396 H. L. Abbott and L. Moser

In conclusion, we mention an application to a problem in graph
coloring. Let g(n) be the largest positive integer for which there exists
some way of coloring the edges of a complete graph on g(n) vertices in
n colors without foreing the appearance of a monochromatic triangle.
That g{n) exists follows from a well known theorem of F. P. Ramsay ([3]),
and in fact in [2] it is proved that

(11) g(n) < [nle].

However, it seems that no lower bound for g(n) appears in the literature.
Here we prove thatb

(12) g(n) = f(n)+1

and hence, in view of (4), that

En-c logn

(13) ' g(n) > 89°

Tn order to prove (12), let 4,, 4,,..., 4, be disjoint sum-free sets
containing the integers 1,2, ...,f(n). Let G be a complete graph with
vertices Py, Py, : .., Pymy- Color the edges of G in the n colors Gy, Oy, ..., O,

by coloring the edge joining P, and P, color 0; if |s—t]e4;. Suppose .

there results a triangle with vertices Ps, P; and P, all of whose edges are
colored ¢;. We may assume s >?>7. Then s—1, s—7, t—red;. But
(s—t)+(f—r) = (s—7) and this contradicts the fact that A4, is sum-
-free.

It is interesting to observe that (11) and (12) afford an independent
proof of (1).
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On the difference =(z) — li(x)
by

R. Sherman LemMAN (Berkeley, Cal.)

1. Introduction. The prime number theorem states that n(xz), the
number of primes less than or equal to x, is asymptotically equal to li(x)
a8 @ — oo where

1—e z
() — lim { b n f dt }
(@) Ceas | logt logt]’

1+s

Tt is a remarkable fact that the difference s{w)—li(x) is negative for
all values of 2 at which =(z) has been caleulated exactly. In particular,
Rosser ([11], p. 72) has shown that the difference is negative for allz < 108
Nevertheless, Littlewood ([9]) has proved that there is a positive number
K guch that

logz{m(z)—1L(2)}
zPlogloglogw

is greater than K for arbitrarily large values of z and less than — K for
arbitrarily large values of #. Thus the situation represented by the cal-
culations does nob continue indefinitely. Skewes ([12]) has obtained a very
large upper bound for the first = for which the difference is positive,
namely expexpexpexp(7.705).

In this paper we first derive an explicit formula for a certain average
of the difference m(¢*)—1i(¢"). We then describe how this explicit formula
can be combined with numerical computations performed by a coraputer
to show that between 1.53x 10" and 1.63 x 10"'® there are more than
10°® guceessive integers # for which () > li(®).

2. Explicit formulas. For background information we refer to
Ingham ([4]), [5]).

Throughout this paper ¢ = f-+4y will denote a zero of the Riemann
zeta function ¢(s) for which 0 < § < 1. We denote by ¥ a number sat-
isfying 9| < 1. The number denoted will, in general, be different for
different occurrences and may depend on variables.
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Let
(z) = w(@) +in (@) +Hin @)+
and let
Iy (z) = 111101 YT (- 8)+ 1T (m—e)}.

The Riemann-von Mangoldt explicit formula for 77, () (for a proof see [61)
states that for # > 1

r a
@1 e =t~ D HE)+ [ g —Toe2,
) z

where 1i(2?) = 1i(¢?*®®) and for w = u+w,v # 0,
udiv

(2.2) li(e") = % .
—co i
If the terms in the sum are arranged according to increasing absolute
value of y = Imp, then the series converges boundedly in every finite
interval 1 <a <z <b.
Rosser and Schoenfeld ([11], p. 69) have shown that for # >1
@ ;ﬁw

()

- logz = log®w )

Using this estimate and the more elementary estimate x(z) < 2x/logw,
- 'we obtain for o >1

LT A _a” 372 22" [logw
DA @) = 10gm+0 10{,3;291:+ 10gw|:10g2:|)'

Hstimating the integral in (2.1), we have for > ¢

o0

. du au 1
P Y )
s (u2—1)ulogu < P %3 2 <log2

Since 2/log2-+log2 < 4,

22 312
2.3 a{x) = li(z) — _ 3 ( 13
08 wle) =l 22h(a3)+ﬁ(—-—10g2m+4m )
for & >e.

) The formmula (2.3) can be used to explain heuristically why ()
is usually smaller than li(z). If the Riemann hypothesis is true, then
the zeros of {(s) occur in conjugate pairs ¢ = }-+1y, ¢ = 3—ip; and

Ti(et) + () = {2vsin(ylogw)+cos(wlogw) o
logw 1+t 0 10g2w)'
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Sinee |y| > 14 for every zero g, each term of the sum is small in magni-
tude compared to the term — ¥ [logs. Thus, to have =(z) > li(x) it
is necessary for many terms in the sum to combine to overpower the
term — o~ loga.

Tt does not seem feasible to use (2.3) directly to determine by numer-
ical computation a number o for which = (2) > li(x). Instead, we shall
derive an explicit formula for ue~"*{m(¢*)—1li(e*)} averaged by a Gaus-
gian kernel. ‘

TrmorEM. Let A be a positive number such that § =% for all zeros
o = B-+iy of L(s) for which 0 <y < A. Let a, 5, and o be positive numbers
such that o—n >1 and the conditions

(2.4) 1d]o < a < A2
and,
(2.5) 24ja < < 0f2
hold. Let .
— /e
(2.6) K@y = ]/27U e,
Then for 2me < T < A
o+ eiyw s
f K (u— o)ue™" {m(e*) —Li(e")} du = —1— LR
w—1 o<ty|l<T
where
3.05 267712 —
IRl <~ 4 (0-n)em T4 e - 0.08Vae™ "
w—17 1/27ta7]
%) @ i 8logT' }ﬂ}
te {nT210g2n+ T Tl

+A 10gAs““iz/z‘“r("“r")/2 {4a7 > 4157} .

If the Riemann hypothesis holds, then conditions (2.5) and (2.4) and the
last term in the estimate for R may be omitted.

3. Some lemmas. Let N (T) be the number of zeros for which
0 <y < T. Backlund ([1]) proved that for T =2

r

T
3.1 N(T) = -—log —
(8.1) (T) 51085

T 7
~om + y +Q(T)
where
19(T)] < 0.1371og T+ 0.4431loglog T +-4.35.
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From this it follows that for T > 2we
T
1 4 7
(3.2) N(T) =— f log — dt+ — +29logT.
27 e 2% 8

Lmvma 1. If @(t) is o continuous function which s positive and
monotone deereasing for 2me < Ty <t < T, then

Te T
Y ooy = — * { o (20
N e =+ T[ plt)1og 5 —di-+ 8 {4y (Ts) g T zT[ Da.

Ti<y<Ty

Proof. Using Stieltjes integrals, we have

Ty T, 7,
1 11 i
?(y) = T{ qu(t)dN(t)=—2-n—T[ (tnog5-dc+ [ o0

T1<'y<1'2
Also, by (3.2)
Ty Ty
| [ e030)| = lp(T2Q(T) —9(T)QUTI — [ @Bdp®)
[ 51
. Ty
< 2p(To)log Ty + 20 (T1)log T, —2 [ logtde ()
T
Ty '
< dp(Ty)logTi+2 [ o(t)d(logy).
31
LemMa 2. If T > 2mwe, then
2}17 <T""ogT (n=2,3,..).

»>T

Proof. Applying Lemma 1, we obtain

Zi =ift“"logj—dt+#T‘" (MogT—}— 2)
=4 2y 2m n

_ T [log(T [2m) 1 . 2
= 271:( 1 +(n_1)2)+1‘} (410gT+;;)

<T‘”"1ogT{ e T N S

1 1 4 1 }
2r  2xlogT T = TlogT

< T "logT.
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LevMA 3. We have

1
Y = < 0.025.

I<y<oo
Proof. See [10], p. 28.
Leyma 4. If « >0 and @(t) is positive and monotone decreasing for
t= T3>0, then

p()eat <o p(T)e™ "

H— 3

Proof. Since

_2/90 —12/2a
i{ae e }: ae 2’2 e
dat 1 12
we have
b g —%2a
2 d [ae a 2
tye Pt -f e (L )@t < —=p(Te TP

[ poe < = et (= Z9(0)

4. Proof of theorem. In the following discussion we assume that
a, w, and 7 are positive numbers such that w—z > 1. With K(y) defined
by (2.6) we have for any real number y

(4.1) f Ey)édy = g P l/;—:; f g igy,

9 o
e ‘/2a N
= f e PPas = o7t
V2r

—00

and, in particular,
(4.2) [ K@iy =1.

Consider the integral

w4
Iw,m) = [ K(u—o)us™{z(e")—1Li(e")}du.

w—7

By (2.3) we have for v >1
(4.3)  we™"P{m(e")—1li(")} = —1— Zue—“ﬂ]i(em‘)-{—ﬂ(i +4ue”“’5),
4%

]

In view of the positivity of the kernel K, we obtain by (4.2)

@tn
3
l f 19(~ + 4ue—“'°)1((u— w)d'u,} < 3 44+ n) e~ @6,
oln w w—7n

Acta Arithmetica XI.4 26


Pem


402 R. Sherman Lehman

Also, by Lemma 4

@“-—17 5] 0
f K(u— w)du = fK(’“—w)du=fK(y)dy
~® win H
. -
= if g < C e
I H 1/27ra17
Consequently
w4
(44) I o,n)=—-1- 2 [ E(u— o)ue ™ 1Li(e™)du+
e a-—7

3 —ar)2/2
+19(—— +4(wFny)e~ @b 267_—)
w—1n 1/271:(117
The interchange of summation and integration is justified because the
series in (4.3) converges boundedly in the interval w—7 <% < w-7.
By (2.2)

(4.5) dt.

o . b
1i(e™) = J —dz = e"“f
2

—oot+iyu 0
Integration by parts yields

ou—1t

~oet 1 et 1 F et
f dt:—-i—f—“—;dt:——l—f mzdt.
g ou—t o (ow—1) e (yw)
Consequently
ou fu
(4.6) H(ey = 2 B
Qu y2u2

Let A be a positive number such that f = 3 for |y| < 4, ie., such
that the Riemann hypothesis holds for [y] < A. We break the sum in
(4.4) into three parts and use (4.6) for |y| < 4 to obtain

@49
(4.7 =D [ E(u—o)ue ™ li(e™)dun = 8;+8,+ Sq,
¢ w—
where !
cuj—n
8= — 2 - J K(u—a)e™du,
t<ipi<d * a—n
L]
)
S, = — —— K (u—o)du,
o<picd oty ¥ u
o4n
8y=— > [ K(u—o)ue"PLi(e™)du.

I?71>4 w—7

hn..@

On the difference m(®)—1i(z) 403
We begin by considering §;. By (4.1)
'Lyw
8, = — Z fK ()™ dy
rl<4 =
[ 2 —1'2/241_!_419 __lf K(’!/ ewlldy{
<4 o<y<4
Integrating by parts, we obtain
o GW"—~61:W
fK ()6 dy —f w2 ) gy
1y
n
Hence, because K(y) is monotone decreasing for y >0,
F F 9 2. /a
vy ’ [y = — . _ il ~ar]2/2.
[ x@ra| <2 [ @i =S xw yl/% ¢
] ’1
Now we use Lemma 3 and the inequality ( 27r)‘1’2 < 0.4 to obtain
er? e
(4.8) Si=— 3 erres]/ o 2 L
T
Iri<4 o<v<A
iy
= — N e .08V e
Iris4 e
The sum can be taken over just the zeros for which 0 < [yl <Tif we

add another error term. By Lemma 1

Ty —yZIZa
L 6—72I2a‘ <2 e
T<|pi<d ¢ Py<oo Y
% —t2a t 86—-1'2[2610 T — 220
< {e log— dt+ L +4f at

. t 2r T 12
T T

provided T > 2re. Applying Lemma 4 to estimate the integrals, we ob-

tain for 2re KT < A

e logT = 4a
(4.9) { f_e—vzlza <6_'1'2[za{ log ——1—8 g +'iv-s'}
ribiaa @

The sum S, can bé estimated by using Lemma 3. We have

(4.10)

0.05
< —

< .
O—mn

s 35 [Sie
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Observe that as yet we have made no use of the conditions (2.4) and
(2.5). Thus, if we assume the Riemann hypothesis, we can combine (4.4)
and (4.7)-(4.10) and then let 4 — co to obtain the conclusion of the
theorem with the last term in the estimate for R omitted.

5. Estimate without the Riemann hypothesis. In order to com-
plete the proof of the theorem it is sufficient to show

(5.1) I8,] < Alog Ae—4e+Emiz (4= 1L 150}

when 4, o, w, and 7 satisfy the conditions of the theorem.
‘We begin by considering the function

Fo(8) = gse™®Li(e®) T

e T 5 '

in the sector — < args <Z. The inequality " < |argo| < 5
holds for every zero g because 0 < § <1 and |y| > 14. It follows from
(2.2) that f,(s) is a regular analytic function in the sector since%

< |arg(es)] < §r. Also, by (4.5)

e 1
(o)l = [eseme- [
3 08—t

,—-.
-"
o

=

dt’

o s
(o) fe dt < 2]e=c=
0
In the sum
— ot
a 1
fi=—) = M= f eV () g
an yi>4 e @—1n
we transform the terms by repeated integration by parts. We obtain
+n N-1
() _ e
fn V= D oy T o) — e D 0 — )+
w— n=0
(_1)N w1
+ o [ e wan,
(=87

where N is a positive integer which will be fixed later.

We estimate f(u) for w—n <% <w+tgy by using a contour in-
ttagra.l around a circle of radius 7 < w/4 about the point . If s is on this
circle, then Res > o—5— w[4 > w/4 because of (2.5), and |[Tms| < w/4.
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Thus the cirele lies in the sector |args] < x/4 where f,(s) is regular and
satisfies (5.2). Consequently, for o—p <u <0t

n! Jo(8)
f ) = 5= md%
and bence
on! 2
I (w)] < 5 max |67 7.
" js—ul=r

If s = o+it, then on the circle (0 —u)241* = 2

Ie——a(s.-m)zﬂl _ Gu(l2—(a—«w)z)l'z — ea(rz—(a'«u)h(a_wﬂ)lz < o

If N < aw®[/16, then we can choose 7 = VN o and obtain
(5.3) F ()] < 2N NP

for w—n <% < w-+7. To estimate the derivatives at w+7n we letr = 7/2,
which because of (2.5) is less than /4. On the cirele |s—(wd7n)| =7
we have
w—ﬂ(s—m)zlz‘ - eﬂ(n2/4~(a—(w:\:ﬂ))2-(d—“’)2)/2 < e,
and therefore
_n ,—an?8

(5.4) If (0] < 2nl(n/2)"e :

Using the estimates (5.3) and (5.4) and the fact that for all of the zeros
0 < f <1, we obtain

— —an?p N1 N2
B S e O
2m U g oml AN J

provided 1 <N < aw?[16. We now choose N = [A%[a]. By (2.4) we
have N >1, and by (2.5) we have N < A*fa < aw?[16, as required.
Applying Lemma 2 and observing that by (2.5) n = 2N [A, we obtain

N-1 N-1
g7 n! : N
— ) e < 46T /"logAZ oy ARF1
gj: v gg‘ (yn/2) & (n[2)"4

<4 BN A log A <4 Pa Alogd.
Also, since A%ja—1 < N < 4%a,
4nN! iz
Z e (%‘3) < dne VNV (ae | NYWP A~V log A
¥

y>4

< dng 1 N A2 [ Na)MMog A < 4e¥ne™ 42 Aa~Mlog 4 .


Pem


406 R. Sherman Lehman
From (27)"% < 0.4 and ¢** < 4.5 it follows that
[Sa] < da~Y2A log A - e~ H@+IR L 15y A log A - g= 4Pt

Using (2.5) we obtain (5.1), thereby completing the proof of the theorem.

. 6 Numerical computations. The numerical computations deseribed
in this section were all made on an IBM 7090 at the Computer Center
of the University of California at Berkeley. The first computation was
a search for a place where on heuristic grounds =(z) could be expected
to be greater than li(z). The sum pecte
iy

Sp(u) = — ‘

o<yI<T e

is a partial i i ici
P sum which occurs in the explicit formula for y(e*)e~*?, where

p@) = D logp,

Mz

tShez s)um being taken over powers of primes. In a neighborhoed where

p(w) is somewhat larger than 1 one can i

e (e, an expect that at some points,
The sum Sy40(%) was computed at values of  at a distance 0.01 apart

for 15 < 4 << 5400 in all intervals whe: Tbutic
. re the :
pair of zeros contribution of the first

i T i

eiylu 6~1’//1u
- } (y, = 14.13...)

f: posifive. The increment 0.01 seems to be small enough so that Sy (u)
a_gila.ves :Irll;oo]fihiy between the sample points. Whenever Sloo(u)luovvas
ve a eshold of 0.5, the sum Sygp0(%)

¢ " 000 was evaluated at 10 nearb
p;rlg]ts a}ﬁt a fhstanee (?.001 apart. If any of these results exceeded a givez
gﬂume :r, it was .prmted. Proceeding in this fashion, we hoped to find
NG e;ieo dj?g f(l)r vc;]ne;l S1000(u) exceeded 1. In this we were not successful
ocate 32 neighborhoods where Sy (u) is gr 7

! reater th .

and 5 neighborhoods where it exceeds 0.9. lesﬂ;r )the tghree ;Joini: "8

727.952, 853.853, 2682.977

Smon( ) 18 a.pproxm:la;tely 0 v W we con-
.96. Since no hlgher alue was fo 3

U 96 und

centrated our attention on nelgthIhOOdS of these pOmbS. La:bel, after

some computations of i i
Tag5 w0 Hetae of Sso0(u) we considered only meighborhoods of the

iom®
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It is perhaps worth noting that the value % = 853.853 has turned
up previously in connection with another problem. This value was one
used by Haselgrove ([2]) in his proof that there are grbitrarily large @

for which
Aln)
T(5) = — E —%—> 0,

n<z

where A(n) is Liouville’s function. The value 353.853 was determined by
J. Leech in such a way as to make the contributions of the first, second,
and seventh pairs of zeros in an explicit formula for T(x) as large as
possible. It seems mysterious that this ghould produce a number which
is exceptionally good for the present problem, where a large number
of zeros must cooperate in & different explieit formula. Unfortunately,
our computations are not sufficient to prove that m(z) > li(#) in a neigh-
borhood of ¢¥%%5%; but this probably could be proved if enough zeros of
t(s) were ealculated.

Tn order to prove that s(e") > li(e*) for a u near 2682.977 it was
necessary to perform two major computations. In one extensive com-
putation (see [7]) & verifieation of the Riemann hypothesis was made
for the first 250000 zeros of £ (s), i.e.; for all of the zeros for which 0 <y
< 170571.35. Haselgrove and Miller ([3]) have computed the zeros of [(s)
for which 0 < y < 2090.4 t0 6 decimal places. For our purposes we needed
a slightly more accurate computation of many more zeros. Consequently,
in the other major computation we computed the zeros of ¢ (s) for which
0 < y < 12000 to about 7 decimal places. This computation required
approximately 6 hours of machine time.

For T < 12000 the formula (3.1), which gives the number of zeros
of z(s) for which 0 <y < T, holds with [@(I)| < 2. Consequently, it
is not difficult to separate the zeros in this range. A combination of the
regula falsi and bisection was used iteratively to compute an approxi-
mation to each zero. The program used the Riemann-Siegel asymptotic
formula as a method for evaluating { (34-1t). If the asymptotic expan-
gion is truncated after four terms and the coefficients calculated by
Lehmer ([8]) are used, the formula is sufficiently accurate to obtain the
zeros to about 7 decimal places when 100 <<y < 12000. However, rigo-
rous estimates for the remainder in the Riemann-Siegel formula sufficient
to prove this accuracy have never been obtained. Hence, in a rigorous
computation another method must be used.

The Euler-Maclaurin sum formula provides an alternative method
of evaluating ¢(s), which requires much more calculation, but for which
it is easy to estimate the remainder. For each zero we used the Huler-
Maclaurin formula to evaluate either Rel(}+ i) or Im¢(344t) at two
points, one of which was the approximation to the zero obtained using
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the Riemann-Siegel formula. A single application of the regula falsi w.
ishen made to obtain an improved approximation to the zero. The resulaif
ing value was then rounded to 9 decimal places for subsequent wuse
With a bound on |{"(s)] and estimates of all truncation and roundin'
errors we were able to prove that the errors for the computed zeros eoulg
not exceed the bounds given by the following table:

Range Error Bound
H<y< 31 2.2x107°
3l<y< 50O 1.5x1078

500 <y < 1000 2.2x107°
1000 <y < 2000 4%x107°
2000 < y < 4000 5x107¢
4000 <y < 8000 1.4x1077
8000 < y < 12000 2%x1077

) Usually the value for a zero calculated by the second method agreed
quite closely with the approximation obtained by the first met}:loélg 1-?e q
? > 50 the difference was always less than 1075, and for > 144 tlcl)l
dlt’f?rence w;a,s.allw&ys less than 3.5 X10™". For 144 < y < 5000yi‘n exceedeg
Z;Ot' only 7 times, and for 5000 < y < 12000 it exceeded 2x10~7 only
thenélii;]l‘t?e calculated zeros were compared for 0 <y < 2090.4 with
fh a; a f:n of Haselgrove and Miller ([3]). All differences were smaller
han 42(10 . For 0 < y < 144 the calculated values were also compared
with a 50 deel_ma,l place table of the first 50 zeros computed by M. D 1;3 y

The lgmgest difference encountered was less than 5.1x10~* The'se ‘ch lgf.
eﬁgemvely exclude the possibility of a machine error in thi‘s 0011; t ‘:’0 S
serious enough to affect our result concerning x(z)—1i(z) P

7. Application of the theorem. In order to show that (@) > li(w)

for a value of  in a nei 2
ighborhood of 2682.977
tation of the finite sum ofe we use the result of a compu-

%
e

H= —

5
21
e~V 2

with <p<T ¢
T =12000, «¢=10", = 268216005 2 = 2682.9768..
Sjexonfnghsrrestima.tes f’f §6 for .the errors in the zeros and taking into
ors made in computing the sum, we were able to prove that

the calculated value could
th not exceed the true value b ¥ -
Since the value calenlated was 1.00201, we have ymore than 0,850

H >1.00133.

h‘l‘l@
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We apply the theorem of §2 with the above values of &, T, and and

A = 170000, = 0.034.

The inequalities (2.4) and (2.5) are easily verified. Moreover

3.06
w-—=17

< 0.001137,

logT -ia}
—_— 0.00013.
T + rs <

7
—rpa )@y T 8
¢ {WTZ o8 27 .

The other terms in the estimate for It are all quite small, less than 107,

in fact. Hence
o4y
[ Eu— w)ue™ {m(¢") —1i(¢")} du > 0.00006.
wln .
Because of the positivity of K, there must then be a value of u between
w—n and o--7n where m(e")—1li(e") > 0. Also, by (4.2)
o+n
f K(ufw)ue‘""z{e“”/u}du <1.

. =1

Hence for some % between w—1 and o+
x (e —1li(e") > 0.00006 2 1 > 10°%.

From this it follows that there are more than 10%%° successive integers @
between 1.53x 10" and 1.65 %1016 for which the difference () —Li(7v)
is positive.

Although our method permits the localization of a place where the
difference sv(x)—li(e) is positive, it does not furnish a way to obtain
a lower bound for the smallest # for which the difference is positive.
We remark, however, that in the gearch described in § 6 the highest value
of Sigo(%) found for = < 46.05... = log10%® was S1000(43.893) = 0.70.
This value i so low that it appears likely that the difference is always

negative for x less than 10%.
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On the divisibility properties of sequences
of integers ()
by

P. ErDOS, A. Sirxdzy and E. SzeMEREDI (Budapest)

Let a, < g < ... be & sequence A of integers. Put A (z) = > L

a; <%
The sequence is said to have positive lower density if
lim (4 ()/z) >0,
T—c0
it is said to have positive upper logarithmic density if

-— 1 1
Him E —> 0.
z=c0 108X & a;

The definition of upper density and lower logarithmic density is
selfexplanatory.

Begicoviteh ([2]) was the first to construct a sequence of positive
upper density no term of which divides any other. Behrend ([1]) and
Brdos ([4]) on the other hand proved that in a sequence of positive lower
density there are infinitely many couples satisfying a;]a;, Behrend in
fact proved this if we only assume that the upper logarithmic density
is positive. .

Davenport and Erdos ([3]) proved that if 4 has positive upper
logarithmic density there is an infinite subsequence a;, 1 < j < oo sati-

sfying a"‘!la‘f-i-l'
Put
flx) = 2 1.
ab<h
It is reasonable to conjecture that if 4 has positive densgity then

1) im 7@ _
@

We have proved (1) and in fact obtained a fairly accurate deter-
mination of the speed with which f(»)/z has to tend to infinity, this
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