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On two problems of Erdds, Sziisz and Turédn
concerning diophantine approximations

by
H. Kesrex* (Ithaca, N. Y.) and V. T. 86s (Budapest)

1. Introduction. The present paper concerns itself with the following
pair of problems posed by Erdos, Szilsz and Turdn [2]:

ProBrEM 1. For A >0, ¢ =1, let

S(N, A, ¢) = set of £¢[0,1] which satisfy |bE—a| < Ab~" for
some integers a,b with ¥ <b < ¢N, (@, b) = 1.

Does

1) - lim|S(N, 4, ¢)|
N-yoo

exist, and if so, what is its value? (If ¢ is a set, |C| denotes its Lebesgue
measure. )

If |bg—a| < (20)7, then a/b must be a continued fraction convergent
_of & ({5], Chapter 10.) The next problem is therefore closely related to
problem " 1.

ProBLEM 2. For ¢ =1, let

T(N, o) = set of £e[0,1] which have at least one continued
fraction convergent Pa/¢. With ¥ < dn L ¢N.

Does
(1.2) lim |T{N, o)

N—oo
emist, and if so, what is its value?

Originally, these problems were treated by means of the methods
of the article immediately following this one [7]. It was noticed, however,
by the second author that a much simpler, almost self conta,inefl treat-
ment of these problems is possible and it is our aim to present this treat-
ment here.

* Alfred P. Sloan Fellow.
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As one could more or less expect, the limity (1.1) and (1.2) indeed
exist. We give the explicit value for a more general expression than (1.2)
in Theorem 1 and use this to show the existence of (1.1). The explici
value of (1.1), however, is not found. The limit (1.1) has been evaluateq
though for 4 < ¢~ by another method ([2], [6]). Estimates for (L1)

- have also been given'in [1] and [4]. We introduce some notation to give
a more precise tatement of the results.
Denote the regular continued fraction of an irrational (1)(2) £¢(0,1) by

[0y (£), ag(8), ... ] = - e -

ay(§)-- (;'—(5" '
15 (£) oo

and its nth convergent by p.(£)/g,(£). One has the well-known recursion
formulae ([5], chapter 10)

(1.3) Gh=1, ¢=a, (o= Ongy Yot 1y
14 Po=0, pi=1, Pup = Gpp1Pn+Ppey.
Introduce also
(1.5) a":’l«-)*l = a':l«—)—l(f) = Opp1[Ongny Gppgy --.]
1
= Qg e ) o
g~ fIns
Qpgog v o o
and
(1.6) fl'zlfg+1 = q;+1(5) = U1 Gnt Guey = Gyt - —,gl- == -gﬁﬁ

Appen a;wz
The main tool we use is
LeMMA 1. Let by > Ty =1, (ky, by) =1 and 2 = 1. Put

Akyy by 3) = {£:0 < & <1, there emisls an » =1 for which
Then Un-1 = kg, @y == Ky, a’r,w—H >4
() |4 (ky, gy )] = o
1) V2 )l kg(zkg"“l‘ki)
By means of this lemma it ig eagy to solve problem 2. In fact, we
prove a more general result.

(*) We shall ignore rational &8 all the tim,
e. They H i
and therefore do not influence the metric results. T TN § 860 0 Moagme ie
(*) We use the notation of chapter 10 of [5]
. except that we drop ao(£) = [¢]
from our formulae, since @, (£) = 0in all our considera.titl))ns. P ol
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THEOREM 1. Pul
m = m(N, & = largest n with ¢,(§) <N
and let
(1.8) U(N, , Y, z) == {530 <é< 17 qm(N,!.f) < {I}N,
I gy+1 > YN, alm(N,§)+2 >4}

Then
12 1. E4m
lim| U (N, 2, 9, 2)| = 6, 7, 2) :—zf Slog " as
Nasoo i b 2
where
(1.9) F=min(l, #), 7=max(l,y) and Z=max(l,3).

Since T(XN,e¢) is the complement with respect to [0,1] of the set
of & for which the last g,(£&) <N is actually <N,, one has T(N,ec)
=1[0,1]—U(eN, ¢™% 1,1) (vecall that gmy1 > N and amy, >1 for all £).
Thus the answer to problem 2 is given by

. B 12 ;1 1
;?;]T(N, ¢)| =1—G(c™1,1) = 1—;1f 710g(1+g)dt
2 1
== f—logv(lﬁ—'v)dv
ik =

In section 3 we shall indicate how theorem 1 can be used to prove
the existence of the limit in (1.1). In principle this existence proof even
points the way how to compute the value of this limit for specific values
of 4 and ¢ but the mnecessary computations are too complicated to be
carried out.

2. Solution of problem 2. We begin with the

Proof of lemma 1. We use the well-known formulae (see chapter 10
of [5] and formula I1.11.3 in [9])

pald) (=" _ P ,(*1)“
T @) D6 e Ga(Gnsagnatn-)

(2.1) H

and

On On 1t Gn—2 1 —
2.2 ————=‘—‘“——‘———""=a/ﬂ,+'—"—w'«a+
@2 n—1 In—1 Gn—1/Gn—2 " a"'1+f'- 1

= @p+[ap_1s .-y 0a]
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Now k,/k, has exactly two expansions as a simple continued fraction,
one with an even number of convergents and one with an odd number
at convergents (theorem 158 of [5]). Let the two possible expansions for
s [y be

k
(2‘3) %‘2' = a;m"{"[“;m——li ey ai]
1
and
‘%‘2‘ = Ams1+ (@3, -, 0]
1
k
(2.4) (@i =1 and i, >1 since—i’“— > 1).
1

Then we coneluge from the above that if k,, &, are denominators of two
consecutive convergents of & 8ay Pp_i/fs-1 2NQ Pnfg,, then one must
have either n =2m and (&) =aj,1 <i<2m or n =2m-+1 and
ai(§) = a},1 <i<2m+1 In either case p, is determined by (L.4)
with a; replaced by a} resp. af. Denote the two possible values of p, by
p* and p? and put

Pt P 1 ]
I =) —,— + -
! [kz ! k, ko (2hy-Ky)
and
I [pz 1 P2
e Ky Feo (2Foy +%y) ! k|
‘We conclude from (2.1) that

(2'5) A(kly k27 z) [ Ilu Iz.

Observe that I, n I, consists of at most one point. This is obvious if
P* =p?% and in case p* # p? it follows from
pl pz

1> 2 )
ky &y

Bul >
/""z - by (koK) - Ty (2FyToq)
which is valid because %, >k, >1 and # > 1. Thus

2
ko (2ky+-K,)

and the lemma will follow once we show that

I, oI, =

Iy © I, —A(ky, iy, 2)| = 0.

icm®
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For this purpose, take

1
n = 1 = [air oy Ggmety Ot Ty‘]

dtaT. 1
1 1
Ogmt ':‘7

for some ¥y > 2. Then a,(n) = [/n] = a} and in general, by the continued
fraction algorithm. (see [5], chapter 10.6),

alp) =ah 1<i<2m and  Gmualn) =Y.

Moreover,
1 1 " d 3 al 1= 1.2_
[a1y .-+ Bam—] = '_1 an [a1y.. ) Gom 5
are the (2m—1)st and 2mth convergent to n. Hence 8, sy ?re the values
obtained in (1.3) foT Qym—y TSD. gam When a; is replaced by ai. As a result,

(2.8)  7p8,—118y = —1 and  (sy, ) =1 (theorem 150 of {5])

and .
@) = ddptlahey, o al = (see (22) and (23)).

' 8 ) ky
Since also (ki, k) = 1, (2.6) and (2.7) imply %, = 81, ks = 81, and toge];t;le;
With Ggmsi(n) =y > 2 this implies neA(ky, ks, 2). On the other han
(see p. 140 of [B]),

17 Yra+r 12_+ 1 -
?f] T yspter  ss sa(ysatsy)
i 1
and r, is the value of pym obtained in (1.4) when a; i8 replaced by aq.
But this is precisely the number we denoted by p! so that

1 1
n= [al, veey Qo+

pl
1% Rtk

This is & generic element of I, and as y varies from z to o0, 7 ru}ns I\z{:ro;liﬁ
all of I,, except for an endpoint, i.e. I, —A (y, ko, 2) cODSISES 010 P
only. A gimilar argument for I, completes the proof of lemma 1.

We now turn to the o )

Proof of theorem 1. Let U be as in (1.8) and %, 7,2 as in (1.9).
Since, by definition of m = m(N, &),

qm<N< q'm+l
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and, by (1.5), @nmys > 1, one has ‘
U(N,z,y,2) = U(Na %, Y, 7).

Therefore, we may and will assume z <1 <y, 1 <2 Notice now that if
(2.8) 0n(&) <N < N < yN < gy (8),

then automatically

(2.9) m(N, &) =mn.

If we also take into account that
Ay, kyy2) =@ it (ky, ky) £ 1
(by theorem 150 of [5]), then we find

(2.10) UN, 2, y,2) = U A (ky, ko, 2)
(Foykeg)=1
Iy <aNUN <ky

; At the same time we gee from (2.8), (2.9) that the summands in (2.10)
are disjoint since ¢, (&) and g,.,(£) are uniquely determined by & and N
Thus

(2.11) U,z = D [Alky, by o)

(Fey kp)=1
ky<eN<YN<ky

-2 e Y
Iy >yN .k5 *<aN 2y -1y

where 3" involves only k, for which (kyy ky) = 1. We evaluate the agymp-
totic behavior of the primed sum for ﬁxed k, in a slightly more general
setting.

Lmvma 2. There emists a constant K, independent of k,, such that (%)

- (2.12)

Z O(ky) ,  D+BO I,)
1’+Ek "ok, 2 DiEB| ST DrmB

B<h<C
whenever B < 0, B > 0 and D+EB =0
Proof. Recall that the sum 3" containg only those k, for which
(k1 k) = 1. In view of (%) ([5], theorem 263)
{1 i on=1,

d) =
ZM() 0 if n>1

amn

(%) @ denotes Euler's function and u the Mébius - ion s
of divisors of k. . Gbius function; d(k,;) = the number

bm@
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one has therefore

w(d)
B;{LOD—!-EM D—!—E‘k1 dkLlez)
1
= > u(d) —
%Z Bdczl;a D+ Bk,
ajky
RNIAC) .
—
D diley a Bd—1<n<0d—1 D(EA)™"+n

Inequality (2.12) now follows from the well-known formulae

1 1og DFEC l
D(EA) +n  EDIEB

Bid~l<ngcd!

D(Eay—-1+0d~1
1 ) it

DES fn

Bi~langCd™? DEd~1+Ba~!

e
< —————= for suitable K
D@ +BdT ’

and ([5], formula (16.3.1))

(d) )
g

An application of (2.12), with the proper choices of B—E, to the
right-hand side of (2.11) leads to the following estimate: .

Z 2 @(kg)l 2ky+aN +0( d(ke)).

10
I ko & ey +1 KUV :

(213) UV, »9,;2)| = H
: Fy>UN

The error term tends to zero as N — oo since d(k) = O (k) for any 6 >0
([51, theorem 315; a better estimate could be derived from theorem 318).

Since, [3],

n
1 k) 6
lim — % =

n
Moo 1o 2=

it follows from a simple summation by parts that (k,)k;" in the right-
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hand side of (2.13) may be replaced by its “average value” 6n~2% Conse-
quently

zkz/N -2 1

(214) lLm|U(N, 29,4 = Jim 12 2 T T W

2
ks
N-oo N—oo SUN

12 F1 prm
=?uf7 ( )

This is just the statement of theorem 1 for # <1 <y, 1 <2

3. The existence of im|S(¥, 4,¢)| in problem 1. Since no explicit

Nesoo
values for the limit in (1.1) can be found by the present method, we restrict
ourselves to an indication of the proof of its existence. As a first step
we give a lemma which is almost a direct corollary of theorem 1.

LeMMA 3. For each k =1, the joint distribution of

(3.1) m-1(8)  gm(€)  Gmii(£) !l1:1+1(‘5) Imix(£) q;n+k(5)
) ¥y '¥’ ¥ ' N7 N ' N

has.alimit.as N — occo..I.e. the measure of the set

{£:0 < E<1, gnb<wN, gn(8) <alN, gmyy(8) > 4N,
nii(€) 24N for 1 <j <k}
has a limit as N — co.
Proof, From (1.3), (1.5), and (1.6) one has the following relations

(3.2) Im-1 _ Gmir _[!lm+1 . N gm
N y N N’

.‘I;n+7'+1 ’ q':n+1 Q':n—H Qmi1 1 gm
3.3 BT Amd Amyl  Amtl , — AT
(3.3) 55 M1 ¥ v + ws N
: Omiir ) g -
(3.4) _—MN L= [@mgr1] ".Z:TH +_“‘qm; -,
and
(3.5) Umyigr = it , 7 ¥ .

N Qs —Gm+i

These relations recursively express all variables in (3.1) as functions of

q q ’
(3.6) Y"-" —}—“, Gz~

bm@
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If these functions were continuous, it would follow immediately from the
fact that the variables in (3.6) have the joint limiting distribution ¢
(theorem 1) that also the variables in (3.1) have a joint limiting distribution
(see [8], p. 425). Bven though the functions in (3.2)-(3.5) are not contin-
nous it is possible to show that the conclusion remains valid because the
functions in (3.2)-(3.5) are “sufficiently nice” and G is “sufficiently
gmooth”. .
‘We are now able to give a partial answer to problem 1.
THEOREM 2. The limit
lim|S(N, 4, ¢)|
N-yo0
exists for all A >0,¢>1.
Proof. It is well known (see theorem 2.18 of [9]) that
(3.7) mir [pE—a| = min_|pé—a| = |gné—Pm| =
a,1<b<N };i’)i Y Qm+1

(here again m = m (N, &) and in the last step we used (2.1)). This implies
for fized b (i.e. the minima in (3.8) are over a only) such that

0n(E) < b < gnia(é);
(3.8) In

Gn+1

= QM]QW.E‘—P'A‘ < g min [pé—a| < b min [bé—al.
(@.b)=1 (a,b)=1

Consequently, if g, < ¢N, then (b is the variable in the first min and a
in the second min)

: . . .4
(3.9) min  min bpé—a| = min ——.
Ot 1<b<EN (a,b)=1 "5251 Qnt1

Let us write M, for the right-hand side of (3.9) if gmy, < cN and take
M, = oo otherwise. Note that N < gu < ol is possible for at most 21og,¢
values of #n because
Ont2 Iniz o
In
Thus the condition M, < 4 is a condition on the finitely many variables
in (3.1) for % = 2loge-1.
For g < N < b < min(gmy,, ¢N) we use the following lemma which
we give without proof.
Levma 4. If

A
2(A+1) <fgn < b < gnia and |b5_"a'| < T:


Pem


192 H. Kesten and V. T. 868

then there exist integers r, s such thai

b =7gn+8Gn—1; @ =TPn-+8Poy
ond |s| < A-+1. In eddition (a, b) = (r, 8) and
yﬁj“SQn—l“Sq;u+}_ )

bE—a| = :
[b&—al i

If we put
M, = minminb|bf—al,
b (ab)=1
where the first min is only over b satisfying
N <b < min(gmsa, ¢N),

then this lemma allows us to express the condition M, < A4 again as
2 condition on the variables in (3.1). In fact, since ¢ in lemma 4 is limited
to finitely many values, one ean write M, as a minimum of finitely many
simple expressions in these variables in the region M, <.A.
Since
S(N, A,¢) = {£: My, <A or M, <A},

one can then conclude that Lim|S(N, 4, ¢)| exist from the existence of
the limiting distribution in lemma 3.
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1. Introduction. Let £¢[0,1], 0 <a<b <1, and denote by
N(M, & a,b) the number of integers %, 1 <k < M, for which o < {k&},
<< b. ({¢} denotes the fractional part of ¢). Our main result gives a criterion
for the boundedness of

(1.1) R(M, & a,b) = N(M, £, a,b)—M(b—a).

This ig stated in

TEEOREM 4. For 0 <a <b <1,b—a <1 and fived & R(M, &, a, b)
18 bounded in M if and only if

(1.2) b—a = {j&} for some integer j.

It was known for a long time (cf. [6], [10]) that (1.2) is a sufficient
condition for the boundedness of R and the result that (1.2) is also neces-
sary confirms a recent conjecture of Erdos and Sziisz [2].

Throughout this paper we shall make heavy use of continued fraction
expansions in the following notations:

The regular continued fraction of an irrational()(?) £e(0,1) is
denoted by '

[a:(€), az(&),...] =

* Alfred P. Sloan Fellow.

(}) We shall ignore rational &s most of the time. They form a set of measure
zero and therefore do not influence the metric result in section 3. Also they constitute
a trivial cage for theorem 4. ’

(?) We use the notation of Chapter 10 of [5] except that we drop a¢(£) = [£]
from our formulae, since a,(£§) = 0 in all our considerations.
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