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P. A. B. PLEABANTS (Cambridge)

1. Introduction. Let

1) ¢ @1, -y Ba) = $(®) = C(x)+Q(x)+ L(®)+N

be a cubic polynomial with integral coefficients, where C(x) denotes
the cubic part of ¢,Q(x) the quadratic part, and so on. An obvious
necessary condition for ¢(x) to represent infinitely many primes is that
for any given integer m > 1 there is some integer point x for which ¢ ()
is not divisible by m. The object of the present paper is to prove that
in certain circumstances of reasonable generality, this necessary condi-
tion is also sufficient. .

. The investigation is based on the Hardy-Littlewood method, as
modified by Davenport in his treatment of homogeneous cubi¢ equa-
tions ([1] and [2]). Let # be any parallelepiped of suitable shape (that
is, with bounding hyperplanes parallel to certain particular hyperplanes)
in » dimensional space, such that O(x) is positive in and on the boundary
of #. Let P be a large positive number. Then the number of integer points
a in the expanded parallelepiped P#2 is asymptotic to VP", where V
is the volume of £, and the values of ¢(x) at these points lie between
fixed positive multiples of P*. Let .# (P) denote the number of these in-
teger points for which the value of ¢(x) is a prime. It is reagonable to
expect that .#(P) should be approximately proportional to V.P"/logP*
for large P, subject to the above necessary condition.

In the présent paper we ghall prove, subject to a further condition,
that

vp"

(2) "”(P)N_lz)—g?"

S as

P — o0,

where © is a positive constant (the ‘singular series’ for the problem)
depending only on ¢(x). Following Davenport and Lewis [4] we define
the invariant » = h(C) to be the least positive integer for which O(x)
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is representable identically as

(3) L1Q1'|” s +LILQ7H

where Ly, ..., I and Q,, ..., @ are linear and quadratic forms respecti-
vely, with integral coefficients (or, equivalently, with rational coefficients).
Another form of the definition is to say that n-—h is the greatest dimen-
sion of any linear space contained in the hypersurface C () = 0. Plainly
1 <h <n We ghall state our principal result in terms of an invariant
h* which is closely related to » and which arises naturally from the
analysis in the present ingtance.

DEFINITION. We define h* == h*(0) to be the yreatest integer with
the property that there ewists o linear substitution a = Ty, where T is a non-
singular integral nxXn matrie, such that

(4) O) = Cy(y)-+ ... +Culy)
and
(8) h(0y) = ¥,

==l

where Cy, ..., Oy are cubic forms in disjoint sels of variables.

It is clear from this definition that A* is a rational invariant of ¢
and that » < %* < n. We can now state our main result ag follows.

TemormM. If b* > 8, and if, for any positive integer m > 1, there s
some @ such that ¢ (@) % 0 (mod m), then the asymptotio formula (2) holds.

The condition %* > 8 enables us to estimate a cubic exponential
sum, on the same general lines a¢ in Davenport and Lewis [4]. Bubt as
we have also to deal with an exponential sum extended over primes,
we need the estimate for the cubic exponential sum in a form which is
applicable beyond the range considered by Davenport or by Davenport
and Lewis. This entails a repetition of much of their work in a more
precise form. There are also some complications connectod with the
‘splitting’ of cubic forms, and it is for this reason that we have to restrict
ourselves to parallelepipeds & of a particular shape. On the other hand,
the treatment of the singular series and the singular integreal for the
present problem is much gimpler than the corresponding troatment for
a purely cubic equation. ‘

2. Bilinear equations. It iy convenient in the pregent work to
write a cubic form C(x) as

(6) O(x) = 2 Oy 0 0y W
' Isiqi<hen
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§0 a8 to avoid the numerical coefficients 3 and 6 which occur when the
summations run independently from 1 to n. With C(a) we associate the
bilinear forms

n L3
(7) Bi@ly) = Y Yomaye  (1<j<n),
t=1 k=1
where i, is a symmetrical function of the three suffizes and is given,
for i <j <%k by
60,;1]6 if 4§ == ] = k,
(8) Cie = 120, H i=j<kori<j=k,
Cijre if <k
Throughout this section the cubic form () is supposed to be fixed,
and h = h(0) denotes the invariant defined in §1.

LeMuma 1. Suppose that n—h <r <n and that R s large. Then
the number of imteger points a with || < R for which the bilinear equations
9 Bi(xly) =0 (i<j<mn)
have ewactly r linearly independent solutions in y is < R™ "'

Proof. This is a slight generalization of Lemma 3 of [2], which is
itgelf the case h = n of the present lemma. (If h = n then C(x) does not
represent 0, and this was the hypothesis of the lemma just mentioned.)
The generalization in question has already occurred as Lemma 2 of [4],
but we outline the proof for the sake of completeness.

‘We define ¥ as in the proof of Lemma 3 of [2], and we agsume that X
contains more than AR™ ™" points x, and reach a contradiction if 4
is sufficiently large. The proof proceeds as in the lemma cited, except
that the rank of the matrix of partial derivatives is now at most
h—n-r—1 instead of being at most »—1. At the conclusion of the proof
we have h—n-r—1 homogeneous linear equations in the » unknowns
K, ..., K,. Their solutions provide a linear space of points ¥ of dimen-
gion at least n—h-1, and C(¥Y) = 0 identically on this linear space.
This contradicts the definition of h, since n—h is the greatest dimension
of any linear space contained in the cubie cone C(x) = 0. This proves
the lemma.

" DEFINITION. A cubic form O(w) is said to split if there ewists a linear
substitution @ = Ty, where T is a non-singulor integral n X n matriz, such
that ‘

(10) - O(x) = O:(y)+ 0= (y)

identically, where O, C, are cubic forms, neither vanishing identically, in
two disjoint sets of my and m, variables respectively. (n,+ny = n.)
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Liemma 2. If C(a) does not split, and R is large, the number of paire
@,y of integer points which satisfy (9) and

(11) t<ijxl<R, O0<ly <k

is < Bt (logR)*, where ¢ s o positive constant.

Proof. We follow the arguments of Lemma 6 of [2]. We suppose
that there are more than R’"“"’“”*l(loglﬂ)c pairs of pointy a, y, and reach
a ,contradiction if ¢ is sufficiently large.

Forl < r < n, let %, denote the set of integer points with 0 < |a| << B
for which the equations (9) have exactly » linearly independent solu-
tions in y. Then there is some 7 for which there are more than
n~ R2"=""Y(log R)° pairs @, y, satisfying (9) and (11) and with x in %,.

Let N(x) denote the number of these pairy for a particular = in %,
Then

(12) ZN("E) > n-1R2n--h--n'”1(logR)c'

Further, by Lemma 1 above, if # > n-h,

(13) i< g
a

and this estimate remains trivially valid if » € n—h. We divide the
points @ in %, into subsets, placing in the sth subset (s ==0,1,...)
those for which

GRS N(x) < ¢, R'27Y,

where ¢; is a constant so chosen (as it can be) that N (x) < ¢, R” for all @
in %,. Since the parameter s takes < log R values, there must exist some
subset which contributes an amount > R~ *~""'(log B)°~" to the sum (12).
If ¢ is defined by 2° = R?, the number of points a in the subset iz
(14) > Rm—h-—n‘l—(r—e) (IOgR)o——l’
and to each of these points x there correspond > R™ points y. By (13)
we must have 0 < o < n™L

For each point @ in this subset we choose a ‘minimal bagis y™», ..., y*
for the solutions of the bilinear equations, in accordance with Lemma 5
of [2]. As in the proof of Lemma 6 of [2] we have

' ly®| ... [y < B
Here [y = U; is a positive integer, and to a given value of U
there correspond < U7~ possibilities for the point y*). Hence the number
of possibilities, independent of x, for the minimal basis is

€ 3 UL O = B ST (),
Uy Uy Rl Ukt

Representation of primes by cubic polynomials 27

where d.(U) denotes the number of ways of expressing U as a product
of » positive integers. By a well known estimate,

D, &(U) < M(log MY,
UM

so the number of possibilities for the minimal basis is
< R™(logR)" .

Since the number of points x satisfies (14), there must be some
minimal bagis which occurs for a set of points 2 numbering

> R Lep—(n—1) (lOgR)C_T.

All points ® which give rise to this basis constitute a lattice, and pro-
vided ¢ > r the last inequality shows that the dimension of this lattice
must be at least 2n—h—r, since o < 1/n.

Hence there exist 2n—h—r points x® and r points ¥ such that

B; (x| y((I)) = 0

for each choice of p and ¢. Bach set of points is linearly independent.

The two linear spaces, of dimensions 2n—h—r and », generated by
these sets of points intersect in a linear space of dimension at least
(2 —h—r)+r—n = n—h. If they intersected in a space of higher di-
mension than this we should have a contradiction to the definition of
h, since all points # of the intersection are representable as linear com-
binations both of the points % and of the points y@, and therefore
satisty C(z) = 0.

Hence there exist n—r of the points a® which together with the r
points y@ form a linearly independent set of » points. The substitution

® =+ ... +o,ygP4 ...
from @, ..., @y 6O Uy, .oy Upeyy Vyy ..oy Oy EiVES
O(x) = Oy (tyy «evy Uny)+ 0y (D1y ooy )

identically, as in the proof of Lemma 6 of [2]. This contradicts the hypo-
thesis that O(x) does not split, and the proof is complete.

3. The cubic exponential sum: estimation in terms of 8*(a, B).
We return to the consideration of & cubic polynomial ¢ () of the type (1),
where O(x) has invariant h* = b*(0). :

LeMwA 3. There ewists a mon-singular rational Linear substitution
x = Uz with the following properties:

(i) integer points & correspond to integer poinis # whose coordinates
satisfy certain homogeneous linear congruences to a fiwed modulus d;
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(ii) we have
{15) d(®) = p(&)+ ... +ys(2)

identically, where w;(2) is a cubic polynomial with rational coefficients
and @y;(2) has integral coefficients;

(iii) the cubic part Oy(2) of wi(2) 4s a form in ng wariables, whoere
Ny oo g <N, and the sets of variables are disjoint;

(iv) each form Oy(z), considered as a form in my variables, does not
split;

(v) we have

(16) h(O1) ... +h(0p) = h*.

Proof. We can guppose that none of the cubic forms Oy(y) (4 ==
1,...,8) in the expression (4) splits. For if, say, O,(y) splits a further
non-gingular integral linear substitution gives an expression for O(wm)
in the form

O(x) = 01(2)+ 07 () + 0a(R) + .. +Cu(?).

It is clear that h(0;)4-h(07) = h(C,) (1), since representations of ¢ and.
0y as YL,Q, lead to a similar representation of (), and hence, by the
definition of A* h(CH)-Fh(0y) = h(C)). Thus h(OD)~+ ... -h(Ca) == X
Repeating this process at most » times we obtain an integral non-gingular
substitution ® = Ty which gives an expression for O(x) of the type (4)
such that () is satistied and none of the forms O;(y) splits for ¢ = 1, ..., .
In the substitution @ = Ty, integer points y give rise to integer
points @, but not necessarily conversely. If d = |detT'|, then the points
y which correspond to integer points @ consist of all points y == d~'#,
where 2 is an integer point whose coordinates satisfy certain homogeneous
linear congruences to the modulus d. Taking U = d~'T, we have
x = Uz, and on replacing 0;(d™"2) by 0y(#) in our notation, we obtain
all the results stated. '
We congider now cubic exponential sums of the form

17 S(a; ¢, &) = D olad(@)),

wePH
where ¢(x) is a cubie polynomial, # is a region of @ space, a 18 a real
number, and P is a large positive number, The general prineiples by which
conditional estimates can be found for such a sam when £ is a box (that
i8, a cartesian product of intervals) were developed in [1], [21, and. [4],

() The simple example O] = g3, 0} = g3, where (0] = (QY) = B(O,) == 1,
shows that there need not be equality here.
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and we now apply these principles with certain modifications to obtain
gimilar estimates when % is a parallelepiped of a certain shape.

It is convenient in the present work to write the cubic part C(x)
of a cubic polynomial ¢(x) as in (6). Associated with this cubic part are
the bilinear forms (7).

LeMMA 4. For a fized box & and & fized cubic polynomial ¢ we have

(18) 18(a; ¢, @) < P" 3 3 [ [min(P, |aB;(e|y)™)
) x y f=1

where the sum is over integer points X,y satisfying || < P, |y| < P.

Proof. This is essentially Lemma 3.1 of [1], with minor modifica-
tions. First, we have a cubic polynomial ¢ in place of a cubic form, as
is legitimate in accordance with the observation made in connection
with that lemma. Secondly we have aB; instead of B; because Lemma 3.1
of [1] was stated for a real cubic form. Thirdly the numerical factor 6
preceding B; is omitted because of our different notation for O(x) and
B;(x|y) in (6) and (7). H/enee the result.

Now let ¢ () be the cubic polynomial (1) of the theorem and let &
be a parallelepiped in @ space which corresponds under the substitution
x = Uz of Lemma 3 to a box in 2z space. We write

(19) 8(a) = 8(a; ¢, %).
Algo we define 8*(a, B) for any set of bilinear forms as in (7) by
(20) 8*(a, B) = P" 3 3 [ [min(P, aB;(2|y)|™),

® gy F=1

where the sum is over integer points @,y with [@| < P, |y| <P.

In the next lemma we apply the result of Lemma 4 to the decom-
position of ¢ () given in (15) of Lemma 3. If the variables in the cubic
nolynomials ,(2), ..., ys(2) were digjoint, and if 2z were an arbitary
integer point, the sum S(a) would factorize into a product of sums
8(a; v, #;) in n; variables taken over boxes P%;. In reality the position
is not so gimple, but the ultimate effect is the same.

LeMMA B. We have
(21) I8(a)* < P42 8*(a, By) ... 8*(a, Bs),

where for each 4 the set of bilinear forms B; is the set of n; bilinear forms
corresponding to the cubic form C;(de) of Lemma 3 in n; variables, and
@,y in (20) run through integer poinis in n; dimensional space.

Proof. Let 2, be any one of the finite set of representative solutions
of the homogeneous linear congruences (modd) satistied by # in Lemma 3.
Then we can put # = du--2,, where u is an arbitary integer point.
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Substituting in (15) and (17), with #-in place of #, we obtain for
S(a) an expression as a finite number (corresponding to the various
choices of z,) of exponential sums of the form

(22) . e (alps(@utzo)+ ... + paldu+-2y))-

If 4 is the box in z space which corresponds to the parallelepiped # in &
space, the summation is extended over all integer points w in the box
"' (P9 —z,) in u space.

‘We apply to this sum the estimate given by Lemma 4. Hineo the
result depends only on the cubic part of the polynomial, it is independent
of z,. There ig a minor diserepancy in that the box of sammation deponds
(though only by a bounded translation) on #,, but this is plainly of no
importance, since it can be remedied by modifying the constants in the
conditions || < P, |y| < P.

We obtain (18), with bilinear forms B, which are associated with
the cubic part of

) Py (du2e)+ ...+ pa(dutz),
which is
Oy (du) 4 ... - Cg(du).

Since the variables in these cubic forms are disjoint, the bilinear forms
fall into sets of ny,..., Ny, n— Y 'n; bilinear forms, and the variables in
different sets are disjoint. Also the n— Y'n; bilinear forms in the last set
are identically zero. Accordingly, the expression on the right of (18)
factorizes, the typical factor being 8*(a, B;), where there are n; bilinear
forms B;, namely those associated with the cubic form Ci(du). There
is also a factor AP*™ 3" corresponding to the bilinear forms which
are identically zero, where 4 iy a congtant depending on the ranges
of summation of ® and y. This proves the lemma.

4. The estimation of §*(a, B) when & = n. In thiy section and the
next we obtain an estimate for §*(a, B), defined in (20), conditional on
the Diophantine character of «. We shall take the bilinear forms B to
be those associated with a cubic form in # variables which does not
gplit, so that Lemma 2 is available for application. Later we ghall apply
these results to each factor on the right of (21), and at that stage we ghall
have to replace n by n, and h by hy = h(Q).

In the present section we suppose that h == n, and treat the case
h < n in the next section. We follow the lines of argument leading up
to Lemma 13 of [2]. The estimate obtained there involved a parameter
0 satisfying 4, < 0 < §-4, where 4,, 4 are small fixed positive mum-
bers. For the present purpose we need an egtimate that is valid also when
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6 is near 0, and therefore it is necessary to rework the greater part of the
argument. We shall use a parameter U in place of P%; ultimately U will
agsume various values, but the smallest of these will be a large power
of L, where

(23) L = logP.

It will be convenient to reason indirectly, by developing the con-
sequences of the hypothesis that, for a particular a,

(24) 8*(a, B) > P™ U™

LeMMA 6. Subject to (24), the number of pairs &,y of integer points
satisfying

(25) le| <P, |yl <P, |aB(z|y)|<P’
18
(26) > Py ™L™".

Proof. Thig is Lemma 3.2 of [1], with only trivial differences.
LeMMA 7. Suppose that

(27) 1<T<U<PL™
Then, subject to (24), one of the following three alternatives holds:
(I) there are > U"T L™ ' pairs x,y of integer poinis satisfying
(28) 0< @< UL, 0<l|y <UL, Bz|ly) =0;
(IX) there are > U"T~"L*! integer points ® with
(29) 0 < |®| < UL,
to each of which there corresponds an integer point y with
(30) 0<lyl <UL, |aB(x|y)l| <P UL,
(ITI) a has & rational approwimation alq satisfying
(31) (@,9) =1, 1<qg< UL, |ga—a| < PPUL.

Proof. Sinece U < PL™?, the number in (26) is substantially greater
than P™ Hence the result of Lemma 6 remains correct if in (25) we add
the conditions a = 0, y # 0.

Suppose that to each point y of Lemma 6 there correspond N (y)
pointy = 7% 0, so that

N(y) > Pzn U—nIf—“.

0<|yl<P
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This remains true if we restriet y to points for which
' N(y) > e,P" UL,

gince there are < P" possible points y. (Here ¢, is a suitable positive
constant, and similarly for ¢, ete. later.)
For each such y we apply Lemma 8 of [27] with w == 2 and with

Lj(u) = aBy(uly)-
We take A = P and Z = ¢; as in the proof of Lemma 9 of [2], and have
V(Z) = N(y) > e, P" U " L™
‘We can chooge Z, subject to (29) of [2], and this condition takes the form
e PIUL < 7y < 1.

We take Z, = ¢,P~* UL*. Then (30) of [2] gives

Hence, for each y in the set in guestion, there are - (I UL N (y)
points x satisfying

(32) 0< |@| < UL |aB(2|y)) < P2 UL

~ Hence the number N of pairs @, y satisfying (32) and

(83) 0<lyl <P

gatisfies

(34) N> (PTUUIN ) N(y) > PI".
v

Now let N, (a) denote the number of points y which correspond to
a given point 2, so that

(35) D Ny(@) =N > P,
0< (oo € UL2

This remaing true if we limit ourselves to points @ for which
Ny () > e P"I*(ULY™,

We divide these points into subsets, placing in the sth subset (¢ == 0,1,...)
those for which

(36) 28051;1» Uﬂnl-l—-n < Nl(w) 5“{1 20.}-1051)% Uw‘n.Lnn .
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Since N,(x) < P", we have 2° < U"L", so the number of values of s
is < L. Hence there is some s with the property that there are

> PnLn(zsP'n U-—'nL—’rb)—lL—l —_ 2—8 U'nL2n—-1

points @ in the sum (35) for which N,(a) satisfies (36).

For each such a we apply Lemma 8 of [2] with u = y and with
Li(u) = oBj(x|u). We take

7 = 06})—1/2171/21'/’ A = Pa/zU-—llzL—-l’

whereupon (33) and the second inequality of (32) become the inequali-
ties (27) of [2]. Hence, for the present application, we have
(37) V(%) = N,(x) > 2°P"U"L™",
by (36).

Suppose first that 2° > T". The condition on Z, in (29) of [2] becomes

¢, PTUML 9~ P UL < Z, < PTUML,

and is satisfied if we take

7, = ¢, P URLATL,
‘Then
V(%) > (PTrRUPLAT'PRU LYY (Z) > 27T

The inequalities (27) of [2] with Z, in place of Z become
(38) 0 < |yl < ULT™, |aB(z|y)|| <P UL T~
Since the number of points @ is > 27° U L**~*, the number of pairs x, y
satisfying (38) and

0 < |x| < UL
is

> Uann-—lT—n'
If, for all these pairs, we have B(a|y) == 0, then alternative (I) of the
enunciation holds. If not, we obtain (as in the proof of Lemma 9 of [2])
a rational approximation afq to o satisfying

g< PI*T, |ga—a| < PPULT.

This implies alternative (III) of the enunciation. )
Suppose now that 2° < T™ Then there are > T™" UL points ®
for each of which the number of corresponding points y -satisfies (36).

Acta Arithmetica XII. 1 3
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0 < |y| < PN, (%) < UL,
|aB (2 |y)|| < P~ ULAN, ()" < P UL,

This implies alternative (II) of the enunciation, and the proof is complete,
LEmya 8. Suppose that alternative (IL) of Lemma 7 holds and that

alternatives (1) and (ILI) do not hold. Suppose also that

(39) ULt < P'T.

Then there ewist integers my, ..., My, depending on a and P, such that there
are > UM IA integer points x with

(40) 0 < |®| € ULA

1o each of which there corresponds am integer point y satisfying

(41) 0<|yl <UL, Bxly) =m

Proof. Alternative (II) asserts the existence of » U*T™"L™ !
integer points @ satistying (29), to each of which there corresponds an
integer point y satisfying (30). Not all the values of B;(x|y) for all these
pairs are 0, for that would imply alternative (I). Choosing one pair and
one j for which Bj(a|y) # 0 we obtain integers «, q such that

(j=1,...,m).

(42) (@,9) =1, 1<g< UL} |qa—a| <P U
We must have
(43) q¢> ULI'T,

gince otherwise alternative (III) would hold.
We proceed as in the proof of Lemma 10 of [2]. For each ® and ¥y
occurring in alternative (II), we putb
aB;(x|y) = g+,
where t;, 4, are integers and || < $¢. We obtain

4} < gllaB; (e | y)|+ lgo—al By (Y )|
< qp-—!} U2L4_|_P-B U‘ALah U“L‘
< P UL
Thus |u| <€ T by (39).
The integers ;, #; depend on @; but the number of possibilities for

Uy ooy U is < T", and these are independent of . So the number of ®
for - which %,,...,u, have the same values is (for suitable values)
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s T~ I*'. For these x the values of B;(x|y) are determined to
the modulus ¢, and since

|Bj(z|y)| < U*L*, q2= U'L*T™,

the number of possibilities for the values of the B;(%|y) is < T". It follows
that the number of points @ for which B;(x|y) = m; is > U"T~ L
for suitable m,, ..., m,. This proves the result.

LeMMA 9. The alternative (II) of Lemma 7 is superfluous if

(44) T < (ULY"*

for some fized &> 0, and (39) holds.

Proof. The equations B;(x|y) = m; are non-homogeneous linear
equations in y for given ; their determinant H () is not identically zero
by Lemma 1 of [2]. The number of integer points & with |#| < UL* for
which H(x) = 0 is < (UL*)™", and this is small compared with the num-
ber of integer points @ mentioned in Lemma 8, by (44). Hence the asser-
tion of Lemma 8 remains true if we add to (40) the condition H () # 0.

We now argue as in the proof of Lemma 12 of [2]), and appeal to
Lemma 11 of that paper with B = UL?, which is permissible since
My, vy My are < (UL We infer that the number of integer points @
with |®| < UL* for which H(x) = 0 and the equations B;(x|y) = m;
have an integer solution in y is

< Rn—l-l-}s < (ULZ)‘n—H-*‘.

But, by (44), this contradiets the assertion that the number of such
points is > UT~*"IL***. Hence the resuls.

TEMMA 10. There exist positive mumbers ey, 6y, 61, depending only
on n, with the following property. Suppose that

(48) U > L%,

(46) ' T < PULTO.

Then, for any real a, either

(47) 8*(a, B) < P"U"

or there ewists a rational approvimation afq to « satisfying
iga—a| < PP UL

48) (@, =1, 1<g<U*" I,

Proof. We define T by

~1

™o =T" 7,
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where ¢ is the constant of Lemma 2. The condition (27) of Lemma 7 is
satisfied, by (45) and (46), provided ¢, is suitably chosen. Similarly the
conditions (39) of Lemma 8 and (44) of Lemma 9 are satisfied.

If (47) does not hold then one of the three alternatives of Lemma 7
must hold. Alternative (II) is superfluous by Lemma 9. We now show
that alternative (I) is impossible by appealing to Lemma 2 with h = n
and with B = UL If alternative (I) were to hold, we should have

Rn—-n_ch > UNT—%LZn—-l’
that is,
Un—n—len—zn_]—}‘c > U U—-n"lL1+szn~1,
which is false.
There remains only alternative (ILI), which gives the result stated

since
UZLIIT-—l — Uz—n_zL‘iL(l—{-c)/’n'

This completes the proof.

5. The estimation of §*(a, B) when h <n. We have the same
situation as in the preceding section except that now h < n. The proof of
the desired estimate is now much simpler, as we do not need to consgider
alternative (II). But the result is in general weaker.

LemMA 11. With the notation and hypotheses of Lemma 10, either
(49) 8*(a, B) < P U
or there éxwists a rational approximation to a satisfying (48).

Proof. Under the hypothesis 8*(a,B)>P" U™ we have, as the
analogue of Lemma 6, that the number of pairs of integer points satisfying
(25) is > P* U™ L™ We follow now the lines of proof of Lemma 7.
The first step, with the same choice of Z, as before, gives the exigtence
of > P"U™"L" pairs «,y satisfying (32) and (33).

In the second stage of the argument we now get (37) replaced by

V(Z) = Ny(x) > 2°P*U-" L,
Also (36) is replaced by

26 PP UL < Ny (%) < 2o P UL,

but the lower bound for the number of points a is the same as before.
We apply Lemma 8 of [2] with

Zy = o, PP ORI ITY,

WheI"e Ti > 1 is to be chosen later. This satisfies the condition. (29) of [2]
provided B

(50) T, < Tihin,

iom®
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We obtain the existence of
> Uzn—-hLZn-—lTl—n
pairs a, y satisfying

0< || < UL 0<l|yl <e¢ULTTY

51 p
. llaB (@ |y)ll < e.P~* UL T1 .

If B;(x|y) = 0 for each j and for all these pairs, we can appeal to
Lemma 2. Taking R = UI?, this informs us that the number of pairs is

< (ULz)zn—h—n"ch_
This contradicts the above agsertion if T, is chosen by
T,=U0""L™n

with a suitable ¢;;. This amply satisfies (50).

Hence there is some pair ®,y and some j for which B;(x|y) # 0,
and this leads in the usual way from (51) to a rational approximation
alq to a satisfying

(a,¢) =1, 1<Q<UZI’3T1—17
lga—a| < P AU LT

These conditions are somewhat stronger than those asserted in (48),-
so the proof is complete.

6. The estimates for S(a) and 8,,.

LemMA 12. Let ¢ () be a cubic polynomial as in (1). Let 2 be a fived
parallelepiped of a suitable shape in n dimensional space; let P be large,
and let S(a) be defined by (19) and (17). Let U satisfy (45), (46). Then either

(52) 18(a)] <P U™,

where h* = k*(0), or a has o rational approwimation alq satisfying

(33)  (a,q) =1, 1<g< U™ 'L, |ga—a| <P UL

Proof. We use the estimate for |§(a)| given in (21), and apply the
results of Lemma 10 or Lemma 11 to each of the factors §8*(a,B;) on
the right. If a does not have a rational approximation satisfying (53),
then @ fortiori it does not have a rational approximation satisfying the
corresponding inequalities with » replaced by m;, since #n; < n. Hence
by one or other of the lemmas mentioned (according as h; = n; or hy < M)
we have )

|8*(a, By)| < P UM,
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Thus, by (21) and (16),
18(a)* < pr-sZn peIniy -3t g PR

This proves the result.
Lemma 13. Let a, g be integers with (a,q) =1 and ¢ > 0. Let

a
(54) Sor= ) e(— ¢(z)).
#(modyg) g
Then
(55) Sagl < 4"~ ) (logq).

Proof. We appeal to Lemma 12 with « = af¢ and with P to be
chosen later. The second alternative of Lemma 12 is the existence of
integers a', ¢’ such that :

(a/’ q,) =1,
Suppose that
(56)

1<q < "I, |dalg—d| <P UL
PUL®>q.
Then the last inequality implies that
dlg = alg,
and this is excluded by the preceding inequality if
(57)

Uz—n_2L0w \< q.

Thus if (56) and (57) are safisfied, the estimate (52) becomes applicable.
The parallelepiped P# in the definition of 8(a) in (17) and (19) is
given by n conditions of the type

NP < gty s A Gnyn, < P,

where the ay are fixed rational numbers and the 4, u ave fixed. The

number of integer points satisfying these inequalities and lying in & given
residue class (modg) is

A(Plg)"+O((P[p"),
where A i8 a positive constant. Hence
8(alg) = AP ¢ "Su,+ O(P"q).
Combining this with (52) we obtain
[Sadl < " UHL P,

icm®
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Choose P = ¢"**, so that the last term becomes negligible, and choose U
so that

U7 (log Py = g.

Then (56) and (57) are satisfied, and so are (45) and (46), which are needed
for the validity of Lemma 12. We obtain the desired result (55).

7. Minor ares. Let &(U) denote the set of all real a in 0 <a <1
which have a rational approximation afg satistying (53), and let ¢&(U)
denote the complement of this set relative to that interval. We define
the minor arcs m to be %&(U;), where

(58) U, =I®

for a suitable large constant ¢;.
Let fy, f. denote the lower bound and upper bound of ((x) for =
in 2, so that 0 < f; < fa, and leb g1, g2 satisfy

(59) 0<g <fi<fi<gs

Define T(a) by

(60) T(a) = e(ap),
0, P3<p<g, PP

where p runs through primes.
LeMMA 14. If b* > 8 we have

(61) [18()T(— o) da < P"L™%,

where ¢y, 18 large when o3 is large. .

Proof. The set &#(U) increases with U, and if
(62) U4—1F‘2Lc10—5 > Pﬂ
it consists of the whole interval 0 < a < 1. For, by the classical theorem
of Dirichlet on Diophantine approximation, there is always a rational
approximation to o satisfying
‘qa—al < U—z-nr‘-ﬁL-cm’

(a,9) =1, 1<g< Uz""—chm)

and (62) ensures that this implies (53).

1

Denote by &#(U) the complement’ of &(U) relative to €(2U). Then
the whole interval 0 < a <1 can be decomposed into

&y, #(U,), #20y), ..., F(2'Th),
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where s is the least integer such that U = 2°*1 7, satisfies (62). Hence
m is the union of

F(U,), F2U,),..., F(2°U,).
Plainly s < L.
Take U = 2¢U,, where 0 <t < s, and write temporarily # for & (U).
Then for ¢ in & we have
8 (a)| < P UMM

by Lemma 12, since the values of U under consideration satisfy (45),
(46). Also

I#) < 222(1“11’“ 2UPLY,
where the summation is over

1<q< @U)P """, 1<a<y.
Hence )
|5f| < P—S UzLS( Uz-—n"zLalo) .
It follows that

[18(0)T(—a)lda <}>”' U-’*‘/*fw(_a)ma
F

< P" U—n-/a{lgz-l}uz{f [T )| da}l/z
< Pn U—-h‘/d {P-— Ud—- LS MIO}IIZ{PBL-I}M
< pryrhh- 1/2"2L°15
. b
where ¢,; depends only on n. Since 2* > 8, the last expression is
< Pn U— 1/27‘2_[,"15.

Since there are < L sets #, and this estimate applies to each of them,
and the least value of U is U, which satisfies (58), we deduce (61).
It may be observed that Lemma 14 makes no use of the fact that p

in (60) runs through primes, except in so far as it uses an estimate for the
number of primes in the range of summation.

8. Major arcs. We denote by IM,, the interval for « defined by

(63)

a— i’ < Prk,
q

yvhere k is a positive constant, and we denote by O the union of these
intervals for

(64) 0<a<yq, (s,9=1, 1<q<gI¥
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The intervals (63) are then plainly disjoint. If we choose k so that
(65) k> (2—n"ey o, k> 20,45,

then 9% contains &(U,), where U, is given by (58).
LeMMA 15. If o is in Mg, then,

(66) 8(a) = ¢ " Saql(B)+ O(P" L),
where
(67) 18) = [e(B(g8)ds
Pz
and
a
B =a— —(E

Proof. We have, writing @ = qy-+%,
a .
sw= Y o[Lew) Xelestau+),
#(moda) v
where the summation is over the parallelepiped
(PgHP—q %
‘We can regard this parallelepiped as a union of
V(Pg )"+ 0((Pg)" )
cubes of side 1, together with a boundary zone which contains O((Pq
integer points and also has volume O((Pg~')"""). Bach cube corresponds
to a single term of the sum, and we can replace this term by
[ e(6g (qa+ ) dn+0(1B1¢* (Pg™"Y),

where the integral is taken over the cube. Putting together the integrals,
and - allowing for the boundary zone, we obtain

8(a) = ¢~"Saol(B)+O(g"|1¢ (Pg™")"+*)+O(¢" (Pg™)" ")

Since |f| < P°L* and ¢ < LF, we obtain (66).
LeMMA 16, If o 48 in My, we have

—1 'n—l)

(68) T(a) "—‘(—)‘11 ﬂ)'l'O(PanP(—@mLm)),
where
ﬂzPs
e(px)
(69) 1,(8) = ” i oga
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Proof. See K. Prachar, Primeahlverteilung (Springer, 1957), VI,
Satz 3.3. In the result given there the definite integral is replaced by
the corresponding sum, but it is easily seen that the difference between
the sum and the integral is O(L*-%).

LemMuMa 17. If h* > 8 we have
(10) [ 8(a)T(—a)da
mn
={&+orm [
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I(B)Ly(— B)dp+ O (P"exp(—~ 0101}1/2))’

1Bl <P 3Lk
where
o q
(71) S = J—‘—(-q-)‘ -
g aé‘; plg ¢
(a,2)=1

and ¢ig 18 any number satisfying 0 < oy < Cy6-
Proof. For a-in 9M,, we multiply together the approximations to
8(a) and T(—a) given in Lemmas 15 and 16. The main term is

#0)
10)]

and on summing over a and then. 9, we obtain the desired main term,
except that instead of G+ 0(L 1) we get

q
3 3,
quk (a‘,qu=1 1

9 BagL(B) I (—B),

Since |g7"8, ] < g™’ for some fixed positive 4, by Lemma 13 with
the fact that h* > 8, the above finite sum differs from the infinite sum &
by an amount O(L~v), for a suitable positive constant oy,.

The products of the various other terms in the approximations give
an amount -

< q"""P”“exp( _ C‘mLWH-99(q)_lP”“Lz"”‘—[—P"‘”L””exp( _ 014]5”2),

on using the frivial estimates |I(8)| < P |1,(8)] < PPL~*, TIntegrating

this over [8] <P~*I* and then summing ov i
. er @ ) L
obtain the error term stated. ¢ )1 $EDlect o (64) we

9. The singular series.

Levma 18. Suppose that for every 4 )
' Yy integer m > 1 th it
powt T such that ¢(x) £ 0 (mod m). Theg e T somo teger

(72) &>0.
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Proof. Tt follows from well known arguments that

P!
2 47" Saq

a=1
(a,@)=1

is a multiplicative function of g. Hence, by (71),

&= ”(1-— ;_1 crr"‘mg Sﬁ)
5 a=1

where @& runs through the primes. For large & the factor is

14+ 0@,

by the inequality used in the proof of Lemma 17. Hence to prove that
& > 0 it suffices to prove that

&—1

D 6B < @1
a=1 .
for each prime @.
Since
n @
=™ 3 e[S 0@),

#(mod &)

the inequality holds unless ¢(z) =0 (mod @) for all 2, and this was ex-
cluded in the hypothesis.

10. Proof of the theorem. We defined .#(P) to be the number of
integer points @ in P# for which ¢(x) is a prime. By the? definitions of
f1)f2s 01y 2 i § 7 We have g, P* < ¢(x) < g.P* for all  in PZ. Hence,
by (19), (17) and (60),

' 1

#(P) = [B(a)T(—a)da.

[

(73)

We dissect this integral into one over O and one over EM.
We have already observed in § 8 that if % satisfies (65) then 9N con-
tains &(U,), from which it follows that

EM < €6(U,) =m.
Hence, by Léemma 14,

[ 18(0)T(—0)|da < P"L™,
o B
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where ¢,, can be taken large by taking & large. It now follows from Lemma
17 that

(74) M (P) = {©4 0 (L™ M}J (P)+ O (P I7M),
where
(75) J(P) = LB I (—B)dp.

|8l <P—8Lk
By the definition of I(8) in (67),
I(g) = P" yf o (B (PE)) dg
=P 9] ¢(BP* 0 (8))dg -+ O (P"|B|P)
' =p* yf e(BP*C(&))dg+ O (P" L.
By the definition of I,(8) in (69),

92
s [ e(BP i) )
; logP»

L(p) =P

3L+logex
P/
=Efe(ﬁPBw)dm+O(P3L~2min(1, IBP[7Y),
0

the second estimate in the minimum coming from the mean value theorem.

We multiply together these a; imati i
pproximations and s o 1
n (75). The main term is ribstitute ther

Pt Oy

3z mf—w{gf e(ﬁpao(é’)"f}{,,f (= BP0)dol ap = LTy (Ih),
where 1
; I
o ) Silh) = i{Je(VC(é‘))dé} {V{Ze(mym) dw} dy.

The error terms are majorized by

,Pnﬂl.LkPSI/_l f dﬂ _|_P3L—-2Pn f
181<P~3Lk 8| < B~ 3Lk

<PLFPLTPT LA PP L Pilog I < PML M log L.

nin (1, |APY~1)dp

bm@
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Hence
Pn’ 13 n T —2
(77) J(P) = EJl(L )+ O(P"L™*log L).
By (76),
gy | 9,-C(§)
§in2xA(0(§)—w 2
s = [ae [ —;Ic—fg(——i))-dm ~ [as [ B4
2 ' z 0n-C(§) T

The limit of the inner integral is 1 as A — co, and this limit is uniform
in ¢, since

¢:.—C(8) < g1—f1 <0,
g—C(§) = ge—Fo>0
Hence ’
(18) limJ, (1) = [dg =V
A->00 rd

Tt follows from (74), (77), (78) that

vp*

M(P) ~ Y7 S as

P — oo,

and & > 0 by Lemma 18. This proves the Theorem.

I am grateful to Prof. H. Davenport for suggesting the problem
discussed in this paper and for his help and suggested improvements
in the preparation of the work for the publication.
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