Let $a_1 < \ldots < a_l \leqslant x$ be the sequence of integers satisfying (29). From (29) we obtain by a simple computation that for every $r, 1 \leqslant r \leqslant l$

(30)
$$\log_2 a_r - 2c_{14}(\log_2 a_r)^{1/2} < \nu(a_r) < \log_2 a_r + 2c_{14}(\log_2 a_r)^{1/2}.$$

Denote as before by $d^+(a_r)$ the number of a's dividing a_r . To prove (28) it will suffice to show that for every r.

(31)
$$d^+(a_r) < \exp(c_{14}(\log_2 x)^{1/2}\log_3 x).$$

Denote by $p_1 < \ldots < p_{v(a_r)}$ the prime factors of a_r . Assume $a_t | a_r$. If $v(a_t) \le k_0$ then by (30) there are clearly fewer than $v(a_r)^{k_0+1} \le (\log_2 x)^{k_0+2}$ choices for a_t , thus these can be ignored. If $v(a_t) > k_0$, let p_s be the greatest prime factor of a_t . Since a_t and a_r both satisfy (29) and (30) a simple computation shows that

(32)
$$s - 3c_{14}(\log_2 a_r)^{1/2} \leqslant v(a_t) \leqslant s.$$

Thus by an easy argument and simple computation

$$egin{align*} d^+(a_r) &\leqslant (\log_2 x)^{k_0+2} + \sum_{s=k_0+1}^{
u(a_r)} \sum_{s=a_{015}(\log_2 a_r)^{1/2}}^{s} inom{s}{u} \ &< (\log_2 x)^{k_0+2} +
u(a_r) ig(
u(a_r)ig)^{4c_{15}(\log_2 a_r)^{1/2}} \ &<
u(a_v)^{5c_{15}(\log_2 a_r)^{1/2}} < \expig(c_{16}(\log_2 x)^{1/2}\log_3 xig). \end{align*}$$

Thus (31) is proved (with $c_{16} = c_{14}$).

References

- [1] F. Behrend, On sequences of numbers not divisible one by another, J. London Math. Soc. 10 (1935), pp. 42-44.
- [2] A.S. Besicovitch, On the density of certain sequences, Math. Ann. 110 (1934), pp. 336-341.
- [3] H. Davenport and P. Erdös, On sequences of positive integers, Acta Arith. 2 (1936), pp. 147-151.
- [4] P. Erdös, Note on sequences of integers no one of which is divisible by any other, J. London Math. Soc. 10 (1935), pp. 126-128.
- [5] On the distribution function of additive functions, Ann. Math. 47 (1946), pp. 1-20.
- [6] J. Kubilius, Probabilistic methods in the theory of numbers, Translation of Math. Monographs, Amer. Math. Soc. 1964, vol. 11.

Reçu par la Rédaction le 2, 7, 1965

ACTA ARITHMETICA XI (1966)

On sums of roots of unity

(Solution of two problems of R. M. Robinson)

by

A. SCHINZEL (Warszawa)

To Professor Viggo Brun on his 80th birthday

R. M. Robinson ([4]) proposed the following problem:

"How can we tell whether a given cyclotomic integer can be expressed as a sum of a prescribed number of roots of unity?"

An answer to this problem follows as Corollary 1 from the theorem below.

THEOREM 1. Let $\sum\limits_{i=1}^k a_i \zeta_N^{a_i} = \vartheta$, where the a_i are rational integers, $\zeta_N = e^{2\pi i N}$. Suppose that ϑ is an algebraic integer of degree d and that $(N, a_1, a_2, \ldots, a_k) = 1$. Then either there is a non-empty set $I \subset \{1, 2, \ldots, k\}$ such that

$$\sum_{i \in I} a_i \zeta_N^{a_i} = 0$$

or

$$N < d(2\log d + 200k^2\log 2k)^{20k^2}$$
.

COROLLARY 1. An algebraic integer of degree d is a sum of k roots of unity only if it is a sum of k roots of unity of common degree less than $d(2\log d + 200k^2\log 2k)^{20k^2}$.

COROLLARY 2. An algebraic integer $\neq 0$ is a sum of k roots of unity in infinitely many ways if and only if it is a sum of k-2 roots of unity.

COROLLARY 3. If $1+\sum\limits_{i=1}^{n}\zeta_{N}^{a_{i}}=0$, and $(N,a_{1},...,a_{k})=1$ then either there is a non-empty set $I\subset\{1,2,...,k\}$ such that $\sum\limits_{i\in I}\zeta_{N}^{a_{i}}=0$ or $N<(200\ k^{2}\log 2k)^{20k^{2}}$.

The proofs of Theorem 1, Corollary 1 and 2 are given later, Corollary 3 follows immediately from the theorem and is stated with the purpose of asking the question how much the inequality for N can be improved.

There is a statement in the literature ([2], p. 228) from which it would follow that $(200 \ k^2 \log 2 k)^{20k^2}$ can be replaced by k+2. This is true for k<5 but false for k=5 as the following example due to Robinson shows

$$1 + \zeta_{30} + \zeta_{30}^7 + \zeta_{30}^{13} + \zeta_{30}^{19} + \zeta_{30}^{20} = 0.$$

Robinson made a conjecture ([4], § 4) about the numbers $\sqrt{5}\cos(\pi/M) + i\sin(\pi/M)$. I prove this conjecture as the following

THEOREM 2. The number $\sqrt{5}\cos(\pi/M) + i\sin(\pi/M)$ is a sum of three roots of unity if and only if M = 2, 3, 5, 10, or 30.

According to Robinson two algebraic integers ξ and η are equivalent if for a suitable conjugate ξ' of ξ , η/ξ' is a root of unity. Theorem 2 implies

Corollary 4. (Conjecture 3 from [4]). The numbers $1+2i\cos(\pi/M)$ and $\sqrt{5}\cos(\pi/M)+i\sin(\pi/M)$ are equivalent only for M=2, 10 or 30.

COROLLARY 5. There exist infinitely many inequivalent cyclotomic integers which lie with all their conjugates in the circle |z| < 3 and are not sums of three roots of unity.

The last corollary, which follows immediately from the fact that the numbers $\sqrt{5}\cos(\pi/M)+i\sin(\pi/M)$ for different M have different absolute values, disproves a conjecture made by Robinson at Boulder 1959 (cf. [4], § 4). An analogous conjecture for the circle |z|<2 is still unproved (l. c. Conjecture 1).

I conclude this introduction by expressing my thanks to Professor Robinson who let me have his manuscript before publication, to Professor Davenport who kindly supplied the proof of Lemma 2 and to Dr. A. Białynicki-Birula and Professor D. J. Lewis who discussed the subject with me and read my manuscript.

In the sequel Q denotes the rational field, $[K_2:K_1]$ the degree of a field K_2 over a field K_1 , and |K| = [K:Q]. The empty sums are 0, the empty products 1.

LEMMA 1. For all positive integers h and $N \geqslant 3$ there exists an integer D satisfying the conditions

$$(1) 1 \leqslant D \leqslant (\log N)^{20h},$$

(2)
$$(iD+1, N) = 1$$
 for $i = 1, 2, ..., h$.

Proof. For h=1 we can take D=q-1, where q is the least prime not dividing N. Since in that case $\sum_{p\leqslant D}\log p\leqslant \log N$, we get from [5], Theorem 10

$$D \leqslant 100$$
 or $0.84D \leqslant \log N$.

On the other hand $D \leqslant N$, which implies $D \leqslant (\log N)^{20}$ for all $N \geqslant 3$.

Therefore we can assume $h \ge 2$. Since D = N satisfies the condition (2) we can assume further $N > (\log N)^{20h}$, which implies

(3)
$$\log N > 110h, \quad \log \log N > 5.$$

Let A be the product of all primes not exceeding 10h, and let $p_1 < p_2 < \ldots < p_r$ be all the other primes dividing N. Let $P(A, X, p_1, \ldots, p_r)$ be the number of all integers x satisfying the conditions

$$1 \leqslant x \leqslant X$$
, $x \equiv 0 \pmod{A}$,

$$ix+1 \not\equiv 0 \pmod{p_j}$$
 $(1 \leqslant i \leqslant h, 1 \leqslant j \leqslant r)$.

The second condition above is equivalent to h conditions of the form $x \not\equiv a_{ij} \pmod{p_j}$. Thus by Brun's method ([1], cf. [6], Lemma 7) for any given sequence of integers $r = r_0 \geqslant r_1 \geqslant \ldots \geqslant r_l = 1$ we have

(4)
$$P(A, X, p_1, ..., p_r) > \frac{E}{A}X - R,$$

where

$$\begin{split} E &= 1 - h \sum_{a=1}^{r} \frac{1}{p_{a}} + h^{2} \sum_{a=1}^{r} \sum_{\substack{a_{1} \leqslant r \\ a_{1} < a}} \frac{1}{p_{a} p_{a_{1}}} - h^{3} \sum_{a=1}^{r} \sum_{\substack{a_{1} \leqslant r \\ a_{1} < a}} \sum_{\substack{\beta_{1} \leqslant r \\ \beta_{1} < a_{1}}} \frac{1}{p_{a} p_{a_{1}} p_{\beta_{1}}} + \\ &+ \dots + \sum_{a=1}^{r} \sum_{\substack{a_{1} \leqslant r \\ a_{2} \leqslant r \\ a_{3} \leqslant a_{1}} \sum_{\substack{\beta_{1} \leqslant r \\ \beta_{1} < a}} \dots \sum_{\substack{a_{t} - 1 \leqslant r \\ a_{t} - 1 \leqslant r \\ a_{t} - 1 \leqslant r - 1}} \sum_{\substack{\beta_{t} - 1 \leqslant r \\ \beta_{t} - 1 \leqslant r - 1}} \frac{1}{p_{a} p_{a_{1}} p_{\beta_{1}}} + \\ &\frac{1}{p_{a} p_{a_{1}} \dots p_{a_{t}}} \end{split}$$

and

(5)
$$R \leq (1+hr) \prod_{n=1}^{t} (1+hr_n)^2.$$

Denote by r_n $(1 \le n \le t)$ the least positive integer such that

$$\pi_n = \prod_{r_n < s \leqslant r_{n-1}} \left(1 - \frac{h}{p_s} \right) \geqslant \frac{1}{1.3}$$

and choose t so that

$$\pi_t = \prod_{s \leqslant r_{t-1}} \left(1 - \frac{h}{p_s}\right) \geqslant \frac{1}{1.3}.$$

It follows hence (cf. [6], formulae (18) and (32))

(6)
$$\pi_n \leqslant \frac{10}{9} \cdot \frac{1}{1.3} = \frac{1}{1.17} < \frac{8}{9}$$

and

(7)
$$E > 0.5 \prod_{s=1}^{r} \left(1 - \frac{h}{p_s}\right).$$

We shall show that

(8)
$$\log \prod_{s=1}^{r} \left(1 - \frac{h}{p_s}\right) > -\frac{h \log \log N}{e \log e h} > -0.2h \log \log N.$$

Indeed, since $p_1 > 10h$ we have by [5] (formula at the bottom of p. 87)

$$\sum_{s=1}^{r} \frac{1}{p_s^2} \leqslant \frac{2.04}{10h \log 10h}.$$

Hence

(9)
$$\log \prod_{s=1}^{r} \left(1 - \frac{h}{p_s}\right) + \log \prod_{s=1}^{r} \left(1 - \frac{1}{p_s}\right)^{-h} \ge -\sum_{s=1}^{r} \sum_{m=2}^{\infty} \frac{1}{m} \left(\frac{h}{p_s}\right)^m$$

$$\ge -\frac{1}{2} \sum_{s=1}^{r} \left(\frac{h}{p_s}\right)^2 \frac{1}{1 - h/p_s} \ge -\frac{5}{9} h^2 \sum_{s=1}^{r} \frac{1}{p_s^2} \ge -\frac{0.2 h}{\log 10 h}.$$

On the other hand, by [5], Theorem 15

$$(10) \qquad \frac{A}{\varphi(A)} \prod_{s=1}^r \left(1 - \frac{1}{p_s}\right)^{-1} = \frac{AN}{\varphi(AN)} < e^O \log\log AN + \frac{2.51}{\log\log AN}.$$

Since by [5], Theorem 9, and by (3)

$$\log A < 11h < 0.1\log N$$

we get

$$e^{C} \log \log AN + rac{2.51}{\log \log AN} < e^{C} \log \log N + rac{e^{C}}{10} + rac{2.51}{5} < e^{C} (\log \log N + 0.4).$$

Further by [5], Theorem 8

$$\frac{A}{\varphi(A)} > e^{G} \log 10h \left(1 - \frac{1}{2 \log^{2} 10h}\right) > e^{G} (\log h + 2.1).$$

Since by (3) $\log \log N > \log 10h$ we get from (9), (10) and the last two inequalities

(12)
$$\log \prod_{s=1}^{r} \left(1 - \frac{h}{p_s}\right) > -h \left(\log(\log\log N + 0.4) - \log(\log h + 2.1) + \frac{0.2}{\log 10h} \right)$$
$$> -h \left(\log\log\log N - \log\log eh \right).$$

Clearly, $\log x - \log a = 1 + \log(x/ae) \le x/ae$. Thus (12) implies (8). Now by (6) and (8)

$$(t-1)\log 1.17 \leqslant \frac{h \log \log N}{e \log e h} < \frac{h \log \log N}{e \log (h+1)},$$

hence

(13)
$$(2t+1)\log(h+1) < 3\log(h+1) + \frac{2h\log\log N}{e\log 1.17}$$

$$< 3\log(h+1) + 4.7h\log\log N.$$

This inequality permits to estimate R. The estimation of R given in [6] is not quite correct and not applicable under the present circumstances. Since p_s is certainly greater than the sth prime, we have by [5], Corollary to Theorem 3, $p_s > s \log s$. Hence

$$\begin{split} \log \pi_n &= \sum_{r_{n-1} \geqslant s > r_n} \log \left(1 - \frac{h}{p_s} \right) > -\frac{10}{9} \sum_{r_{n-1} \geqslant s > r_n} \frac{h}{p_s} \\ &> -\frac{10}{9} h \int_{0}^{r_{n-1}} \frac{dt}{t \log t} = -\frac{10}{9} h \log \frac{\log r_{n-1}}{\log r_n}. \end{split}$$

It follows by (6)

$$\frac{\log r_n}{\log r_{n-1}} < \left(\frac{1}{1.17}\right)^{\frac{9}{10h}} < \left(1 + \frac{9}{10h} \log 1.17\right)^{-1} \leqslant (1 + 0.141 h^{-1})^{-1},$$

and by induction

(14)
$$\frac{\log r_n}{\log r} < (1 + 0.141h^{-1})^{-n} \quad (1 \le n \le t - 1).$$

On the other hand

$$\log N \geqslant \sum_{s=1}^{r} \log p_s > r \log 10h \geqslant r \log 20$$
,

thus $\log r < \log \log N - 1$.

It follows from (5), (13) and (14) that

$$\log R \leq (2t+1)\log(h+1) + \log r + 2\sum_{n=1}^{t-1} \log r_n$$

$$<3\log{(h+1)}+4.7h\log{\log{N}}+(\log{\log{N}}-1)\left(2\sum_{n=0}^{\infty}(1+0.141h^{-1})^{-n}-1\right)$$

$$< 3\log(h+1) + 4.7 \, h \log\log N + (\log\log N - 1)(14.2h + 1)$$

 $< 19.4h \log \log N - 11h - 1.$

Since by (11) $\log A < 11h$, we have

(15)
$$\log R < 19.4h \log \log N - \log A - 1$$
.

It follows from (7), (8) and (15) that

$$\log\left(\frac{E}{A}(\log N)^{20h}\right) > \log R$$

thus by (4)

$$P(A, (\log N)^{20h}, p_1, ..., p_r) > 0$$

and by the definition of P there exists an integer D satisfying (1) and (2), q.e.d.

LEMMA 2. Let $f_j(x_1, \ldots, x_n)$ $(1 \le j \le n)$ be polynomials of degrees m_1, m_2, \ldots, m_n respectively, with coefficients in a number field K. If

$$f_i(\xi_1,\ldots,\xi_n)=0 \qquad (1\leqslant j\leqslant n)$$

and

(16)
$$\frac{\partial (f_1,\ldots,f_n)}{\partial (x_1,\ldots,x_n)}(\xi_1,\ldots,\xi_n)\neq 0$$

then

$$[K(\xi_1,\ldots,\,\xi_n)\colon K]\leqslant m_1m_2\ldots\,m_n$$

Proof (due to H. Davenport). Let $\varphi_1(x_1,\ldots,x_n),\ldots,\varphi_n(x_1,\ldots,x_n)$ be complete polynomials of degrees m_1,\ldots,m_n respectively, with arbitrary complex coefficients which differ by less than ε in absolute value from the corresponding coefficients of f_1,\ldots,f_n . By Bezout's theorem, the equations $\varphi_1=0,\ldots,\varphi_n=0$ have exactly $m_1m_2\ldots m_n$ distinct solutions for "general" values of all the coefficients. We shall prove that one of these solutions tends to ξ_1,\ldots,ξ_n as $\varepsilon\to 0$.

This will suffice to prove the result. Indeed, the equations $f_j(x_1, \ldots, x_n) = 0$ $(j = 1, \ldots, n)$ define a union of algebraic varieties over K. If the point (ξ_1, \ldots, ξ_n) were on a variety of positive dimension, defined by the equations $g_i(x_1, \ldots, x_n) = 0$ $(i = 1, \ldots, N)$, where $g_i = f_i$ for $i \leq n$, then by a known theorem ([3], p. 84) the rank of the matrix

$$\left[\frac{\partial g_i}{\partial x_j}(\xi_1,\ldots,\,\xi_n)\right]$$

would be less than n, contrary to (16). Hence (ξ_1, \ldots, ξ_n) is an isolated point, and therefore the ξ_i are algebraic over K. Now consider the points $(\xi_1^{(r)}, \ldots, \xi_n^{(r)})$ which are algebraically conjugate to (ξ_1, \ldots, ξ_n) over K. These are distinct and their number is $[K(\xi_1, \ldots, \xi_n): K]$. Also each of them satisfies the equations $f_j = 0$ and the condition $\frac{\partial (f_1, \ldots, f_n)}{\partial (x_1, \ldots, x_n)} \neq 0$.

Hence it will follow from the result stated above that near each of them there is one of the solutions of $\varphi_1 = 0, ..., \varphi_n = 0$ and so their number is at most $m_1 m_2 ... m_n$.

The value of $\varphi_j(\xi_1, \ldots, \xi_n)$, or of any derivative of $\varphi_j(x_1, \ldots, x_n)$ at (ξ_1, \ldots, ξ_n) , differs from the corresponding value for $f_j(\xi_1, \ldots, \xi_n)$ by an amount that is $O(\varepsilon)$. Hence

$$\varphi_{j}(\xi_{1}+\eta_{1},\ldots,\xi_{n}+\eta_{n}) = \varepsilon_{j} + \sum_{i=1}^{n} (\lambda_{ij}+\varepsilon_{ij}) \eta_{i} + \sum_{i=1}^{n} \sum_{i=1}^{n} (\lambda_{i_{1}i_{2}j}+\varepsilon_{i_{1}i_{2}j}) \eta_{i_{1}} \eta_{i_{2}} + \ldots,$$

where all ε_j , ε_{i_1j} , ... are $O(\varepsilon)$ and where the numbers λ_{i_j} , $\lambda_{i_1i_2j}$, ... are partial derivatives of f_j at (ξ_1, \ldots, ξ_n) and so are independent of ε . Also

$$\det \lambda_{ij} = rac{\partial \left(f_1, \ldots, f_n
ight)}{\partial \left(x_1, \ldots, x_n
ight)} \left(\xi_1, \ldots, \, \xi_n
ight)
eq 0.$$

It follows from the well known process for the inversion of power series (e.g. by iteration) that the equations

$$\varphi_j(\xi_1 + \eta_1, ..., \xi_n + \eta_n) = 0$$
 for $j = 1, ..., n$

have a solution with $\eta_1, \ldots, \eta_n = O(\varepsilon)$. Hence the result.

Remark. The above proof fails if K has characteristic $\neq 0$. However, Mr. Swinnerton-Dyer tells me that the lemma is still valid and can be proved by using Weil's theory of intersections.

Proof of Theorem 1. The theorem clearly holds for N < 3. Assume that $N \geqslant 3$,

(17)
$$\sum_{i=1}^{k} a_i \zeta_N^{a_i} = \vartheta, \quad |Q(\vartheta)| = d, \quad (N, a_1, ..., a_k) = 1.$$

Let D be an integer whose existence is ensured by Lemma 1 for h=k-1. Among the numbers a_i let there be exactly n that are distinct mod $N_1=N/(N,D)$. By a suitable permutation of the terms in (17) we can achieve that $a_{s_1},\,a_{s_2},\,\ldots,\,a_{s_n}$ are all distinct mod $N_1,\,0=s_0< s_1<\ldots< s_n=k$ and

$$(18) a_i \equiv a_{s_{\nu}} \bmod N_1 \quad \text{if} \quad s_{\nu-1} < i \leqslant s_{\nu} \quad (1 \leqslant \nu \leqslant n).$$

Let us choose numbers γ_r , such that

(19)
$$\gamma_{\nu} \equiv a_{s_{\nu}} \pmod{N_1}, \quad (\gamma_{\nu}, N) = (a_{s_{\nu}}, N_1) \quad (1 \leqslant \nu \leqslant n).$$

It follows from elementary congruence considerations that such choice is possible.

We write equation (17) in the form

(20)
$$\sum_{r=1}^{n} \zeta_{N}^{r} S_{r} = \vartheta,$$

where

$$S_{m{ au}} = \sum_{i=s_{
u-1}+1}^s a_i \zeta_N^{a_i-
u_
u} \quad (1\leqslant
u\leqslant n).$$

By (18) and (19)

$$S_{\mathbf{r}} \in Q(\zeta_D) \quad (1 \leqslant \mathbf{r} \leqslant n)$$

By (2) (N, iD-D+1) = 1 thus ζ_N^{iD-D+1} is for each positive $i \leq k$ a conjugate of ζ_N . Clearly

$$\zeta_N^{(a_i - \gamma_r)(jD - D + 1)} = \zeta_N^{a_i - \gamma_r} \qquad (s_{r-1} < i \leqslant s_r).$$

Substituting $\zeta_N^{(D-D+1)}$ for ζ_N in (20) we get

$$\sum_{\nu=1}^{n} \zeta_{N}^{\nu_{\nu}(jD-D+1)} S_{\nu} = \vartheta_{j} \quad (1 \leqslant j \leqslant n),$$

where ϑ_i is a suitable conjugate of ϑ . Since $Q(\vartheta)$ is an Abelian field. $\vartheta_i \in Q(\vartheta)$.

In Lemma 2 we take:

$$f_j(x_1,\ldots,x_n) = \sum_{r=1}^n x_r^{jD-D+1} S_r - \vartheta_j \quad (1 \leqslant j \leqslant n),$$

$$K = Q(\zeta_D, \vartheta), \quad \xi_v = \zeta_N^{\gamma_v} \quad (1 \leqslant v \leqslant n).$$

Hence

(21)
$$\frac{\partial (f_1, \dots, f_n)}{\partial (x_1, \dots, x_n)} (\xi_1, \dots, \xi_n)$$

$$=\prod_{j=1}^n(jD-D+1)\prod_{r=1}^nS_r\prod_{1\leqslant r''< r'\leqslant n}(\zeta_N^{\gamma_{r'}D}-\zeta_N^{\gamma_{r''}D}).$$

If $S_{\nu} = 0$ for some $\nu \leqslant n$ then

$$\sum_{i=s_{\nu+1}+1}^{s_{\nu}} a_i \zeta_N^{a_i} = 0$$

and the theorem holds with $I = \{s_{\nu-1}+1, \ldots, s_{\nu}\}.$

If $S_{\nu} \neq 0$ for all $\nu \leqslant n$, then by (21) and the choice of γ_{ν} we have

$$\frac{\partial(f_1,\ldots,f_n)}{\partial(x_1,\ldots,x_n)}(\xi_1,\ldots,\xi_n)\neq 0.$$

Therefore, by Lemma 2

$$(22) |Q(\zeta_N^{r_1}, \zeta_N^{r_2}, ..., \zeta_N^{r_n})| \le |Q(\zeta_D, \vartheta)| \prod_{j=0}^{n-1} (jD+1) < n! \ D^n d \le k! \ D^k d.$$

On the other hand by (18) and (19)

$$(N, \gamma_r) = (N_1, \alpha_{s_r}) = (N_1, \alpha_{s_{r-1}+1}, \ldots, \alpha_{s_r}),$$

hence

$$(N, \gamma_1, ..., \gamma_n) = (N_1, \alpha_1, ..., \alpha_k) = 1$$

and

$$|Q(\zeta_N^{\gamma_1},\ldots,\zeta_N^{\gamma_n})|=\varphi(N).$$

It follows now from (22) and (1) (applied with h = k-1)

(23)
$$\varphi(N) \leqslant k! (\log N)^{20k(k-1)} d.$$

If $N < (200k^2 \log 2k)^{20k^2}$ the theorem certainly holds. If $N \ge (200k^2 \log 2k)^{20k^2} > 10^{42}$, it follows from [5], Theorem 15, that

(24)
$$\varphi(N) > \frac{N}{\log N}.$$

Also, if $N \ge (200k^2 \log 2k)^{20k^2}$

$$(25) k! < (\log N)^k.$$

It follows from (23), (24) and (25) that

$$N(\log N)^{-20k^2} \leqslant d.$$

Taking $N_0 = d(2\log d + 200k^2\log 2k)^{20k^2}$ we find that

$$N_0(\log N_0)^{-20k^2} = d\left(\frac{2\log d + 200k^2\log 2k}{\log d + 20k^2\log(2\log d + 200k^2\log 2k)}\right)^{20k^2} > d,$$

because $200k^2\log 2k > 20k^2\log 400k^2\log 2k$.

Since the function $N(\log N)^{-20k^2}$ is increasing for $N > e^{20k^2}$ it follows that $N < N_0$. The proof is complete.

Proof of Corollary 1. Assume that

$$\vartheta = \sum_{i=1}^k \zeta_N^{a_i}.$$

Let I be a set contained in $\{1, 2, ..., k\}$ saturated with respect to the property that $\sum_{i \in I} \zeta_N^{a_i} = 0$. We have $\vartheta = \sum_{i \in I} \zeta_N^{a_i}$ and by the choice of Iand Theorem 1

$$\frac{N}{(N, GCDa_i)} < d(2\log d + 200k^2\log 2k)^{20(k-s)^2},$$

where \varkappa is the number of elements in I. If $\varkappa = 0$ we have the desired

conclusion, if $\varkappa > 0$ then $\varkappa \geqslant 2$ and

$$\vartheta = \begin{cases} \sum_{i \in I} \zeta_N^{a_i} + \sum_{j=1}^{\varkappa/2} 1 + \sum_{j=1}^{\varkappa/2} (-1), & \varkappa \text{ even,} \\ \sum_{i \in I} \zeta_N^{a_i} + \zeta_3 + \zeta_3^{-1} + \sum_{j=1}^{(\varkappa-1)/2} 1 + \sum_{j=1}^{(\varkappa-3)/2} (-1), & \varkappa \text{ odd} \geqslant 3. \end{cases}$$

The least common degree of all k roots of unity occurring in the above representation of ϑ does not exceed

$$6d(2\log d + 200k^2\log 2k)^{20(k-\kappa)^2} < d(2\log d + 200k^2\log 2k)^{20k^2},$$

which completes the proof.

Proof of Corollary 2. The sufficiency of the condition is immediate since

$$\sum_{i=1}^{k-2} \zeta_N^{a_i} = \sum_{i=1}^{k-2} \zeta_N^{a_i} + \zeta_M - \zeta_M,$$

where M is arbitrary. On the other hand, if ϑ has infinitely many representations as the sum of k roots of unity, then there must be among them a representation

$$artheta = \sum_{i=1}^k \zeta_N^{a_i}, \quad (N,\,a_1,\,\ldots,\,a_k) = 1$$

not satisfying the inequality

$$N < d(2\log d + 200k^2\log 2k)^{20k^2}$$
.

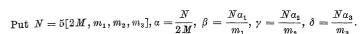
By Theorem 1 there is a non-empty set $I\subset\{1,2,\ldots,k\}$ such that $\sum\limits_{i\in I}\zeta_N^{a_i}=0$ and denoting by \varkappa the number of elements in I we have $k>\varkappa\geqslant 2$. Since

$$1 = \begin{cases} \sum_{j=1}^{\varkappa/2} 1 + \sum_{j=1}^{(\varkappa-3)/2} (-1), & \varkappa \text{ even,} \\ \zeta_6 + \zeta_6^{-1} + \sum_{j=1}^{(\varkappa-3)/2} 1 + \sum_{j=1}^{(\varkappa-3)/2} (-1), & \varkappa \text{ odd} \geqslant 3 \end{cases}$$

we can replace one of the k-z terms in the sum $\sum_{i\in I} \xi_N^{a_i} = \vartheta$ by a sum of z-1 roots of unity, thus obtaining a representation of ϑ as the sum of k-2 roots of unity.

Proof of Theorem 2. Suppose that

(26)
$$\sqrt{5}\cos\frac{\pi}{M} + i\sin\frac{\pi}{M} = \zeta_{m_1}^{a_1} + \zeta_{m_2}^{a_2} + \zeta_{m_3}^{a_3}$$
, where $(a_i, m_i) = 1$.



Then

$$(27) (\alpha, \beta, \gamma, \delta) = 5.$$

Since $\frac{1}{2}(\sqrt{5}-1) = \zeta_5 + \zeta_5^{-1} = \zeta_N^{N/5} + \zeta_N^{-N/5}$ (26) can be written in the form

(28)
$$(\zeta_N^{N/5} + \zeta_N^{-N/5})(\zeta_N^a + \zeta_N^{-a}) + \zeta_N^a = \zeta_N^{\beta} + \zeta_N^{\gamma} + \zeta_N^{\delta}.$$

Now we distinguish two cases according as $3 \mid N$ and $3 \nmid N$. In the first case at least one of the numbers $\pm \frac{1}{3}N+1$ is relatively prime to N. Hence one of the numbers $\xi_3^{\pm 1} \zeta_N$ is conjugate to ζ_N . Denote it for simplicity by $\varrho \zeta_N$ and substitute for ζ_N into (28). Since $\varrho^{N/5}=1$, we get

$$(29) \qquad (\zeta_N^{N/5} + \zeta_N^{-N/5})(\varrho^{\alpha}\zeta_N^{\alpha} + \varrho^{-\alpha}\zeta_N^{-\alpha}) + \varrho^{\alpha}\zeta_N^{\alpha} = \varrho^{\beta}\zeta_N^{\beta} + \varrho^{\gamma}\zeta_N^{\gamma} + \varrho^{\delta}\zeta_N^{\delta}.$$

 By taking complex conjugates of (28) and (29) and substituting afterwards

$$y = \zeta_N^{\beta}, \quad z = \zeta_N^{\gamma}, \quad t = \zeta_N^{\delta};$$

$$A = \frac{1}{2}(\sqrt{5}+1)\zeta_{2M} + \frac{1}{2}(\sqrt{5}-1)\zeta_{2M}^{-1}, \quad B = \frac{1}{2}(\sqrt{5}-1)\zeta_{2M} + \frac{1}{2}(\sqrt{5}+1)\zeta_{2M}^{-1},$$

(30)
$$C = \frac{1}{2} (\sqrt{5} + 1) \varrho^{a} \zeta_{2M} + \frac{1}{2} (\sqrt{5} - 1) \varrho^{-a} \zeta_{2M}^{-1},$$
$$D = \frac{1}{2} (\sqrt{5} - 1) \varrho^{a} \zeta_{2M} + \frac{1}{2} (\sqrt{5} + 1) \varrho^{-a} \zeta_{2M}^{-1},$$

we get the following system of equations

$$(31) A = y + z + t,$$

(32)
$$B = y^{-1} + z^{-1} + t^{-1},$$

$$(33) C = \varrho^{\beta} y + \varrho^{\gamma} z + \varrho^{\delta} t,$$

(34)
$$D = \rho^{-\beta} y^{-1} + \rho^{-\gamma} z^{-1} + \rho^{-\delta} t^{-1}.$$

If $\beta \equiv \gamma \equiv \delta \pmod 3$ it follows from (31) and (33) that $C = \varrho^{\beta} A$. Hence by (30)

(35)
$$\frac{1}{2}(\sqrt{5}+1)(\varrho^{\alpha}-\varrho^{\beta})\zeta_{2M}+\frac{1}{2}(\sqrt{5}-1)(\varrho^{-\alpha}-\varrho^{\beta})\zeta_{2M}^{-1}=0.$$

The coefficients of ζ_{2M} and ζ_{2M}^{-1} do not both vanish, since that would give $a \equiv \beta \equiv 0 \pmod{3}$ and $a \equiv \beta \equiv \gamma \equiv \delta \equiv 0 \pmod{3}$ contrary to (27). Thus they have different absolute values, and (35) is impossible.

Consider now the case when exactly two among the numbers β , γ , δ are congruent mod 3, e.g. $\beta \equiv \gamma \not\equiv \delta \pmod{3}$. Eliminating y, z, and t from the equations (31) to (34) we get

(36)
$$(C - \rho^{\beta} A)(D - \rho^{-\beta} B) = |\rho^{\delta} - \rho^{\beta}|^{2} = 3.$$

On sums of roots of unity

Substituting the values for A, B, C, D from (30) we obtain

$$(37) \qquad (\varrho^{a} - \varrho^{\beta})(\varrho^{a} - \varrho^{-\beta})\zeta_{M} + \frac{1}{2}(3 + \sqrt{5})|\varrho^{a} - \varrho^{\beta}|^{2} + \frac{1}{2}(3 - \sqrt{5})|\varrho^{-a} - \varrho^{\beta}|^{2} - 3 + \\ + (\varrho^{-a} - \varrho^{\beta})(\varrho^{-a} - \varrho^{-\beta})\zeta_{M}^{-1} = 0.$$

If $\beta \equiv \pm \alpha \pmod{3}$, we get $\frac{1}{2}(3\mp\sqrt{5})|\varrho^{\mp a}-\varrho^{\beta}|^2-3=0$, which is mpossible. Hence $\beta \not\equiv \pm a \pmod{3}$ and (37) takes the form

(38)
$$3\zeta_M + 6 + 3\zeta_M^{-1} = 0,$$

$$3\zeta_M + 6 + 3\zeta_M^{-1} = 0$$
, if $\beta \not\equiv 0 \pmod{3}$;

$$(39) -3\varrho^{\alpha}\zeta_{M} + 6 - 3\varrho^{-\alpha}\zeta_{M}^{-1} = 0, \text{if} \beta \equiv 0 \not\equiv \alpha \pmod{3}.$$

It follows from (38) that $\zeta_M = -1$, M = 2 and from (39) $\varrho^a \zeta_M = 1$, M = 3.

Consider next the case when β , γ , δ are all different mod 3. We can assume without lost of generality that $\beta \equiv 0 \pmod{3}$, $\gamma \equiv 1 \pmod{3}$, $\delta \equiv 2 \pmod{3}$.

If $a \equiv 0 \pmod{3}$, then C = A and it follows from (31) and (33) that

$$A-y=z+t=\varrho z+\varrho^2t,$$

hence $t = \rho z$ and

(40)
$$A = y - \varrho^2 z, \quad B = y^{-1} - \varrho z^{-1}.$$

Since y and z are roots of unity, $|y-\varrho^2 z| \leq 2$. On the other hand by (30)

$$|A| = |\sqrt{5}\cos(\pi/M) + i\sin(\pi/M)| = \sqrt{5 - 4\sin^2(\pi/M)}$$
.

It follows that

$$5-4\sin^2(\pi/M) \le 4$$
, $|\sin(\pi/M)| \ge \frac{1}{2}$,

and $6 \ge M > 1$. Further, by (40)

$$-\varrho^2 yz = \frac{A}{B} = \frac{\sqrt{5}\cos(\pi/M) + i\sin(\pi/M)}{\sqrt{5}\cos(\pi/M) - i\sin(\pi/M)}.$$

It can easily be verified that for M=3, 4 or 6 the quotient on the right hand side is not an algebraic integer, hence the only possible values for M here are M=2 or 5.

If $a \not\equiv 0 \pmod{3}$, then eliminating y, z and t from (31) to (34) we

$$A^3 - C^3 = 3yzt(AB - CD)$$
 and $(AB - CD)^2 - \frac{1}{6}(A^3 - C^3)(B^3 - D^3) = 0$

The substitution of the values for A, B, C, D from (30) gives

$$-3\rho^{-\alpha}\zeta_{M}^{2}+3\rho^{\alpha}\zeta_{M}-3+3\rho^{-\alpha}\zeta_{M}^{-1}-3\rho^{\alpha}\zeta_{M}^{-2}=0.$$

Hence

$$(\varrho^{\alpha}\zeta_{M})^{4} - (\varrho^{\alpha}\zeta_{M})^{3} + (\varrho^{\alpha}\zeta_{M})^{2} - (\varrho^{\alpha}\zeta_{M}) + 1 = 0, \quad \varrho^{\alpha}\zeta_{M} = \zeta_{10}^{\epsilon},$$

where $(\varepsilon, 10) = 1$ and $\zeta_M = \varrho^{-\alpha} \zeta_{10}^{\varepsilon}$. This gives M = 30.

It remains to consider the case when $3 \nmid N$. In this case ζ_N^3 is a conjugate of ζ_N and substituting it for ζ_N in the equation (28) we get

(41)
$$(\zeta_N^{3N/5} + \zeta_N^{-3N/5})(\zeta_N^{3a} + \zeta_N^{-3a}) + \zeta_N^{3a} = \zeta_N^{3\beta} + \zeta_N^{3\gamma} + \zeta_N^{3\delta}.$$

Now.

$$\zeta_N^{3N/5} + \zeta_N^{-3N/5} = \frac{1}{2}(-\sqrt{5}-1).$$

By taking the complex conjugate of (41) and substituting afterwards

(42)
$$E = \frac{1}{2}(-\sqrt{5}+1)\zeta_{2M}^3 + \frac{1}{2}(\sqrt{5}-1)\zeta_{2M}^{-3},$$

$$F = \frac{1}{2}(-\sqrt{5}-1)\zeta_{2M}^3 + \frac{1}{2}(-\sqrt{5}+1)\zeta_{2M}^{-3}$$

we get the following system of equations

$$A = y + z + t,$$

 $B = y^{-1} + z^{-1} + t^{-1},$
 $E = y^{3} + z^{3} + t^{3},$
 $F = y^{-3} + z^{-3} + t^{-3}.$

Eliminating y, z and t we obtain

$$A^3 - E = 3yzt(AB - 1)$$
 and $(AB - 1)^2 - \frac{1}{9}(A^3 - E)(B^3 - F) = 0$.

The substitution of the values for A, B, E, F from (30) and (42) gives

$$-\zeta_M^3 - \zeta_M^2 - \zeta_M^{-2} - \zeta_M^{-3} = 0.$$

Hence

$$\zeta_M^6 + \zeta_M^5 + \zeta_M + 1 = (\zeta_M + 1)(\zeta_M^5 + 1) = 0,$$

$$\zeta_M = -1 \text{ or } \zeta_M^5 = -1, \text{ and } M = 2 \text{ or } M = 10.$$

This completes the proof that the only values M for which η_M $= \sqrt{5}\cos(\pi/M) + i\sin(\pi/M)$ can be a sum of three roots of unity are 2, 3, 5, 10, or 30. On the other hand, it is easy to verify that

$$\begin{aligned} \eta_2 &= 1 + \zeta_2 + \zeta_4, & \eta_3 &= \zeta_5 + \zeta_5^{-1} + \zeta_6, & \eta_5 &= \zeta_6 + \zeta_6^{-1} + \zeta_{10}, \\ \eta_{10} &= \zeta_{20} + \zeta_{20}^3 + \zeta_{20}^{-3}, & \eta_{30} &= \zeta_{12}^{-1} + \zeta_{20}^{-1} + \zeta_{60}^{11}. \end{aligned}$$

Proof of Corollary 4. Since $1+2i\cos(\pi/M)=1+i(\zeta_{2M}+\zeta_{2M}^{-1})$, any number equivalent to $1+2i\cos(\pi/M)$ is a sum of three roots of unity. It follows by Theorem 2 that the numbers $\xi_M = 1 + 2i\cos(\pi/M)$ and $\eta_M = \sqrt{5}\cos(\pi/M) + i\sin(\pi/M)$ can be equivalent only for M = 2, 3, 5, 10, or 30.

A. Schinzel

432

If the numbers ξ_3 and η_3 or ξ_5 and η_5 were equivalent then since $\xi_3=1+i$ and $\eta_5=1+\zeta_{10},\eta_3$ or ξ_5 would be a sum of two roots of unity. However if $\vartheta\neq 0$ is such a sum and $\overline{\vartheta}$ is its complex conjugate, then $\vartheta/\overline{\vartheta}$ is a root of unity. Since neither of the numbers $\eta_3/\overline{\eta}_3$ and $\xi_5/\overline{\xi}_5$ is an algebraic integer, the proof is complete.

Added in proof. I. H. B. Mann has proved in Mathematika 12 (1965), pp. 107-117, that under the assumptions of Corollary 3, N divides the product of all primes < k+1. This leads to a much better estimation of N than that stated in the corollary. Mann's method could also be used to solve both Robinsons's problems considered in this paper.

2. In connection with Lemma 1 the question arises how much inequality (1) can be improved. Y. Wang has proved by Brun's method in a manuscript kindly placed at my disposal that for $N > N_0(h)$ one can replace $(\log N)^{20h}$ by $c(h) \times (\log N)^{4h+3}$. According to H. Halberstam (written communication), there is a possibility of reducing the exponent 4h+3 to 2h+1 by Selberg's method.

References

[1] V. Brun, Le crible d'Eratosthène et le théorème de Goldbach, Norsk Videnskaps Selskabs Skrifter, Kristiania 1920.

[2] R.D. Carmichael, Introduction to the Theory of Groups of Finite Order, New York 1937.

[3] W. Hodge and D. Pedoe, Methods of Algebraic Geometry II, Cambridge 1952.

[4] R. M. Robinson, Some conjectures about cyclotomic integers, Math. Comp. 19 (1965), pp. 210-217.

[5] J.B. Rosser and L. Schoenfeld, Approximate formulas for some functions

of prime numbers, Illinois J. Math. 6 (1962), pp. 64-89.

[6] A. Schinzel and Y. Wang, A note on some properties of the functions $\varphi(n)$, $\sigma(n)$ and $\theta(n)$, Ann. Polon. Math. 4 (1958), pp. 201-213.

Recu par la Rédaction le 9. 7. 1965

A refinement of a theorem of Schur on primes in arithmetic progressions

bτ

J. Wójcik (Warszawa)

I. Schur ([1]) has given a purely algebraic proof of the following special case of Dirichlet's theorem on arithmetic progression.

Let $l^2 \equiv 1 \mod m$. If the arithmetic progression mz+l contains a prime $> \frac{1}{2}\varphi(m)$, then it contains infinitely many primes.

In this paper by a refinement of Schur's method we prove

THEOREM. Let $l^2 \equiv 1 \mod m$. If the arithmetic progression mz+l contains a prime, then it contains infinitely many primes.

Let Q be the rational field, ζ_m a primitive mth root of unity,

$$h(x) = \begin{cases} x + x^l & \text{if} \quad 2l \not\equiv m + 2 \mod 2m, \\ x^2 & \text{if} \quad 2l \equiv m + 2 \mod 2m, \end{cases}$$

 $K = Q(h(\zeta_m)).$

Let r be the degree of K, N denote the norm from K to Q.

LEMMA 1. Let α be any integral generating element of K, $\alpha_1, \ldots, \alpha_r$ $(\alpha_1 = a)$ all its conjugates,

$$G(x,y) = \prod_{i=1}^{r} (x-a_{i}y),$$
 d the discriminant of G.

If q is a prime, x, y rational integers, $q | G(x, y), q \nmid mdy$, then q is of the form mz+1 or mz+l.

Proof. $a = \chi(h(\zeta_m))$, where χ is a polynomial with rational coefficients and since a is a generating element of K

(1)
$$\chi(h(\zeta_m^{s_1})) = \chi(h(\zeta_m^{s_2})),$$

where

$$(s_1, m) = (s_2, m) = 1$$

implies

$$h(\zeta_m^{s_1}) = h(\zeta_m^{s_2}).$$

Acta Arithmetica XI.4