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we get finally from (8.1), noting also (7.2),

1,2 1
162 () +2¢e1) Vn.

1
%) > 1" *
Setting
(8.2) o= Tk, @y = o0
we deduce thus from (6.8)
~-l-(log*ﬁ * 1

Dlen(p, by W)logp-e 10 > 18

»
i.e. the first statement of Theorem 1. The second statement follows muta-
tis mutandis.

9. To complete the proof, it remains to show (1.7) and (1.8), By
(8:2), (21), (23), (41), (4.4), (4.5)

~11/8

By < oy kT
and
o > Tl“l/’;i’
80 that (1.7) follows in view of (1.5) and (1.6). As to (1.8), (8.2), (4.4),
(4.5) yield

vy g 14 2nlog T+ 77"('/5
and

v, = 2nlogT,
which give the result.
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A refinement of a theorem of Schur
on primes in arithmetic progressions II

by
J. WésoIk (Warszawa)

L. Schur [6] gave purely algebraic proofs of the existence of infi-

nitely many primes in the following special arithmetic progressions:
22-+2"'+1  where »>1,
8nz-+2n+1, 8nz+4dnt1l, 8nz+t+6n-1,
where n is an odd square-free integer > 0 and
p'nz+1,,
where
] 1 mod 7,

‘ "7 |—1modyp’
and p is an odd prime.

In the last case Schur assumed the existence of an infeger ¢ such

that (M) = —1, where F, is the nth cyclotomic polynomial.
P

A. 8. Bang [1] gave proofs similar to those of Schur for the existence
of infinitely many primes in the following progressions:
4p"z+2p"+1,
Gp* e 2pP 41, p = 2 mod 3,
sznzwiﬁ 4p2n+17
The main aim of the present paper is to prove on the same way

a theorern which comprises all the above results as special cases and
covery several new cases, e.g. the progressions:

48047, 480425, 480+81, 1060--64, 1050471, 105z+76().

p =3 mod 4,

p = 2 mod 3.

(*) The last three progressions correspond to the case pymetly Fcoy(m)idared by
coa s n e :
Schur. However, it is impossible to find here an integer ¢ satisfying (T) = —1

Acta Arithmetica XII. 1 T
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TugoreM 1. Let 1* = 1 mod m, m == p'n, where p is « prime, v > ¢,
ptn, 1=1 or p modn. Lhen the arithmelical progression mg-]
(¢ =0,1,...) contains infinitely many primes.

On putting » = 0, I = p mod » in the above statement one obtaing
the theorem of my previous paper [7]. The notation and regults of that
paper are used in the sequel. In particular @ is the rational field, £, a prim-
itive rth root of unity and

oot i 2% m42 mod 2m,

(@) =1 s i 90 == m-+2 mod 2m.

We put P, =Q(), K = Q(hm(:m))z Iy = Q(h’ﬁ"@ﬂz"))’ oy s Q(hn(ﬁn))-
As was shown in [7] (p. 434) K i the maximal subfield of P, invariant
with respect to the substitution £, — &,

For any given algebraic number field L, we denote by |L| its degree
(I | denotes also the order of a group). If L, « L, [.L,: Ly] is the degree
of L, over I, and Ny, the norm from L, to L.

It is well known that for any integer aeP,, (u, m) =1 implies
NPm/Q (a) = 1 mod m. N

It follows that for any integer weP, such that |Q(a)l = }p(m),
(aym) =1, we have

Nowela)? = 1mod m.

The behaviour of Ngwyq (@) modm iy described by the following
theorem which constitutes the main tool in proving Theorem 1 but seems
also of independent interest.

THEOREM 2. Let m > 2, I* = 1 mod m. For the emistence of an integer
aeP,, satisfying
1) Q(a)] = 3p(m),  Noye(a) =l mod m
it 48 necessary and sufficient that m should have at most one prime factor p
such that 1 5= 1 mod p°, where p|m. If this condition is satisfied, oll the
integers aePy, satisfying (1) belong to K.

Lemma 1. If an integer aeP,, satisfies (1) then aekK.

Proof. By the first of the conditions (1); @(a) must be the maximal
subfield of P,, invariant with respect to a substitution g, -> ¢4, where
A% =1 mod m, 1 % 1mod m. By the second condition of (1) (a,m) =1
Let q be any prime ideal factor of o in Q(a); and let N e = ¢ where
¢i8 a prime. Consider the authomorphism o of P, such that ¢ = Lf.

For any feQ(a) we have

B = R(Cm),
where R is a polynomial with rational integral coefficients, thus

B = B(28) = R(¢w)¥ = po mod ¢.
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By Fermat’s theorem for the field ()

p = pmod g,

fhus
B = g mod g.

Since this holds for all f¢@(a), o restricted to @ (a) belongs to the inertia
group of q. However, the latter is trivial because (¢, m) =1 and q does
not divide the discriminant of @(a). Thus Q(e) is invariant with regpect
to ¢ and by the choice of A, ¢ =1 or Amod m. By the multiplicative
property of the norm, it follows that for a = (a) we have

No@e =1 or  Amod m.
If A = 1 modm, we get Neoupee = £ Nouet = -£1 mod m thus
(%) Nowee =1 or  imodm.

If A sk -1 mod m, the field ¢ (a) is not real, hence Ngwga = Noyed-
Thus (x) holds also in this case.

Tt follows from (1) and (%) that
l2=1 or Amodm.

1 1=z L mod my, K == P, thus aeckK.
If | % 1 mod m, ! == A modm and

Q(a) = Q(hm(Cm)) =K.

LuMmA 2. If 1% == 1 mod m, I % 1 modp” we have

@) KE,cK, K ~E=¢
and

1 4f Il=1modn,
#) L+ J Iy =l2 i 1% 1modn.

Mm'aow', aport from the case p = 2, | 1modn,p has in K the
factorization
() = Pips .+ 0
where 9y, Py, ..., P, ove distinot prime ideals,
K, 4 l=1modn,
21K, if ls1modn

O ==

and (P9, ... p,)"%V ig o prime ideal of first degree in K.
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Proof. As we have already mentioned, K i the maximal subfield
of P, invariant with respect to the substitution {y, -~ ¢, Bince applying
this substitution we get
va == % "*C?rll = C;,v)

¢n=c27,r:"’>é?ﬂ:‘1=é-£n

whence K, - K, and K, > K,, it follows that K, < K and K, c K.
Thus we obtain the first part of (2). On the other hand,

K, cP,, K cbP,

(4)

thug the discriminants of K, and K, are relatively prime. Hence
E~E,=Q and |KK| =K
Since |K| = 4g(m), | K| = 4p(p’) and

'y = @(n) if l=1lmodn,
" ipn) i Isk1modn,

we obtain (3). For further use we notice that if I s2 1 mod » then

() K =K, K,(V5), 8K, K,,
‘where
© 8 = (L= L) (ba— ).

Indeed, by (4) 6 is invariant with respect to the substitution &, — dn,
thus deK. On the other hand, § is not invariant with respect to the sub-
stitution ¢, = £,,, L > £, which leaves invariant K, K,, thus 8¢K,K,.
Pinally the last substitution and the substitution ;‘p, - L,, Ln —> Ly leave
invariant 62, thus 6%¢K, K,.

In order to determine the factorization of p in K put

me = (1—LE) (1~ ).
Since m, is invariant with respect to the substitution ¢ o ;‘;;, we have
mpel(, for all k. For % = 0 mod p, the quotients

— kL ket 7]
i’f_:l__ﬁn_".l_ﬁg: and B 1zly 1= 2
o 1=, 1-¢, me 1=y 1—{

Wh_ere kk' =1 mod p* are algebraic integers, thus they are algebraio
units. Substituting ¢ = 1 in the identity

L RN WIS n (@—2%)
py

(k.p"') =l
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we get
p= []0=g)=]]=
(km")"l

where the product [’ is taken over such reduced residue classes k mod P’
that the ratio of any two of them is not congruent to I mod p*. The number
of factors in II" is clearly iw(p’) = |K,|, thus

(M . (p) = (7)™

and the ideal (m,) is prime of first degree in K.
On the other hand, since p does not divide the discriminant of K,, p
is in K, a product of distinet prime ideals, say

(8) (?) = 0z -+ G-

Since the ideals q;’s are coprime it follows from (7) and (8) that
(9) =900 (i=1,2,..,9),
(10) (mq) = Q1, ... Q,,

where Q'8 ave distinct ideals of K, K,. Moreover they are prime ideals
of K, K,, since ¢; cannot have more than |K,| prime ideal factors in K, K,.
If I = 1modn, K = KK, by (3), and the lemma follows from (8), (9)
and (10). It remains to consider the case s 1mod n,p > 2. Then
1 1 modp and the number

Cp= o) _ o 105" 100
7y it 1-(,

i8 an algebraic unit, Since (¢,—¢L, p) =1, it follows from (6) and (10)
that each Q; divides 62 in exactly first power. Thus by (5) and by a well
known theorem ([5], p. 374-376)

(11) Q=P (=1,2,...,9),

where P; is a prime ideal of K. The lemma follows now from (8), (9),
(10) and (11).

Luvma 3. If 1 = 1 modp* and 1s=1modp’, then there ewists an
integer ael, such that

NKl/Q(a) =l mod p’.

Proof. Suppose first that p* has a primitive root g. Since p”> ?,
@(p") is even and gr@"i2 = —1mod p’. Since @(p")/2 = |K,|, we obtain
the agssertion of the lemma taking a = g.

Suppose now that p* has no primitive root. Then p =2, » >3 and
1 =2""4L1mod 2" or | = —1mod 2"
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Tf 1 = 9~'+1mod 2, we have K, > @(i), thus
Niyo(l+2i) = 577" = Imod 2"

I 1= 2"'—1mod 2°, b, (£,,) is a zero of the following polynomial
generating K,
@ f@= [] =Gt =o" [] (oGt

ov—2 ﬂ<k<2v—~l.
Lo e odld

T - i
= 422 ” (—fim-—zcos —2-;__—1—) = 2, (»-»é--),

o<kear—l
kodd

where T,(x) = cos(rarccoss) and & =2""—j. We show that f,(1)
= 9*~'_1 mod 2". For » = 3 we have f, () = #*--2 and f, (1) == 3. Assume
that » > 4 and

(13) fooa(1) = 2" —1mod 2%,

Since T, () = 2T,(x)2—1 we get from (12)
fol@) = fi1(2)—2.

Hence by (13) f,(1) = 2""'—~1mod 2 and the last congruence follows
by induction for all » > 8. Taking a = 1—({,,—{3') we get the asser-
tion of the lemma, since Ng,q(a) =f,(1).

If 1 = —1mod 2, hy,(£,) is a zero of the following polynomial gen-
erating K,

A
fe) =[] =+ = n (w—-zcos -213-_51«) - 217’,“2(,;1)_

o<ke2’! o<k<a?1
kodd kodd

We have f,(1) = 2T,,_,(3) = 2 cos(2"*arccos}) = 2cosfrn = —L1.
Taking o = 1—(¢,,+ ;") we get Nk g(a) =f,(1) = —1 and the proof
of the lemma iy complete.

Proof of Theorem 2. The last statement of the theorem follows
at once from Lemma 1. We prove that the eondition given in. the theorem
is nécessary and sufficient for the existence of « satisfying (1).

Necessity. Suppose that m has two prime factors p, and p, such
that pijm, p2[m, 1 5= 1 mod pi!, I 55 1 mod p2.

Without loss of generality we may assume that p, == p is odd and
put
(14) m =p'n, where Is=1modn.

Since p > 2,1* =1 mod p” and I = 1 mod p’, it follows that

(15) } % 1 modp,
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Suppose that an integer acP,, satisties the conditions (1). By Lemma 1
Q'(a) = K.

Let p; be any prime ideal factor of p in K. By Lemma 2 p; is of rela-
tive degree one over K, K, thus there exists an integer y;¢K, K, such
that

az=y;modd (1=1,2,...,9).

By the Chinese remainder theorem there exists an integer y,eK, K,
guch that

Yo=ypymodp; (i=1,2,...,9)
and we get
o = pymod pp,... P,
Since by Lemma 2(pp, ... p,)? is a prime ideal of K,, it follows that
Ngjx,o = Ngjrpo = (Ngyzym, vo) 00d (PP, - .. D)%
Since (P, ... )21 = (p), it follows further that
Ngjge = Nrjo(Nrx, @) = Ng (Vg xyx, v0)* m0d p.
Since fy = Ng g x,voc Ky, We have
B = N, (o)

and
NK/Qa = .NKllQﬂ% == 'NP,,VIQﬁO =1 modp

This contradicts (1) and (15), because K = @ (a).
Sufficiency. If I = 1 mod m, it is enough to take a = 1+m(lm+
- ¢7h. Therefore, we can assume

m=p'n, pin, ls=1modp’, = 1 mod n.
By Lemmsa 3 there exists an integer feK, such that
(16) Ngy(f) =lmodyp’.

Lebt p be a prime ideal factor of p in K, K, the decomposition field
of p relative to K, and let

K, =K, ~ K.

Let ¢ be the Galoiz group of K and let %; be the maximal subgroup
of  leaving invariant K; (i =1,...,4). Since K is an Abelian field, K,
is independent of the choice of p. Since by Lemma 2 p is.it;se]f an ideal
of K,, the relative decomposition group ¥, is cyclic of degree f, where

f = |Klfeg. ‘
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Since Ngyop =p, We have ¥, = {1,0,...,¢'""}, where
n o’ = o” mod Py

for any integer weX and any prime ideal factor p; of p in K.
It follows from Lemma 2 that

(18) G nb=1, 4% =9 Gcb, 9 =%¢
and
9 _ 19 _
= = e = [y 1 K]
K| X A [y Ky =g
Let wy, 0, ..., w, be an integral basis of K, and let
(19) ‘ Y, = G301+ Y305+ ... +Y40,

be the decomposition of #, into cosets with respect to %,.
Since K, is normal, o{? K, (1 <1, <g) and the coefficients of
the gystem of congruences

o+ ... + a0l = fmodp,

20) ool 4 ... Foof =1modyp,

...................

B of? -+ ... 0l = 1 mod p
all belong to K,. On the other hand, by (18) and (19)
G =G0+ Yont ... +%,0,,
thus
lof]? = dise K, |dise sl n";  (|olP)], p) = 1
and the system (20) has a solution in integers o, , . vy ey, By the chome

of K p is of first degree in K,, thus there exists also a solution 2, ..., o)
in rational integers.

Setting ¥ = #{w,+ ... +adw, we get

7
B= ][]V = Ngyz,p mod p,

Faml
hence also

(21) B = Ngyx,y mod P,

where P =p,p, ... p, is the prime ideal in K,.
By Fermat’s theorem for the field K, we have

(22) Pl=lmody  (j=1,2,...,9).
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On the other hand, N, = p’, thus (22) can be written in the
form
Y1) f__
ok f p;j—1 = 1L modyp; where & =P 11
p—

By Buler’s criterion it follows that y is a kth power residue mod Pi,
bence there exist integers d,¢X such that

(23) y =& modpy (j=1,...,9).
By the Chinese remainder theorem there exists an integer &yeX
guch that
(24) O = dymodp;  (f=1,2,...,9).
It follows from (23), (24) and (17) that
y =8 = et = [0 = N (6 m0dpy (=1, ..., 9),

ey
thus

b NK/KE(‘SO) mod CD .
Since P = P (1 <5 < g), it follows that

(25) Ngyr,? = Ngjxe, o mod P.
Let us put for xeK, and rational integer s
(26) fa(®) = Ngix, (8o +wln)— 8-

For every ¢, fs(#) is a polynomial in x over K, and we have

oy NEE (%)
Z(C() a('l)

ey

On the other hand,

¢
|( ) |o<e<¢(n) == n (Ch—Cu)n®,
e, (wt ,n)-]
i

vy

thus (/(¢0)], P) = 1. If we had
fs(0) == 0 (mod P) (0 <8 < g(n)),
it would follow

Ngg, 0
“’%/‘g'f}l’ﬂ = 0 (mod P) for all 7e¥,,
which is impossible by (25), (21) and (16). Therefore, there exists an
integer 8, such that

Jop(0) = 0 (mod D).
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Since by (21), (25) and (26)
f(0) == 0 (mod P),

it follows by Hensel’s Lemma (¢f. [4], pp. 155-156) that the congruence
fo(®) = 0 (mod P")

is soluble in integers w<K, for every h. In particular taking h == »|K,
we have for some ek,

o) = Ny, (80 Ladiwe) — § == 0 (mod p”),
thus by (16)
(27)

Ngja(do+ Lata) = 1 (mod p").

Let wy, wyy ..., w,, where ¢ = |K| == }p(m), be an integral basis of
K and let q be any prime ideal of degree one in K not dividing m and
such that Ngpq = ¢ > r. Finally let ¢(z) be a function defined on the
group ¢, with rational integral values incongruent modq for distinet
8.

Since

0 igicy = disc K |disoPulmm;  (l0f?], ) =1,

the system of congruences

tof+ ... +a0f =o(r)modq (ved)

hoas & solution in integers of K and since ¢ is of degree one, also a solution
ajy ..., 6 in rational integers. Now, by the Chinese remainder theorem
there exists an integer ae¢K satisfying the congruences

a = 8+ (0w, mod p',

a =1 mod n,
a=alo+ ... 4 af , mod q.
It follows from (27), (28) and (29) that
Ngig(e) = L mod m.

On the other hand, by (30), o™ = ¢(7) mod q(v¢#), thus a® ave distinot
for distinet t's and [Q(a)| = |K| = 4 (m). This completes the proof,
Leyma 4. Let I* =1mod m, m = p'n, » > 0, ptn, p =1 mod n.

Then there exists an integer aeX generating K and such that PN

Proof. Let p be a prime ideal factor of pin K and q a prime ideal
factor of p in P,. We have

(P) = (1 e tp')w(pvy ]
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thus
q1—=2,

and since for all r and s

T P8

("p" = ;pv mod (1“ :pv))
we gel
(81) = {, mod q. .
Let  satisty the congruence (p’+n)z = 1 mod m. Since 1, {,,, ..., LM

is an integral basgis of P, , we have for #¢K
4 = R(hm(Cm)) = 8(lm),
where [0 is a polynomial with rational coefficients, S a polynomial with
rational integral coefficients.
By (31) and the choice of # we have

& = e

e plE Al
oY o =van=4-mm0dq7

hence

9 = 8(Lh) = 8(Ln) = B(hn(tn) = R(km(lw)) = # mod g,
because hm(Lh) == hm(Lm). Since # K, it follows also that
# = 9 mod p,

thus p is of prime degree in K. Let p = (p*, a) for some integer aekK.
We have

P = (P, @) (P?) @) ... (P*, &)
thus
p = (p* Na), p[Ne.

The numbers « are distinct sinece in the opposite case we had
Ngpo = a®, a rational integer, k>1 and p2|Na, which is impossible.
This completes the proof.

Proof of Theorem 1. By the result of [7] it is sufficient to show
the existence of at least one prime = lmodm. This we do separately
for the case ! =z 1 mod n and I = p mod ».

1, 1 = 1L modn. If Is=1mod p’, there exists by Theorem 2 an in-

teger aeQ(hm(tm)) = K such thab

(82) Q(a) =K and Nggo =lmodm.
¢ 1 = 1 mod p*, the above conditions are gatisfied by a = {n. Let
dy, tyy ..., ap be all the conjugates of a, :
, .
fla,y) =] [ (@—ay)
Fe=l
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\
and d be the diseriminant of f. We put
d = dyd,

where (d;, m) = 1 and d, has only prime factors dividing m. By the Chi-
nese remainder theorem there exist integers y, and x, such that

0 mod dy, 0 mod m,

Yo == &1y =

Yo —1 mod m, ’ 1 mod y,,
and f(w,, yo) > 1.

We have
' NK/Q(I mod m,
(33) Fl@y, 9) =
1 mod y,,

thus (f (@, %o), myd) == 1. By Lemma 1 of [7] all prime factors of f(ay, v,)
are congruent to 1 or I mod m. At least one of them must be congruent
to I mod m, since otherwise we would have !5 1 mod m and f(m,, ¥,
= 1mod m contrary to (32) and (33).

2. 1= pmodn. Since the case ! = 1lmodn is already settled we
may assume that [ == 1 mod n. Let a be an integer, whose existence is
asserted in Lemma 4 and a,,..., o, be all its conjugates.

Put

.
G@,9) =[] (0—ay)
Amal
and denote by d the discriminant of @..Finally, let pd, M = 1’%
P
By the Chinese remainder theorem there exist integers m, and ¥, such
that

_ 0 mod M, _ |1 mod y,,
%=1 —1moa 22, = | 0 mod p2
and G(zy, ¥o) > p.
We have
1 mod
(34) Glan, yo) = o
Ngjqo mod p3,
hence by the choice of a
(35) PG (wg, 9y).

& (@y, ¥,) . ;
Let ¢ = —-;-”——‘l—>].. If g is a prime and ¢|O then by (34) and (38)

If no prime factor of ¢ were congruent to I mod m we would have
0 =1mod m. On the other hand, since 7 |y, it follows from (34) that
C =1/l =1modn The contradiction obtained -completes the proof.
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Remark. Using the notation of a congruence mod oo (cf. [3], p. ‘35)
one can state a part of Theorem 1 in the following equivalent form:

Let n =, oo, where m, is a positive integer, I = 1 mod n, =
1modp’y m = p’n, ptn. Then there exists infinitely many primes q
satistying the congruence g =1 mod m.

If instead of taking n = n, oo, one takes n =n,, p = oo, ¥ =1,
1 = 1—n one obtaing the existence of infinitely many primes in the arith-
metic progression mg—1, which has also been proved by purely
algebraic means (cf. [2], p. 178-183).
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