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Accumulation theorems for residue-classes representing
quadratic residues mod %

by

Reguw par la Rédaction le 19. 1. 1960

S. KNAPOWSKI (Poznan) and P. TurRAN (Budapest)

1. In this paper we return to the “modified Abelian means”, intro-
duced in paper [2] and further studied throughout [3] and [4]. Our present
aim ig to compare, in the sense of this means, the number of primes belong-
ing to progressions = I, (mod k) resp. = I, (mod %),» where both I, and
1, are quadratic residues mod %. As before, we have to assume the Hasel-
grove-condition: there is an B = H(k) > 0 such that none of the L(s, x)-
functions mod % vanishes in

(1.1) o=t [<BE), s=o+it

In addition to (1.1), we have to agsume what we call “a finite Riemann-
Piltz hypothesis”: with a suitable n satisfying (1)

(1.2) 0 < 7 < min (01, (%’”)2)
T
none of the IL(s, y)-functions mod% wvanishes in
(1.3) o>t w2
) Vi
There is no logs of generality in supposing
(1.4) Bk) <&
this and (1.2) give automatically
(1.5) n< k%,

With these provisions we can state the following:

(1) o, and later o,,... stand for positive numerical constants..
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ToEoREM 1. If 1y, L, satisfying (L, k) = (Lyy k) == L, 1y =t Iy (mod k),
are both guadratic residucs mod k, and (1.1), (1.2), (1.3), (1.4) hold, then
for every (%)

(1.6) T > 6,(n™)

there are 1, ©y and v,, v, With
(.7 =Y <y, @y < Tloglly

(1.8) 2qlogT < vy, v, < 29logT'--loglog1'
such that '
WY W Liog? 2. Loay
logp-e W logp-e " P e
p=ly(mod k) pealy(mod k)
and
L gt 2 - Lot 2 L oy
logp-e ™ T logp-e ™ g
prly(modk) pmly(mod k)

Again, following the pattern of our paper [2], we can. derive from
Theorem 1 a direct comparigson of the distribution of primer == 1, (mod k)
resp. = I, (mod k) in relatively short intervals.

This is given by

TaeOREM 2. Under the conditions of Theorem 1 there are numbers
U,, U,, Uy, U, satisfying .

([11—4!’3 U, <U,< .’I’H"W"-’,

i-avi U, < U, < LV

such that
1o
P 2]
- ) 1>1F
p=lp(mod k) p=ly{mod &
U1<p<Uy Uy p<Uy )
and
i
== 3Vh
1 1< " .
pialy(mod k) Praly(mod k
U3, Ty

We wish to emphasize once more that we have not been able fo
prove a similar result in case where ewaolly one of the I’s is a quadratic
residue and none of 1,1, is = 1 (mod k).

The simplest case in which our present methods fail is that of k = B,
=2 (or 8), I = 4.

(*) ey (v) stands. for exp{expr}.
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2. Proof of Theorem 1 will be based on a number of lemmas. The
first of them is a combination of Lemmas 1 and 6 of our paper [4].

Lemma 1. Under the conditions of Theorem 1 there ewists a prime
P, =1, (mod k), satisfying
(2.1) s (B)" < Py < 030 (R)P,
such that
1 - - ¢ Do)
2.2 ~-——~R62 (1) —7(l ¢
0D e ) W 0 D)

e(x)

> ¢, Pylog® Py,

where
(2.8) & = 2P3log’P,, 7, = P;*log P,

and 3 means that the summation is to be emtended over the o's with
o(x)
[Imo| < 6;%° (3).
Before formulating Lemma 2, we wish to explain our notation.
We congider n complex numbers z,,2,,...,2, with
1=la| 2ol =... > ol
and such that
(2.4) %< largyl <m (j=1,2,...,n)

is true with a certain 0 < x» < n/2; m being a non-negative integer, we
suppose that for an h

9.5 4n
(2.5) 28] > R R
Further, we fix an h, with
2n
12.6) l2n, ] < l2al — PRy

and, given numbers bi, Dyy oeey by, define

w

2.7 B = min Re » b;;
(2.7 h<wehy 1‘=Z1‘ (R

(®) o5 can be thoughti of as being as large as we please, however, fixed; clearly,
making ¢, in (1.2) sufficiently small (in dependence of cs), we conclude from (1.2?-
(1.3)-(1.4) that |[Imp| < ¢sk° implies Reg = }. ¢s5° will be properly chosen in
section 7.
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if there is no h, satisfying (2.6), we pub
w

2
2.8 B = min Re ) b;.
(2.8) s % i
We assert (proof to be found in [1]):
LeMMA 2. If B > 0, there ewist imteger vy, v, with
(2.9) M1 € vyy vy K MAN(3 47 [%)
such that
w
B " 2 |zh\ )m‘{uny(a—}.n/u)
i AN
(2:10) RQZ’% Z o1 {24(m-|—n<3+n/x))} ( )

f=1

and

z B " M [ g \ oA
2 — ——
@11) R"Z’W< 2n+1 {24(m—|-n(3—|—'rr/u))} (2) :

=1

* Next we have (proof to be found in [2]):
LEMMA 3. If 0y, ooy By Ba-.. are real numbers with
la,| 2 U (>0},
further, if with a y >1

then every real interval of length > 1/U contains & &-walue such that

1 1

o e+ 8l > 5o e

for every v; here, as usually, ||»| stands for the distance of  from the nearest
integer.

We shall need two more lemmag.
LeMmA 4. There exists a broken line W in the vertical strip < o <t

consisting of horizontal and vertical segments alternately, each horizontal

strip of width 1 containing at most one horizontal segment, such thai the
inequality '

L/
'—L* (85 %) l << o (k) log* k(2 - [1)

holds along W for every L-function mod k.

. This lemma can be proved following mutatis mutandis the Appen-
dix IIT of [6]. The last lemma, which we need, is a simple consequence
of a theorem of Siegel [5].
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LeMMA B. Any L-function, modulo any k > 1 has at least one zero in
i< o<l, r<t<rte
where real v 48 arbitrary and ¢; numerical.

3. We pass over to the proof of Theorem 1. Let A;, 4y, ..., 4, Tesp.
Uy Hay -~y My denote the solutions of #? =1, (mod %) resp. &* = I, (mod k).
‘We consider the funection

1

1 - L' 2 - - L
fla) = ,m.[;’(xtmmx(za)) T 0= X X0~k 8, )

Je=1
Setting
—1 if % =1, (mod k),
+1  if » =1, (mod k),
0  otherwise,

(g by by) =

we can write (p standiné for primes)

-1 1o : logp
.f(s>~=% ff ulpy oy W) D) i el oy L)+

. n

14
Hi0= 38 Natp, w2+
»

=1

1
zz %L (p, Iy L) 1s8),
= V4

where f,(8), fa(8), fs(s) are regular and bounded in o> . In particular,

lo . 2
(3.1) ‘f(s)-z L )l <on #0375

»
1 1 . .
4. Let us apply Lemma 3 for a, = - t, and a, = . foy By = = Odte
and §, = L ol Where g = o4, TUDS through . all non-trivial

L-zeros mod %, further

1 B(k)
y=cp U=—g

Since we can evidently put
V = ¢ klogh,
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Lemma 3 insures the existence of a & with

(4.1) e ES T

(owing to (1.2), the condition »~** >1/U of Lemma 3 is satisfied)

such that for all ¢’s

11 Cyo 1
5 —_— 3 3 et
(4 2) ” 9% 9 (£tq+ O'efo) kl()gk 1+ Mo’u/m
and
1 1 1 Cgp 1
X —_—— — > .. S
(43) ” o2n 4 (ﬂ""' 2 "”t") ‘/ klogh 1 {2,

We choose, further,
(4.4) m = 2qlogT,
and resfrict integer » by
(4.5) m<r < mty .

Next, we consider the integral

To 2, " 2
1 [ s ey
(4.6) Hir)=—— | ¢* Y f(s)ds.

Owing to (3.1) and the integral formula

[ TR
=1 —6 (y >> 0),
(2 Y
we get
g 2. r b3
1 Reretriees? 1o
@n Hey =gz [T S 1, by e
2m »
(2) 13 d
1 "0 (o) 4§ (o)
e je 0(1)ds
2m
(2/8)
e(roe§+rez)/4
= e £ 1o, 1)1 + g~ (logn—(rok+8)/2) % (rg-+r)
1/71:(’?‘0—|~’r) - 6(D s Lay ly)logp e 050 0+ .

ooy 3 4 (e’

+0(e*

).
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5. We geti another expression for H(r) on shifting the line of inte-
gration to the polygonal line W (resp. W/2) of Lemma 4. The main term
ig a sum of residues

o(t)

‘;?175"2 () =7 (l)}
% (rigl‘ft?"to W)

[ rofe. 12 rle. 2
1 T\ - ' “(“+5o) += (—+e}
- E 2 () =2 ()} V o 3 b ’
o (k) L
Jeel g eright to W }
and the remainder can be estimated, using Lemma 4, by

TQ -.12_1 __12
¢y, klogtle® (g0 ,l) F4(E| 4) .

’ o
—y Bz‘-’ (erE0)+ (482

Combining this with (4.7), and dividing by

6(%53 el b
S

Va(ry+r)

we obtain.
~(logp—(rofg+ re)/z)_‘

Z en(Py by hh)logp-e Tott -

B
- o, s .
. — ly)—x(l Cv gk g (P2t
-V (rytr) { E‘ KE..}..),_._M 2 o 1

jzﬁﬁ)&%(ﬂ) Z \

F=1 "% oright to W
ol ) A
Scn(klog“k),l/ro-i-w 3 (5 0 25) 4(5 zs)‘
We can easily estimate the contribution of ¢'s with A >3/1/;; to
the sums Y in (8.1). Using (1.2), (1.4), (1.5), (2.1), (2.3), (4.1), (4.4) and
(4.5), we get for it the upper bound '

(5.1)

"0 (ga 0+ e+ Ee)}

ro * Pohr g
SN 17T NS A 2R O s
awl/r‘,-w{a‘" i ’ e+ loghkn-
Rl n,r L rohr n?
) - —_—
20 (ggetg) e (8 7 s
.Hw'l(e" il e * "logkn}
n38/¥n~1
_totr B

o APTIN k i
- (1) + 5(284-1) T 5
o T ) i log ~=)e +
. rie
< Gy l/7‘0 } { ( g ]/,‘”')

+r 1
a2
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Since
e"("o*"")/ﬂ < g—r/n {\ e—»zlorﬂl’ — T—a,
we estimate it further by
015 (log T)M* (P, T+ gn =M (log log ') L'~ -

+ Py (log T)TH*+¢n ™ 11 (loglog T) T™Y) < oy4.

A similar estimation gives the bound of 7%**" for the error-term in (5.1),

Together, we obtain
(togp-—(roto)2)*

(52) | Y eulp by Llogpre forr
D
10,9 o9
— l ) i (0% 2400) -+ = (0%+1- 2¢0)
_y { 2~z (l) L C
n(re+7) o (k) 2 ¢
x e(x)
1m g 8n™ /2
g - 2 ]
) y Z(%‘)‘“Z(/‘j)ﬂ \"1 ﬁf{i‘.’(%.;‘éoa)_|,l’i(%4.eo) o ’[’E
,“Z (k) s € =
=1 x e(x)
Im o8y~ 12

6. Let o, =u,+4v, be one of the non~trwml L (8, x)-zeros,
x modulo % and g(l,) # x(l,), such that |eHe™+¥a)|, consulcred for all
0 = 0,14, with |t,] < 347, attaing maximum at ¢ = ¢,. We put (5.2)
in the form

. | a (logr—[roso—we_wz‘
61) | Zek(p, Ly L)logp-e” o
P

—Vr(rg+7)le l )~ X l?n

0.2 1 9 ol 8
—(0%2600) | - (0*-+280) — R (0] 28
X (64 ) 7 ( 1 01)),4

e(x)
i< 12
] - - ro [o* P .
_ 2 Z 24— 2(p) 2 (’T' (& i“eoﬂ)(e%(%*l-éa) -v-noﬁ(af.wm))r}
~ 4 (k)

o(x)
Ity) <8012

In order to apply Lemma 2, we have to introduce numbers 2 and by,

With ¢’s occurring in (6.1), we shall eall numbenrs

%
" 1}
% n,»,l’

1 1,2
< (0%+260) —Re %
g o= e ) —~Reg (o) +36ey)

bm@

z,—numberﬁ of the first class, and numbers
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; (0%/4-+-80)— Ro % (oi +2£e7)
Ry =0

z-numbers of the second class; accordingly,

G

'Zo(ﬂz’l'zﬁoﬁ)

by == g
! p(k)
and
biu ) x(ﬂd (M) . et 0(02/4';“500)
o(k)

93

will be called binumbers of the first resp. second class. It is clear, after

(4.2), (4.3
(6.2)

), and (L.B), that for all z's

dot
largzy| > x =°=_n“'/5.

In addition to g,, we will introduce two more special ¢’s. We define
02 = Uyt ivy a8 the g(y)mod &, with y(I,) # x(l), for which v, is maxi-
mal and < ¢sk°. Hence ¢4 is the constant oceurring in Lemma 1; obviously,

as pointed out in the footnote in Lemma 1, we have u, =

4. Then, simi-

larly, gy = %y--10, is defined as the ¢(x) mod %, with x(l) # z(ls), for
which v, is minimal and 3> ¢;4*--1. Again, noting Lemma 5, we may

A/FUING Uy ==
Making ¢, sufficiently large, we may assert

(6.3) 2 < v, L ok
and
(6.4) ok 1 < vy < 20585,

Next we define h and h, by putting
o 503 4 2¢ey) ~Reg (o] +26)
op ’

, 2
%‘“; “ateg) -m% (¢] +2¢01)
zhl == N

We agsert that all 2/s of the second class are absolutely 2, |-

however, reduces to the inequality

2
514 --egf2 |

2 Q
Iaa /lG—I«(’oMl < |9 |

(6.5)
for |Img| 3y~
In fact, it is enough to show

2
211a

f>ely

this inequality, however, follows from (1.2), (1.5), (4.1

) and (6.4

This,
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In our notation (6.1) may be simply put as follows

. (logp—(refo r912)?
68) | Y eulp, by b)logp-e 0
»

2
oy
oI

s
—Vr(rotr)et * V_ReZb,z;
Feal
and we will proceed to estimate

"
(6.9) %(#) = Re Z’b,z;.

Fral
First of all, we observe that

(6.10) 1 < el Vlog (™) < 5™,
Further, (4.5), (6.2), (6.10) imply that we may restriet » to
(6.11) m+l<r < m+ (3+n/x)n,

?. In order to apply Lemma 2, and get reasonable bounds for Z ()

we have to check (2.5) and (2.6). Since ’

Uy = Uy = Uy = %,

1,2 2 2,10
A
lanl = e > ,

and also, using (4.4) and (6.10),
dn 4y~ 1
< < .
m+n(3+n/x) = 29logT " ntlogT
Making ¢, in (1.2) small enough and using (1.5),

2,10
— ek g1
> e H

further, by (1.6),
el > 7% (log 1)~
and (2.5) follows. As to (2.6), we have
12

Ly _‘v2) 3(1’2 __‘uz) ol 2,2 ok .
= fanyf = o =T 5 TR T S T gy 5 g™,
which clearly reduces ourwproblem to the previous one. We also observe
that for A< w < b, Regi’b, differs from the series in (2.2) by at most
1 - 79 (g2 4-240)
Wy D 3 E,
(k) % (L) —x (L) le ¥

Tmezvy
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here we made use of our remark that all 2's of the second class are ab-
golutely < |#,|. The sum in (7.1) is easily estimated by

-roc:“;km/zo

oq Pylog(esk®)e
and this in turn is made
<< y04Polog? Py,
on choosing ¢; large enough. It follows that

w

(1.2) B min  Re )by > j0,PlogP,.

hagw<ly j=1

8. We proceed to estimate the sum Z(r) in (6.9). Lemma 2 says
that for a suitable » = »,, satisfying (6.11), we have

B " 12 {1l MAN(347[%)
2 > 5T {24(m+n(3+7:/u))} (T) '

It follows that

By @G ) > 2 { T }hx
' Y7 on 1 | 24 (m+n(3+x/x)

1 2 b
. m=n(3+3) 0% Ro(e+26eq) (m+n(3+2)) R (r=m-n(s+3)) _

Since, by (4.1)
Re(g}+280) = t—0i+E < i+

and r,—m—n(3-n/x) is non-positive, we can estimate from below the
last term in (8.1) by

D e

Further, by (1.8), (4.1), (4.4), (6.3),

e% Bo(0h - déeg) (m--{3-4/) - aé (35 +8) (men(s-mm)

| 1, - ~1/2 -
%(n"l—n"llhczzkw)m > J(’I Loaq~1/2) 2ntog T Y

>
Since roughly
" "____,)m 6.,.%103108T> Vs
(mm-n(s 4 )
and -
oM n(EET) ptng=n~t vl
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we get finally from (8.1), noting also (7.2),

1,2 1
162 () +2¢e1) Vn.

1
%) > 1" *
Setting
(8.2) o= Tk, @y = o0
we deduce thus from (6.8)
~-l-(log*ﬁ * 1

Dlen(p, by W)logp-e 10 > 18

»
i.e. the first statement of Theorem 1. The second statement follows muta-
tis mutandis.

9. To complete the proof, it remains to show (1.7) and (1.8), By
(8:2), (21), (23), (41), (4.4), (4.5)

~11/8

By < oy kT
and
o > Tl“l/’;i’
80 that (1.7) follows in view of (1.5) and (1.6). As to (1.8), (8.2), (4.4),
(4.5) yield

vy g 14 2nlog T+ 77"('/5
and

v, = 2nlogT,
which give the result.
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A refinement of a theorem of Schur
on primes in arithmetic progressions II

by
J. WésoIk (Warszawa)

L. Schur [6] gave purely algebraic proofs of the existence of infi-

nitely many primes in the following special arithmetic progressions:
22-+2"'+1  where »>1,
8nz-+2n+1, 8nz+4dnt1l, 8nz+t+6n-1,
where n is an odd square-free integer > 0 and
p'nz+1,,
where
] 1 mod 7,

‘ "7 |—1modyp’
and p is an odd prime.

In the last case Schur assumed the existence of an infeger ¢ such

that (M) = —1, where F, is the nth cyclotomic polynomial.
P

A. 8. Bang [1] gave proofs similar to those of Schur for the existence
of infinitely many primes in the following progressions:
4p"z+2p"+1,
Gp* e 2pP 41, p = 2 mod 3,
sznzwiﬁ 4p2n+17
The main aim of the present paper is to prove on the same way

a theorern which comprises all the above results as special cases and
covery several new cases, e.g. the progressions:

48047, 480425, 480+81, 1060--64, 1050471, 105z+76().

p =3 mod 4,

p = 2 mod 3.

(*) The last three progressions correspond to the case pymetly Fcoy(m)idared by
coa s n e :
Schur. However, it is impossible to find here an integer ¢ satisfying (T) = —1
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