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On the units of cyclotomic fields
by

K. RAMACHANDRA (Bombay)

§1. Let f > 1 be a patural number with ¢(f) > 2, ¢ being the Euler
totiept function. Let a be a primitive fth root of unity and @ () the eyclo-
tomic field generated by a over the rational number field ¢. It is clear

" that for (s,f) =1, 1 < s < f/2, the numbers

a®—1

1 . =
1) Uy =——7

are units of Q(a). Some time back Professor J. Milnor(*) asked the follow-
ing question: Do the units u, together with +a form a basis for the nnits
‘of Q(a)?
" In this note we prove the following two theorems. ;
k N :
TEEOREM 1. Lét f = [] pi* be the prime factor decomposition of f and
i=1
for L<s<f[2, (8,) =1 let
ap®1eL,, k%
a

— 11— 1 k
g = e
v l ] 2711 0%
€;

1—a

where the product is extended over all e, =0 or 1,1 =1,2,...,k ercept
6 =0y = ... =¢y =1 Then the }p(f)—1 unils v, of Q(a) generate
a subgroup of finite indew in the group of units of @(a).

THEOREM 2. Let p and g be two odd. primes dividing f, ¢ having the
property that the residue class group modg has & nonprincipal character
o with g(—1) =1, and p = 1(modgq). Then the inijls 1, defined in (1) are
multiplicatively dependent. ) o

' Theorem 1 shows thav if, in particular, f is a power of a prime, then
the units u, in (1) are multiplicatively independent, and hence generate

(4 In a letter to Professor K. G. Ra.ma.n;n.han dated 6th February 1964.
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3 subgroup of finite index in the unit group of @ (). Theorem 2, in addition
shows that if f is composite and divisible by at least two distinet odq
primes the units u; need not be independent. In the case of the unity U
of Theorem 1, the index of the subgroup generated by v, in the group
of all units of @ (), is intimately connected with the class number of the
cyclotomic field ¢ (a). These results in a more general setiting will appear
elsewhere.

After this paper was written we canie to know from Professor Hyman
Bags that he had proved some theorems which gave a system of units
generating a subgroup of finite index in the group of all units of Q(a),
this system being in general bigger than the maximal set. He has also
a fairly simple proof of Theorem 2. However, our point of view is
different and Theorem 1 appears to be new.

We should also mention that in the case where f = p is an odd prime
greater than 3, Theorem 1 iy proved in Siegel’s [7] lectures.

“§2. In this section we set our notations and terminology and prove
three lemmas which lead to the theorems stated in §1. We denote by
#; the multiplicative group of residue classes prime to f modulo the
subgroup generated by the classes 1 and —1. Let y be o nonprincipal
character of #;. Now if f; > 1 is a divisor of f then we have a map from
Z; to Z#; which takes a class R of %, to the class of #;, represented by
a representative of E. This map is well defined and onto. It may happen
that for some divisor f, of f, y may pass to a character of Ay, . It it passes
to a character of #; and also to a character of 2y, it also passes to a charae-
ter of &, where f; = (fy, f,) is the g.c.d. of f, and f,. In this way we arrive
at the least divisor f, of f such that y will not pass to a character of Ry,
for a divisor f, of f,, fs % f,. The character of Ry, derived from y will be
denoted by y,.

Let g be a divisor of f, 1 < g < f, and write
®) ¢10(B) =log|1—¢™"V|

where 7 is a repregentative of the class R of .
Lemma 1.

@) Vig= D 1(B)pre(R)

Redly

o i gtflf,
| ATELI e [ Qg™ [T 1—Fo(p)) if 9lflf;

I+l o

where T'(f,) i3 a certain gaussian sum of absolute value V£, and 7 is the
complex conjugate character of 4.

icm®
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Pproof. If r is a representative of B we write y(R) = x(r) and
gy =0 it (rf)>1. Now A ‘
Vie=1% 2> 7(R) {log(1—e™) +log (1—e ™"}
Ko

ReZ,
7 a representative of B

= % 2 i(’r)log(l_,_gznigr//)

rmodf
oo 2mingrif

(5) 1) {Zft

rmodf
. . _ wii_l_{ Z Q(r)ez"m”’”},
® #=1 ™ “rioar

ements being permissible since we could have started with

i N >
e s i it (o~ 1) in place of n "¢ and then

the series in (5) with 27 7e
passed to the limit ¢ — 1.
Let

1‘7 ‘1'7'>07j :15“-77‘7):

\Y%

j=1

k
‘f=Hp;f (k

1
fo=J]r7 <1<k 0<r<a;j=10,

] ‘
=1 .
\ = h, =Hp?‘.
Now a§ o« runs through a complete system of .coprime residues mo;l)f/h
and p through a complete system of coprime residues modh, the numbers

r = ha+ —Jiﬁ run through a complete system of coprime residues mod f
N h

each only once. Thus we have
i - mingé]f
L0 = S amese = S g 4

o0df,
rmodf Eymod 7, (;f?ioll,lzmuﬁf

- (f 5 T gainalf(ar1om)
= %o 7 Po i
=, d.
Sy = i

—a(f) S we Y ot 3] o)

b amod |k
ﬁomodfx ﬂE:JO:rfolg%,x (ot
_{f - amingBolh | g Z Bzrriughu[f}.
= Zo\73 { Zo(Bo)€ ; .
h f=0modfx amod f/
Bpmod fz P {afhy—1
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The sum in the second bracket vanishes unless hf;'|ng. In thig case
the sum is Ajf,, and further since ng/h will have an exact denominatoy
which divides f,, the sum in the first bracket will vanish unless ng [k will
have exact denominator f,. The sum in the third bracket is the Rama-
nujan sum Cy(ng) (properties necessary will be stated below and are
not hard to prove). Thus

0 it (B ng) /S,

_J_ h
Tio(x) = xo(—f;;)—of/h("g)

D) Holbo) I it (hng)
x

Bomodfx J 1
It is a standard result that the sum

20 (,3011/gfx) orringPolh _ i (.fz)
h
Bomod fx
Is independent of n and is of absolute value Vf,. Fence
0 i (b ng) #hlf,
8)  Tpel) =1- (f

h ,”'gfx U s ‘ . h
%o h)};oﬂh(ng)lo( 3 )1<fx) it (h, ng) = 7
Also
k
(9 Cyu(ng) = [] 0 4 (ng)
j=1y¥1 7
by the multiplicative yroperty of the Ramanujan saum and
0 it (ng, pf) |pji3,

(10) C’p?j(ng) =1=p7 " i (ng, pf) = pj~l,

o) it (ng, pfi) = p¥.
W<=j now go back to the series (5) for V;,. If I flg, ie. gt fJf,, then
(5) van}shgs identically by (8) or directly from the definition of f,» since
the series in the curly brackets in (5) is an invariant of the classes of the

quotient of %, modulo the kernel of the map from % to &y,. As for the
series (6), we write

B

g=[]»s (0

(11) o=[[s =[]0 g~ []ob

bm@
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The condition (ng, k) == h/f, for » now reads

1 1
([To74n) = [ [ 8747
J=1 j=1 .

and go all such n are given by

hany

Fud1

1
(12) n = ([ pp77) m =
j=1

where m, runs through integers prime to k, i.e. to f,. Inserting (12) into (6)
and using (8) we get

o ol
0 i gty

where S" denotes the sum over integers given by (12). We have

=1 %o(ﬁj’;fi) = %o(Ma) %0 (%)‘

By (9) and (10) we may restrict the sum only to those n for which

(18) Ty = i

£’

k
(14) (ng, %) = H PUTY (g =0o0r1, j=1+1,..., k).

F=1+1

Observing further that for those j for which p;lge, ¢ has neeessa,ﬂly‘tﬁ
be zero, the summation may further be restricted only to those » for whie

mh

us) = ([T g

ol
i i == , mmation may
where m is coprime to f, ];[ P = [y, say. Hence the su

be split up into 2%*—# parpt?ls ?Where p is the total number of prime factors
of g,) each with a different choice of the numbers ¢; (? =14+, 4 < :ﬁ
With a particular choice of the numbers ¢; we have in case g|flf, the
contribution

o ngf,)o (ng)n~!
(16) D (—«—f n(ng

=1
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to the sum over » in (13); here the sum is over all numbers » of the form
(15). We have

xn(l@;—ﬂ‘)=xo() (]'?;) (-h—l—)nxo(pf'cf)y

Piihy
17) ) == —1(glgaf )
I
Ciplng) = {!jlqu }ﬂw (P (—pP Y] == q)( )!ﬂl(l P

Hence if g|f/f,, we have, for Vy, from (13), the expression

“talg)rels) () ()

X;LH {—Zo(2)p;s (s —1) 7"} Z %nl]

ilh (M fg,g)=1
ghhy
—% L(1, xo) xo (f 0 ) (f)e (f)(g;fa)x .

x DT =m@)oimi—1~ L~z wip7 )7

I

¢’8=0,1p4hy
_ ghhy
e L L vy LAY RN
x D) [ [U=no) 1 —xolo) o7 )} (1 =pi )]
€'8=0,1 D5y
= 120,076 [] (1= 22 [T —7)
. (0110 D1y
simnce
n
ghhy = fgaga, 3 [[asrvier = ” ar by,
a_‘nd €'8=0,1 Pl Pl

o) =g [ ] (1~ I(p)] )
ittt P

Lemma 1 is completely proved.

bﬂ‘l@
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We now define the function (constructed from (3))

(18) W(R) = VolR) = el£1a51+~~-“kw,ﬁlel...,,;m,‘(za)
the sum extended over all (e, 65, .--y6x) # (L, 1,00y 1). We then have
LEMMA 2
19) U= D Z(R)¥(R) = —3T(H) LiLs ) H {1+ ap (p7) —Zo(p1)}-
ReRf p4lffk

Proof. Since we have to consider only those g for which glf/f,, we
have

U= —3T(f)L(, ) ) |aFToplpa ... piex

£/'8==0,1

k k
x ] @—lnetpalpe)* H (L —7o(m)™]
i=l41

i=l+

...

fl

A T()E 0 [ []T et —Tatwl ]

e'8=0,1 y|f/h

Il

—3T(FI, o) | [ -+op@f)—To(@}s

ByIf/h

because all our calculations fail when all the e's are equal to 1 (and to
avoid this trouble) we could have taken continuous invariants

‘Pf,g(R, O') — ’_% Z 621‘:?'-7!0"//%—5 (0' > 1)
N=

and come to the conlusion that the term.-for which f = g is zero.

Next we prove

TEMMA 3. Let a be a primitive f-th root of unity and U as defined in (1).
Then for o nonprincipal character ¥ of %y

(20) 3 ze)loglu = —3T(F)I(; x0) [10—n®)e
(&1)=1,8<f2 pif

where o, 18 @ certain root of unity depending on & and y.
Proof. Let o — ¢, (b,f)=1. Then log|l— gl = @y (RRb)
where R, is the class of b. Hence

T loglud = > Z(R)gra(BEs) = 2(Fo) V1
(s,f)=1, 8<7/2 Redty

and thig proves Lemma 3.
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§ 3. We now prove Theorems 1 and 2 stated in § 1.

Proof of Theorem 2. Let g, be the real nonprincipal character
modg for which y,(—1) = 1. We extend it to a character y of %, in a nat-
ural way (since 4%, is a quotient of #;). For this character y, Lemma 3
at once gives

)

8,f)=1
(l<3<f/2

=1

whatever be the primitive root « with which we start. Hence the unit

(21) : U
(8,f)=1, 1<a<tf2

i8 a root of unity.

Proof of Theorem 1. Denote the elements of %y by RByy By, Ry, ...,
R, being the unit element. Let 6(R) = []' (1—

€'8=0,1

being extended over all k-tuples except (1,1, ..+y 1), and r being a re-
presentative of E. Now we have v, = O(R;)/6(R,) and if the units o,
are dependent, say  [] vl = 1, on applying the isomorphigms o(RY

a;n‘flel o DT

), the produet

(s,f)=18<1/2
we have
WD =1 (j=0,1,2,..),
(8,1)=1, s<fj2
ie.
O(R:B;) :
bilog| —=——2 L1 =0 j =
Z 1102 O(Rj_l) (J 011’27 ))

1#0

where we have changed s to  and replaced the expression for v; in terms
of 8(R;). Since b; are not all zero, we have

O (R: k™)
8(R;™)
But by Dedekind-Frobenius group determinant formula the determinant
on the left is nothing but [J' ¥ x(B)log|8(R)| = [T' X% (R)W(R) by (19)

. . r R R
and this contradicts (22). Hence Theorem 1 is "proxved.

(22) determinant|log = 0.

1540, 1540
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