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Lebt a; < ... < @ < be the sequence of integers satisfying (29).
From (29) we obtain by a simple computation that for every r, L <r <1

(30) 1032%‘2014(10&‘%)”2 < v(ay) <logytp+26y (logya,)**.

Denote as before by d+(a,) the number of a’s dividing .. To prove
(28) it will suffice to show that for every 7

(31) @+ (ay) < exp (614(10g;2)" " logs ).

Denote by py < ... < Dya, the prime factors of ark, Asgsume a‘La,;
If v(a,) < ko then by (30) there are clearly fewer than »(a,)" < (log,z)*?
choices for a;, thus these can be ignored. If »(ay) > &, let p; be the gre-
atest prime factor of a;. Sinee a; and a, both satisfy (29) and (30) a simple
computation shows that

(32) 8 — 30y, (logea,) < v(a) <s.
Thus by an easy argument and simple compubation

) s

y 8

a+(a) < logsfo+ > > (J)
s=Tg+1 53045 (loggan) 2

< (logy@)+ -+ v (a,) () s
< »( a')scls(lugzdr)ll‘l < exp (016 (log, w)1/210g3 m) .

Thus (31) is proved (with c¢;z = ¢y).
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ACTA ARITHMETICA
XI (1966)

On sums of roots of wunity
(Solution of two problems of R. M. Robinson)
by
A. ScminzeL (Warszawa)

To Professor Viggo Brun
on his 80th birthday

R.M. Robinson ([4]) proposed the following problem:

“How can we tell whether a given cyclotomic integer can be ex-
pressed as a sum of a prescribed number of roots of unity?”

An answer to this problem follows as Corollary 1 from the theorem
below.

k
TEEoREM 1. Let Y aylr = &, where the a; are rational integers,
i=1

iy = €™, Suppose that 9 is am algebraic integer of degree @ and that
(N, a3, agy ...y ax) = 1. Then either there is a non-empty set I < {1,2,...,k}
such that

Dlaly =0

(1
or

N < d(2logd -+ 200k2log2%)™*",

COROLLARY 1. An algebraic integer of degree d is a sum of k roots
of unity only if it is a sum of k roots of unity of common degree less than
d(2log d-200k2log 2k)2,

COROLLARY 2. An algebraic integer = 0 is a sum of k roots of unily
in infinitely many ways if and only if it is a sum of k—2 roois of unmity.
k
COROLLARY 8. If 1+ 38 =0, and (N, ay, ..., ap) =1 then either
i<
there is a mon-empty set I < {1,2,...,k} such that Y (% =10 or
i
N < (200 k2log 2%)2*,

The proofs of Theorem 1, Corollary 1 and 2 are given later, Corollary
3 follows immediately from the theorem and is stated with the purpose
of asking the question how much the inequality for ¥ can be improved.
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There is a statement in the literature ([2], p. 228) from which it
would follow that (200 ktlog 2k can be replaced by k+ 2. This is true
for k < 5 but false for ¥ = 5 as the following example due to Robinson
shows .
14 Coot Gt G+ Cho+-Cho =

Robinson made a conjecture ([4], § 4) about the numbers
V5cos(z/M)-+isin(x/M). I prove this conjecture as the following

THEOREM 2. The number VBcos(n/M)+isin(n/M) is a sum of three
roots of unity if and only if M =2, 3, 5, 10, or 30.

According to Robinson two algebraic integers & and # are equivalent
if for a suitable conjugate & of &, 5/& is a root of unity. Theorem 2 implies

CorROLLARY 4. (Conjecture 3 from [4]). The numbers 1+ 24 cos(n/M)
and ]/Eeos(-n:/M) tisin(n/M) are equivalent only for M =2, 10 or 30.

COROLLARY 5. There exist infinitely many inequivalent cyclotomic
integers which lie with all their conjugates in the circle (2| < 8 and are not
sums of three roots of unity.

The last corollary, which follows immediately from the fact that
the numbers l/gcos(w/M)-l—isin(ﬁ/M) for different M have different
abgolute values, disproves a conjecture made by Robinson at Boulder
1959 (cf. [4], § 4). An analogous conjecture for the circle |2| << 2 is still
unproved (l. ¢. Conjecture 1).

I conclude this introduction by expressing my thanks to Professor
Robinson who let me have his manuscript before publication, to Pro-
fessor Davenport who kindly supplied the proof of Lemma 2 and to
Dr. A. Bialynicki-Birula and Professor D.J. Lewis who discussed the
subject with me and read my manuscript.

In the sequel ¢ denotes the rational field, [K,: K] the degree of
a field K, over a field K,, and |K| = [K : Q]. The empty sums are 0,
the empty products 1.

LeMma 1. For all positive integers h and N > 3 there exists an integer
D satisfying the conditions

1 1 <D < (log Ny,
(2) (D+1L, N)=1 for i=1,2,...,h.
Proof. For h =1 we can take D = ¢—1, where g is the least prime
not dividing N. Since in that case Ylogp <log¥N, we get from [5],
<D
Theorem 10 "~
100 or  0.84D <logXWN.

D<g
On the other hand D < ¥, which implies D < (logN)® for all ¥ >3
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Therefore we can assume h > 2. Since D = N satisfies the condi-

tion (2) we can assume further N > (logN )** which implies
(3) log N > 110k, loglogN > 5.

Let A Dbe the product of all primes not exceeding 10k, and let
P, < Py < ... < P, be all the other primes dividing N. Let P(4, X, py, ...,
?,) be the number of all integers x satisfying the conditions

1<e<X, msO(modA),
iwt+ls=0(modp;) (A<i<<h,1<j<r).

The second condition above is equivalent to & conditions of the form
@ 5= a; (mod p;). Thus by Brun’s method ([1], cf. [6], Lemma 7) for
any given sequence of integers r =7, >7 >=... 27 =1 we have

B
(4) P(A,X:Ply---;pr)>ZX—R:

where

B =1— hzr’p

a=]1

Z ]917(1 mhzzzppal-pﬁx_{—'

a=1 oy<r fi<<r
aj<a fi<ay

+---+E22~-- 2 2 ZWLZ

a=1 o1<ry fi<n ap St~y Bp1<TE—] o<y
a<a f<a a—1<Pt—3 Bt—1<o—1 4<Bg—1

a

and
13
(5) B <(140r) | [ (4R,

Denote by 7, (1 < n < 1) the least positive integer such that

( h ) 1
Ty, = 11— >—
1'“<8<1‘_n_1 ps 1‘3

and choose ¢ 0 that

h 1
Ty = 1———) > —.
s<ry_ g Ps 1.3

It follows hence (cf. [6], formulae (18) and (32))

10 1 18
(6 < T
) ™S9'13 11 <9

and

(7) E>0.5n(1—§)
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We shall show that

L
h hloglog v
l l 1—— —ETe .
(8) log ( ps)> elogeh > —0.2hloglog V.

8=1
Indeed, since p, > 10k we have by [5] (formula at the bottom of D. 87)
r
1 2.04
S <
& p;  10klogl0h
Hence

(9) Iogﬁ(l—;hﬁ) —l—logﬁ(l—iyl—)—h >

8= §=1 §

A\
l
M
Ds
sIn
JIE
'

r
1 ( h )Z 1 5 1 0.2h
2 D)) — =R Y S
2 & \ps] 1—hps 9 2 i~ loglon’
On the other hand, by [5], Theorem 15

A 1\-1 AN 2.51
) -4 (1~—) - < Cloglog AN 4 — 251
qa(A)Q 7] T pam) = RN Ay

Since by [5], Theorem 9, and by (3)

(11) logA < 11k < 0.1logN
we get

2.51

o}
3010 log AN A s € 2.61
glog AN+ 7 oglogdn <° loglog NV -+ w5 < ¢ (loglog N +0.4).

Further by [5], Theorem 8
i>¢e°10g10h,(1——1—— (1
o) STogi10h > ¢“ (logh+2.1).
Since by (3) loglog¥N > log10k we get from (9 :
meqealie. g (9), (10) and the last two
r

h —_
(12) IOgH (1—;,—) > —h (10g(10g10gN+ 0.4)—log(logh+-2.1) +logf()h)

> —h(logloglog N —loglogeh).

Clearly, logoz —loga = 1 +log(x/ac) < wmjae. Th impli
oy (0 o o [ae) Jae. Thus (12) implies (8). Now
hloglog ¥ hloglog N

(i—1)log1.17 <
elogeh elog(h-+1)’
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hence

1
(13) (2t+1)log(h+1) < 3log(h+1)-+ 2hloglog N

elogl.17
< 3log(h+1)+4.7hloglog N .

This inequality permits to estimate R. The estimation of B given in [6]
is not quite correct and not applicable under the present circumstances.
Since p, is certainly greater than the sth prime, we have by [5], Corollary
to Theorem 3, ¢, > slogs. Hence

h 10 h
logm, = Y 10g(1——-)>—-—~ '~
rn_1'>75J>r,,, Ps 9 P — 18>y Ps
10, @ 10 1
>____hf — ———Izlog—%}—.
9 tlogt 9 logr,
n

It follows by (6)

logr, 1 Tgi 9 1
Tq7 1+ ——logl. < 1 —1y—1
10871 <(1.17) < |1+ g7 logl 7] < (1401414797,

and by induction

logr,

(14)
logr

< @A4+0141r7H" (1< e Lt-1).
On the other hand
r
log¥ > D'logp, > rlog10h > rlog20,
$=1

thuslogr < loglog N —1.
It follows from (3), (13) and (14) that

i-1

logR < (2t+1)log(h+1)+logr+2 2 log7,,
n=1

< 8log(h--1) - 4.7hloglog ¥ -+ (loglog N —1) (2 S+ 0.1417»*1>~“_1)

n=0
< 3log(h+1)+4.7hloglog N - (loglog N —1) (14.22 1)
< 19.4hloglog N —11h—1.
Since by (11) log4 < 11h, we have
(15) log R < 19.4hloglog N —logd —1.


Pem


424 A. Schinzel
It follows from (7), (8) and (15) that

log (fj— (1og1v)2°") > logR
thus by (4)
P(4, (log N, p1, v pr) >0

and by the definition of P there exists an integer D satisfying (1) and
(2), q.e.d.

LEMMA 2. Let fi(g, ..., 2,) (1 <j<n) be polynomials of degrees
Myy Moy . .vy My TESPectively, with coefficients in a number field K. If

fy’(fly"':fn)=0 (1 SJQ’VL)

and

0(f1s ooy fu)
(16) m(fumaﬁz)#o
then

[K (&1 oevy &) KT < mymy ... My,

Proof (due to H. Davenport). Let @y (@1, ..oy Bn)y vy @u(Byy ...y @)
be complete polynomials of degrees m., ..., m, respectively, with arbi-
trary complex coefficients which differ by less than ¢ in absolute value
from the corresponding coefficients of f,,...; f,. By Bezout’s theorem,
the equations ¢, =0,..., », = 0 have exactly m,m,...m, distinct solu-
tions for “general” values of all the coefficients. We shall prove that
one of these solutions tends to &,..., &, as ¢ — 0.

This will suffice to prove the result. Indeed, the equations f; (@, ..., x,)
=0 (j=1,...,n) define a union of algebraic varieties over K. If
the point (&, ..., &) were on a variety of positive dimension, defined
by the equations g;(@, ..., #,) =0 (i = 1, ..., N), where g; = f; for 4 < n,
then by a known theorem ([3], p. 84) the rank of the matrix

0g;
[&};(517 L 57’4)]

would be less than n, contrary to (16). Hence (61, ..., &) is an isolated
point, and therefore the £; are algebraic over K. Now consider the points
(&0, ..., &) which are algebraically conjugate to (£, vory &) oOver K.
These are distinet and their number is [E (&1, ..., &): K]. Also each of

them satisfies the equations f; = 0 and the condition %’———’—f"—)) #0.
Dyy eney By
Hence it will follow from the result stated above that near each of
them there is one of the solutions of ¢, =0,...,, = 0 and so their
number is at most mym,...m,.
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The value of g;(&1, ..., &), or of any derivative of er(wy, ..., o)
at (Egyeers Ends differs from the ecorresponding value for fi(E1y oony &n)
by an amount that is O(e). Hence

@i(E 71y ooy En )

n n

=g+ Z:(ﬂi?"i'eii) N+ Z 2 (Ai1i2j+8i152j)7]i17k2+ ceny

i)=1 ip=1
where all &, &, ... are O(s) and where the numbers Ay, Aijiy 5 ... aTe
partial derivatives of f; at (&,,..., &,) and so are independent of & Also
0(f1y -y Ja)
detly = = (&y,..., &) # 0.
j 0(961,---,%)( 17003 €n)

It follows from the well known process for the inversion of power series
(e.g. by iteration) that the equations

‘Pj(51+"71:---a§n-f-’l7n)=0 for jzl,...,%

have a solution with #,...,n, = O(¢). Hence the result.

Remark. The above proof fails if K has characteristic s 0. How-
ever, Mr. Swinnerton -Dyer tells me that the lemma is still valid and can
be proved by using Weil’s theory of intersections.

Proof of Theorem 1. The theorem clearly holds for N << 3. Assume
that N = 3,

k
(17) Duti=19, QW =a, (N,a,...,q4) =1
i=1

Let D be an integer whose existence is ensured by Lemma 1 for
h = k—1. Among the numbers a,; let there be exactly n that are distinet
mod N; = N/(N, D). By a suitable permutation of the terms in (17)
we can achieve that a,, a5, ..., a, are all distinet mod Ny, 0 = 8 < §;
<. < 8=k and

(18) =, mod Ny, i s, <is, (Lxy<n).
Let us choose numbers y,, such that
(19)  po=a, mod Ny, (3, N) = (a, N)) (1< <n).

It follows from elementary congruence considerations that such choice
is possible.
We write equation (17) in the form

n
(20) DR, =8,

Ve 1
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where

8, = Z ald ™™ (L <y <.
i=8,.1+1

By (18) and (19)
8,¢Q(fp) (1 <»<n).

By (2) (¥,jD—D-1) =1 thus -2+ is for each positive j <F

a conjugate of {y. Clearly
pmrPP = g (s, < i <)

Substituting &P+ for {y in (20) we get

Dy — g a<j<m),

where ©; is a suitable conjugate of ¢#. Since @(9) is an Abelian field,

9;€Q ().

In Lemma 2 we take:

n
Fi@y, oy @) = D P PHS,—9;  (1<j<n),

=1

K =Q(p,9), &= @A<r<n).
Hence

a(fl’ "',.fn)
(21) m(fumg &n)

=[[iv-D4n]]s [] @"—&™).

F=1 =1 I<rir'ssn
If §, =0 for some » < n then
3,
=8, 41+1
and the theorem holds with I = {s,_,+1,...,8s,}.
If 8, # 0 for all v < n, then by (21) and the choice of ¥, we have

fl)' 7fﬂ
O(Byyuny )

Therefore, by Lemma 2

(€1y ey E) £ 0

n—1
(22)  [QUN, G, -y I <1QUp, 0 [ | (3D+1) < n! D"a < k! D

=0
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On the other hand by (18) and (19)

(v, '}’v) = (N17 as,,) = (N, Cg, 419 0023 as,,)a
hence
(N y1yeeervn) =Ny a1y 00, 0p) =1
and

QN -y O = p(I).
Tt follows now from (22) and (1) (applied with & = k—1)
(23) (W) < k! (log NYPE-1) g,
N < (20070210g27c)"°" the theorem certainly holds.
i N> (200%2log2k)™ > 10%, it follows from [5], Theorem 15, that

(24) P(N) >10gN

Also, it N > (200k21og2%)**
(25) k! < (log N ).
Tt follows from (23), (24) and (25) that
N(logN)™* < d.
Taking N, = d(2logd-+ 200%2log2k)®® we find that

2logd -+ 200%=log 2% ROkS
) =Y

—20k%
No(log No) = (10gd+207.7210g(210gd+20070210g2k

becaunse 200%2log2k > 20k210g400k210g27c
Since the function N (log ¥)~ is increasing for N > ¢** it follows
that N < N,. The proof is complete.

Proof of Corollary 1. Assume that
k
9= D3
=l
Let I be a set contained in {1,2, ..., k} saturated with respect to the
property that 2‘5;} = 0. We have 0 = Z’{;& and by the choice of I
i i

and Theorem 1

(lv_—Gl\éD——) < d (Zlﬂg d“]— 200k210g270)20(k—”)2,
) 0,
I

where % is the number of elements in I. If x = 0 we have the desired
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conclusion, if x> 0 then x> 2 and

22 #[2

Zc b Y14 (), % even,
j=1 =1

(33

) (#=Dj2 (=32
Zcﬁ+§3+éyl+ D 14+ ) (-1, #o0dd>3
73 j=1 =1
The least common. degree of all k roots of unity oceuring in the above
representation of & does not exceed

Gd(‘zlong,-200k210g2k)2°("'”)2 < d(21logd-+ 200%21og2k)™ "
which completes the proof.

Proof of Corollary 2. The sufficiency of the condition is imme-
diate since

=

—2

B
i = Z e+ L~ oy
=1

i
-

b
where I is arbitrary. On the other hand, if ¢ has infinitely many repre-
sentations as the sum of % roots of unity, then there must be among them
a3 representation

k
0= (Nyay.m) =1
T=1
not satisfying the inequality
N < d(2logd-+200k21og 2Kk)°%.

By Theorem 1 there is a non-empty set I = {1,2,..., k} such that

ZC‘;’; =0 and denoting by x the number of elements in I we have
i€l
k> = > 2. Since

%2 {x—2)/2

Zl—l— E (=1, » eveln,
1 = =1 1
=3z (x=3)p
LHL+ D 14+ Y (—1), xodd>3
j=1 j=1

we can replace one of the k— » terms in the sum 21;;} = ¢ by a sum
i¢I

of x—1 roots of unity, thus obtaining a representation of ¢ as the sum
of k—2 roots of unity.

Proof of Theorem 2. Suppose that

(26)  Vcos - isino = [0+, here (s, m) =1.

hn..@
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N
Put N =5[2M,m;, ey Myl 0 ==y B = _al, y = Naz, 5 = ‘Na3_
2M My My Mg

Then
(27) (¢ B,7,8)=5
Since %(1/5—ﬂ1) =+ o7t = ¥+ 37F (26) can De writen in the form
(28) (PP + 03 + i = e+ T+ O

Now we distinguish two cases according as 3|N and 31 N. In the
first case at least one of the numbers +iN +1 is relatively prime to N.
Hence one of the numbers Zi'¢y is conjugate to {y. Denote it for sim-
plicity by ey and substitute for Zy into (28). Since ¢ =1, we get

©9) (NP (o i+ oT R+ ot = Pl F o e+ ok

By taking complex conjugates of (28) and (29) and substituting after-
wards
'.7/=C§V7 zzﬁ\f: t=c’N§

A = JVBHD) Lo +3 (VB —1)Cot, B = 3(V6—1)u+3(/5+1) it
3(V/B41) 0" Lopr+ 3 (V5 —1) 0™ L,
D = $(V/3-1) 0" Lo+ (VB 1) 0" Ly

we get the following system of equations

I

(30) c

(31) A =y+z+t,

(32) B =y a7

(33) 0 = y+ s+t

(34) D =Py ot 4070

If =y =6 (mod 3) it follows from (31) and (33) that ¢ = ofA
Hence by (30)

(35) $(VB+1) (0" — &) Camr+3(VB—1) (0™ — &") izt = 0.

The coefficients of £,y and {37 do not both vanish, since that would give
a=f=0(mod3) and a=p =y =0 == 0 (mod3) contrary to (27).
Thus they have different absolute values, and (35) is impossible.

Consider now the case when exactly two among the numbers £, v, §
are congruent mod 3, e.g. f =y =t 6 (mod3). HEliminating ¥, 2, and 1
from the equations (31) to (34) we get

(36) (0—0"4)(D—o™"B) = |’ —¢'|* = 3.
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Substituting the values for A,B,0,D from (30) we obtain
61 (e'— ) e — " Eu+3 (BB — P HHBE—V Bl — & 3+
Fe =) e —e ") iw = 0.

It f = +a(mod3), we get }(3FV5)e¥"—¢>—3 =0, which is
mpossible. Hence § == +a(mod 3) and (37) takes the form

(38) 3Ly +6+30w =0, if  f =0 (mod3);
(39) —80%Cy+6—307%% =0, i pf=055a(mod3).

It follows from (38) that {p = —1, M =2 and from (39) =1,
M =3.

Consider next the case when f,y, 6 are all different mod 3. We can
assume without lost of generality that g = 0 (mod 3), y =1 (mod 3),
& = 2 (mod 3).

Tf o« =0 (mod3), then ¢ = 4 and it follows from (31) and (33)
that

A—y =zt+t = o2+ 0%,
hence t = pz and
(40) A=y—g?2, B=yl—pL
Since y and z are roots of unity, |y — ¢?#| < 2. On the other hand by (30)
|4] = V5 eos(r/M)+isin(x/H)| = V5— 4sin®(r]H).

It follows that

B—dsini(x/M) <4, [sin(x/M)| >},
and 6 > M > 1. Further, by (40)

. A VBoos(n/M)+isin(x/M)
T T B T VS cos (n /M) — isin(m /)

It can easily be verified that for 2 = 3, 4 or 6 the quotient on the right
hand side is not an algebraic integer, hence the only possible values for
M here are M = 2 or 5.

If a=£0(mod 3), then eliminating ¥, z and ¢ from (31) to (34) we
get

A—(% = 3yzt(AB~¥OD) and (AB—(CD)—3(A3—(?)(B3—D?) = 0.
The substitution of the values for A, B, 0, D from (30) gives

— 807 +30°La—3+ 307" laf — 30" CH = 0.
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Hence
(e — (@ L) (&l — (" L)+ =0, "y = L0y

where (s, 10) =1 and {pr = ¢7"{j;. This gives M = 30.
Tt remains to consider the case when 34 ¥. In this case (¥ is a conju-
gate of {y and substituting it for {y in the equation (28) we get

(41) (G V) (O - ER) 08 = e
Now,
BBtV = 1(—V5—1).

By taking the complex conjugate of (41) and substituting afterwards
(42) B = }(—Vb+1)0u+ 35— 1),
F o= $(—VB8—1)8u+ $(—VE+1) 1%

we get the following system of equations

A =y+2+1,

B =y e 7

B = y348413,

F=y3te4070
Eliminating v, 2 and { we obtain

A~ E=3yst(AB—1) and (AB—1)—3(A'—BE)(B*—F)=0.

The substitution of the values for 4, B, B, F from (30) and (42) gives

— By~ L — G — 3 = 0.
Hence
et St S+l = (Car+1) (S +1) = 0,
ly=—1 or &y =—1, and M =2 or M =10.

!This completes the proof that the only values M for which #,,
= Vﬁcos(vr/]l[) 4sin(w/M) can be a sum of three roots of unity are 2,
3, 5, 10, or 30. On the other hand, it is easy to verify that
e =14Co-+lyy My =Lt G b M =G+
N = Caot+Lot 85’y Mao = 0n+C3 + Ls-
Proof of Corollary 4. Since 1--2icos(m/M) = 1+i(Zar+Lip),

any number equivalent to 1--2icog(n/M) is a sum of three roots of unity.
It follows by Theorem 2 that the numbers & = 1--2¢cos(n/M) and

M =l/5005(n/M)+isin(7c/M) can be equivalent only for M = 2, 8§,
5, 10, or 30,
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If the numbers £ and 7; or & and 7; were equivalent then since
gy =1+iand s =1+, 7 0T & would be a sum of two roots of unity.
However if & 7= 0 is such a sum and 9 is its complex conjugate, then
9/8 is a root of unity. Since neither of the numbers nsfms and & /& is
an algebraic integer, the proof is complete.

Added in proof. 1. H. B. Mann has proved in Mathematika 12 (1965),
pp. 107-117, that under the assumptions of Corollary 3, N divides the produet of
all primes < k- 1. This leads to a much better estimation of N than that stated
in the corollary. Mann’s method could also be used to golve both Robinsons’s
problems considered in this paper.

9. In connection with Lemma 1 the question arises how much inequality (1)
can be improved. Y. Wang has proved by Brun’s method in a manuscript kindly
placed at my disposal that for N > No(k) one can replace (log N)®" by o(h) x
x (log N)#+3, According to H. Halberstam (written communication), there is a possi-
bility of reducing the exponent 4h+3 to 2h+1 by Selberg’s method.
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A refinement of a theorem of Schur on primes
in arithmetic progressions

by

J. Worcik (Warszawa)

1. Schur ([1]) has given a purely algebraic proof of the following
special case of Dirichlet’s theorem on arithmetic progression.

Let 1* =1 mod m. If the arithmetic progression mz--1 econtains
a prime > 3¢(m), then it contains infinitely many primes.

In this paper by a refinement of Schur’s method we prove

THEOREM. Let 12 =1mod m. If the arithmetic progression mz-+1
contains a prime, then it contains infinitely many primes.

Let @ be the rational field, &, a primitive mth root of unity,

ho) — z4+o it 2155 m-+2 mod 2m,

2 if 2l=m+42 mod2m,
K = Q(’Z(Enb))-

Let r be the degree of K, N denote the norm from K to Q.

LEMMA 1. Let a be any integral generating element of K, ay, ..., ar
(o =a) all ils conjugates,

Gz, y) = n (r—a;y), d the discriminant of Q.
i=1

If q is o prime, w,y rational integers, q|G(z,y), ¢t mdy, then q is

of the form me-+1 or me+-1.

Proof. a = g(h((,)), where y is a polynomial with rational cooffi-
cients and since o is a generating element of XK

(1) x((ED) = x(R (D)),
where

(@) (81, m) = (85, m) = 1
implies

8) h(Zad) = h(E3).
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