equal to li(x)
a8 @ — oo where

1—e z
() — lim { b n f dt }
(@) Ceas | logt logt]’

1+s

Tt is a remarkable fact that the difference s{w)—li(x) is negative for
all values of 2 at which =(z) has been caleulated exactly. In particular,
Rosser ([11], p. 72) has shown that the difference is negative for allz < 108
Nevertheless, Littlewood ([9]) has proved that there is a positive number
K guch that

logz{m(z)—1L(2)}
zPlogloglogw

is greater than K for arbitrarily large values of z and less than — K for
arbitrarily large values of #. Thus the situation represented by the cal-
culations does nob continue indefinitely. Skewes ([12]) has obtained a very
large upper bound for the first = for which the difference is positive,
namely expexpexpexp(7.705).

In this paper we first derive an explicit formula for a certain average
of the difference m(¢*)—1i(¢"). We then describe how this explicit formula
can be combined with numerical computations performed by a coraputer
to show that between 1.53x 10" and 1.63 x 10"'® there are more than
10°® guceessive integers # for which () > li(®).

2. Explicit formulas. For background information we refer to
Ingham ([4]), [5]).

Throughout this paper ¢ = f-+4y will denote a zero of the Riemann
zeta function ¢(s) for which 0 < § < 1. We denote by ¥ a number sat-
isfying 9| < 1. The number denoted will, in general, be different for
different occurrences and may depend on variables.
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