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La Conférence a été réalisée par les soins de 'Institut Mathématique
de 1"Académie Polonaise des Sciences avec concours de E. Marczewski
et J. Lo& en qualité d’organisateurs de la Conférence, de A. Hulanicki
et M™ M. Lo§, qui ont été secrétaires du Comité d’organisation, et de
A, Birula-Biatynicki, M"® R. Czaplifiska et J. Mycielski, qui ont contribué
aux travaux du Comité au cours de la Conférence. Le nombre des parti-
cipants §’élevait & 66 et b personnes les accompagnant. Il y a eu parmi
eux 40 participants de la Pologne, les autres étant venu des deux parties
de "Allemagne, de I’Australie; de la Grande Bretagne, de 'Hongrie, de
la, Tchécoslovaquie, des USA et de 'URSS. La Conférence a été ouverte
par K. Kuratowski, le directeur de I'Institut Mathématique. On a donné
lecture & 31 communications; 3 autres travaux ont été présentés i la
Conférence en résumés polygraphiés.

Voici le texte de I’allocution d’ouverture, la liste des rapports et
communications dans leur ordre chronologique, les données bibliogra-
phiques qui leur appartiennent et les résumés parvenus i la Rédaction.

7.IX.1964. E. Marczewski (Wrocltaw), Opening address.

The subject of this conference is general algebra, which is also called
universal algebra, or the general theory of algebraic systems, or theory
of general algebras.

I am not going to define the scope of this mathematical discipline
and I do not wish to outline its rather short thirty year history. I do not
feel competent enough. I would not dare to venture my opinion in the
presence of such eminent experts. I would only like to make a few re-
marks and will start with something quite personal.

When T was a young student in the twenties and I first read about
. the group theory, I felt that some fundamental notions of that theory
had nothing to do with the axioms of that theory, and that there should
exist a more general theory to which these notions should belong. I am
sure many people felt that way. And when in the course of development
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of mathematics such a theory, the general algebra, came into being, and
started to grow. I was glad to see that old postulate was finally met.

The general algebra attracts mathematicians of various fields. For
those working in the foundations of mathematics, general algebras
are first of all models for various sets of axioms and, in general, a mathe-
matical tool of metamathematics. For algebraists, general algebra is
a common part of some of the most frequently pursued algebraic theories,
and when they deal with general algebras, they immediately use lattices,
semigroups, rings and other algebras of known classic types. For those
working in the set theory, the general algebra is mainly the theory of
functions of several variables defined on arbitrary sets and of composition
of such functions. The general algebra also attracts people working
in combinatorial analysis, i. e. in the theory of finite sets and relations
in them, simply because algebras containing a finite number of elements,
even only two, are a source of many interesting phenomena and difficult
problems. The logicians investigating the two-valued or many-valued
sentential calculi are also interested in general algebra, since those calculi
can be formulated in general algebraic terms. The topologists are also
interested in general algebra because of Boolean algebras and groups
and because some interesting results on general topological algebras have
been recently found. Also those who are attracted by analogies and re-
lations between the notions and methods of various fields of mathematics,
for the general algebra is the common background where they all fit.

Perhaps the variety of approach of those who are working in the
general algebra, and variety of their taste is the reason why, in spite of
many results and many successful notions, we still do not have a theory
of a generally accepted form. There is no textbook of general algebra,
and no monograph has appeared (). There are only some mimeographed
lectures, and some of us here, and also some who are not, have attempted
to write such books, or at least they feel they should have done so.
It seems to us that so far there has been no conference on general
algebra. Therefore I hope that this conference may be useful.

In this country many papers have appeared long since, which concern
the general algebra, or the general algebra is used in them, or at least
we, their authors, so believe. A part of those papers deals with the general
notions of independence. Recently, such papers have been even more
trequent. Therefore the program of the conference emphasises to some
extent this particular topic. We will also have some lectures on the notions
of independence which no doubt go beyond the limits of general algebra.

(!) A chapter on universal or general algebra is contained in a book by A.N.
Kuro$ on various branches of modern algebra, entitled Lectures on General Algebra
(Moscow 1962). Several months after the Conference a book by P. M. Cohn Uni-
versal Algebra (New York 1965) has appeared.
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The role of general algebra is sometimes compared with the role of
general topology. I think that this comparison is right in some respect,
at least considering some of the dangers which may arise in course of
their development. We know from experience that in research in very
general branches of mathematics it is easy to get stranded in trivial
topics, and caught in the net of overdetailed conditions, of futile genera-
lizations. In this situation it is even more important to exchange informa-
tion, not only about the results but also about problems, new ideas, plans
of future development. I think this conference may serve to this aim.

7.IX.1964. A. Tarski (Berkeley, Calif.), Remarks on some basic
notions of the general theory of algebras.

7.1X.1964. A. I'. Kypom (Mocksa), Paboms MOcKosckux adeeo-
paucmog ¢ meopuul YHUEePCAIbHLT aaz2ebp (voir ce volume, p.131-133).

7.1X.1964. R. Baer (Frankfurt on Main), Group theoretical pro-
perties and functions (voir ce volume, p.285-327).

7.1X.1964. B. H. Neumann (Canberra) and E. C. Wiegold (Caer-
philly) (presenté par B. H. Neumann), A semigroup representation of
varieties of algebras (voir ce volume, p. 111-114).

8. IX.1964. E. Marczewski (Wroctaw), Independence in abstract
algebras. Resulls and problems (voir ce volume, p.169-188).

8. IX. 1964. J. Ptonka (Wroclaw), Remarks on independence in finite
abstract algebras (voir du méme auteur Diagonal algebras and algebraic in-
dependence, Bulletin de I’Académie Polonaise des Sciences, Série des sc.
math., astr. et phys., 12 (1964), p. 729-733; Diagonal algebras, Fundamenta
Mathematicae, sous presse; On the number of independent elements in finite
abstract algebras having a binary operation, ce volume, p. 189-201; Ex-
change of independent sets in abstract algebras (II), ce volume, p. 217-223).

8. IX.1964. J. Schmidt (Bonn), A general existence theorem on
partial algebras and its special cases (voir ce volume, p. 73-87).

8.IX.1964. R. Rado (Reading), Abstract linear dependence (voir
ce volume, p. 257-264).

8. IX. 1964. V. Dlab (Prague), General algebraic dependence structures
and some applications (voir ce volume, p.265-273).

8. IX.1964. K. Urbanik (Wroclaw), Linear independence in abstract
algebras (voir ce volume, p. 233-255).

9. IX.1964. B. Jo6nsson (Minneapolis, Minn.), Decompositions of
relational structures (voir The unique factorization problem for fimile re-
lational structures, ce volume, p.1-32).

9. IX.1964. J. Lo§ (Warszawa), Direct sums in general algebra
(voir ce volume, p.33-38). i
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9. 1X. 1964. T. M. Baranovitch (Moscow), Free decompositions in
intersections of primitive classes of algebras.

For several primitive classes of universal algebras there is a good
theory of free decompositions, i. e. holds the theorem that a subalgebra
of a free algebra is free, the structure of a subalgebra of the free product
of algebras is well described, and, which is usually a consequence of the
preceding two facts, the theorem on the existence of isomorphic refinements
of any two free decompositions of an algebra is valid. All this is true for
the classes of groups, non-associative algebras, loops, algebras with multi-
operators.

Our problem is: Given two primitive classes of algebras K, = (L2, A;)
and K, = (£2,, 4,) for each of which the good theory of free decomposi-
tions holds. What can be said about free decompositions in the class
K = (2, v 2,, 4, v A,), which we call the intersection of K, and K,?

Here we built a theory of free decompositions for the intersection
of classes K, and K, such that the systems of operations 2,5 0,
have the 0-ary operation 0 only in common, and so the identities
A, and A, contain all identities 00...00 = 0 for weQ2, and wel2,,
respectively. For simplicity sake all theorems are formulated and proved
for the intersection of two primitive classes, though by the same methods
they can be obtained for the intersection of any finite number classes.

The theory of the free decompositions of groups with multi-opera-
tors (%) follows as a particular case from the results we obtain here.

10. IX. 1964 R.C. Lyndon (Ann Arbor, Mich.), Dependence in
groups (voir ce volume, p. 275-283).

10. 1X. 1964. L. Fuchs (Budapest), On partially ordered algebras, |
(voir ce volume, p. 115-130).

10. IX. 1964. JI. A. Boxyrs (Hosocubuper), 7Teopemv saosrcenus
6 meopuu aazebp (voir ce volume, p. 349-353). \

10. IX. 1964. E. Szodoray (Debrecen), The relation of abstract
dependence and its equivalents.

The concept of the relation of abstract dependence is to be found
in van der Waerden’s Moderne Algebra. H. Whitney takes () a finite
set as starting point and defines the concepts of abstract independence,
basis and rank by systems of axioms. R. Rado extends (1) the concept
of rank-function of Whitney to infinite sets. M. N. Bleicher, G. B. Preston

() See A. T. Kypom, Ceobodnne CYMMbL  Myavmuonepamopruiz epynn, Acta
Scientiarum Mathematicarum (Szeged) 21 (1960), p. 187-196.

(®) H. Whitney, On the abstract properties of linear dependence, American Journal
of Mathematics 57 (1935), p. 509-533.

(*) R. Rado, A theorem on independence relations, The Quarterly Journal of
Mathematies, Oxford Second Series 13 (1943), p. 83-89.
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and A. Kertész investigate the concept of dependence in the case of sets
of arbitrary cardinality; M. N. Bleicher and G. B. Preston prove (%) the
equivalence of the concepts of dependence and independence, and A. Ker-
tész (%) shows the equivalence of the concepts of dependence and rank-
function. A more general concept of independence has been introduced
by E. Marczewski (7).

The purpose of this lecture is to introduce the concept of basis by
a system of axioms in the case of arbitrary sets, and to prove the equi-
valence of the basis so defined with dependence, independence, and rank-
funetion.

When we define the concept of basis for arbitrary sets, we must
add to the system of axioms of H. Whitney two further axioms:

Let S be an arbitrary, non-empty set. We make correspond to each
finite subset 4 of § a function F,(A’), which is defined on the set of
all subsets A" of 4, and which has the value 1 or 0. We call the set 8
a B-set if the following conditions are satisfied:

(By) if F,(A4') =1 and 4" < A’, then F (A4"") = 0;

(By) if Fy(A') =1, F4(A4"”) =1 and a'eA’, then there exists an
element " of A" such that F,[(4"\a') w a'] = 1;

(By) if 4" = 4 and F 4 (A") = 1, then there exists a subset A of 4
such that A" < A™ and F (4% = 1;

(By) if A" A, Fp(A")=1, F, (4% =1 and A" < A*, then
AT A" c A A"

If for some finite subsets 4 and A’ of a B-set 8 the conditions A’ <
and F,(A') = 1 are fulfilled, then we say that A’ is a basis of the set A.
We call a subset B of S a basis of 8, if it is maximal with respect to the
following property: every finite subset of B is a basis of itself.

A B-set has always a basis, and every two bases have the same
cardinality.

10. IX. 1964 Jan Mycielski (Wroclaw), Independent set in topolo-
gical algebras (voir Fundamenta Mathematicae 55 (1964), P. 139-147).

10. IX. 1964 A. Kertész (Debrecen), Lattice theoretic remarks on
completely reducible algebras.

S. MacLane gives (8) a lattice theoretic interpretation of van der

() M. N. Bleicher and G.B. Preston, Abstract linear dependence relations,
Publicationes Mathematicae Debrecen 8 (1961), p. 55-63.

(®) A. Kertész, On independent sets of elements in algebra, Acta Scientiarum
Mathematicarum (Szeged) 21 (1960), p. 260 -269.

(") E. Marczewski, A general scheme of the notions of independence in mathe-
matics, Bulletin de I'’Académie Polonaise des Sciences, Série des sc. math., astr. et
phys., 6 (1958), p. 731-736.

(8) 8. MacLane, A lattice formulation for lranscendence degrees and p- bases,
Duke Mathematical Journal 4 (1938). p. 455-468.
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Waerden’s abstract dependence relation, by introducing the concept
of exchange lattice:

A complete lattice L is termed exchange lattice if the following
conditions hold:

(E) If o is an arbitrary element in L, and p and ¢ are atoms of L,
then ¢ < a v p <a v q implies ¢ <a v p.

(G) L is relatively atomic, i. e. if b < @ in L, then there is an atom p
in L such that 6 <b v p <a.

(F) If Pis a set of atoms and ¢ an atom of L with ¢ < [ P, then there
exists a finite set of atoms p,,...,p, in P such that ¢ <p, v ... v p,.

An abstract algebra is said to be completely reducible, if it is the direct
union of simple abstract algebras of the same kind. It is easy to see that
the lattice of normal subgroups of a completely reducible group or the
lattice of ideals of a completely reducible ring is an exchange lattice. In
this lecture, in order to clarify the properties of completely reducible
abstract algebras, certain exchange lattices are investigated.

A complete lattice L is called an S-lattice, if S is a set of compact
elements of L such that each element of I is the union of elements of 8
and the conditions

<y oy ;58 eef; o, wyel

imply the existence of elements s,(< @), $,(< @,) with s = s, U 8, in 8.
E. g. the lattice of all normal subgroups of a group G is an S-lattice, if
we take for 8 the set of all normal subgroups generated by a single element
of @.

THEOREM 1. Let L be an S-lattice with the following properties:

(1) a<b<auvp implies b =a v p,

(ii) m~a <b<a implies b =m ~ a for all a,bel, and for every
atom p and dual atom m of L.

Then the following conditions are equivalent:

(a) L is relatively atomic;

(b) the greatest element of L is the union of atoms;

(c) there exist in L dual atoms, the intersection of which is the smallest
element of L; furthermore, L satisfies the minimum condition.

Since a modular lattice satisfies conditions (i) and (ii), then condi-
tions (a), (b) and (c¢) are equivalent in particular for any modular S-lat-
tice. In order to formulate further equivalent properties, we shall need
two definitions. An element b of a modular S-lattice L is called pure,
if for any element s of §, the element b has a complement in the sub-
lattice [0, b w s]. An independent subset B of 8§ is said to be a basis
of L if U B is the greatest element of L. Then we have
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THEOREM 2. For a modular S-lattice L the following conditions are
equivalent:

(a) L is relatively atomic: -
(d) every element of L is a pure element of Lj
(e) any maximal independent set of elements of L is a basis of L.

A maximal independent subset of S in the arbitrary modular S-lat-
tice L is not in general a basis of L. As a basis criterion we have

THEOREM 3. A maximal independent subset B of 8 in the modular
S-lattice I is a basis of L if and only if \J B is pure in L.

A detailed treatment of the subject will appear in the Publicationes
Mathematicae Debrecen.

10. IX. 1964 A. Goetz (Wroclaw), On weak isomorphisms and weak
homomorphisms of abstract algebras (voir ce volume, p.163-167).

10. IX. 1964. W. Holsztyriski (Warsaw), Lattices with real numbers
as additive operators.

10. IX. 1964. M. Makkai (Budapest), On a problem of G. Gritzer
concerning endomorphism semigroups.

Let 20 be a universal algebra (briefly: algebra) and let F (2A), M (A),
H(2U) be the sets of the endomorphisms, monomorphisms, and epimor-
phisms of 2, respectively. (A monomorphism is a one-to-one endomor-
phism, and an epimorphism is an onto endomorphism). Let 2 be the usual
product operation for the transformations of the universe of 20 into itself.
The problem (%) is to characterize the class K of the relational systems
which are isomorphic to (E(2); M (), H (), -A) for some 2.

THEOREM. The class K defined above is precisely the class of the systems
(E; M, H, ) for which the following conditions hold:
Cl. (E;-) is a semigroup with unit element 1;
2. (a) aeM and beM imply a-beM,
(b) xel, yell, ael, and xa = ya imply x =y,
(¢) xeB—M and yeB imply z-yeE—M,
(d) 1eM;
C3. (a) aeH and beH imply a-beH,
(b) wel, yel, acH, and ax = ay imply x =y,
(¢) we BE—H and yel imply y-well—H,
(d) 1eH;
C4. If aeM, beH, xell, yekl, and xva = by, then there exists an element
z in E such that v = bz.

(?) See Problem 17 in G. Gratzer, Some results on universal algebras (mimeo-
graphed), 1962.
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COROLLARY. K is a Horn class (1), KeHC. In particular, K is closed
wnder taking direct products of arbitrarily many factors of K.

The conditions C1-03 are due to Griitzer (*), C4 was found inde-
pendently by Ervin Fried and the author.

A detailed treatment of the subject will appear in the Acta Mathe-
matica Academiae Scientiarum Hungaricae.

10. IX. 1964. Z. Semadeni (Poznan), Free objects in the theory of
categortes (voir ce volume, p. 107-110).

10. IX. 1964. K.-H. Diener (Cologne), Order in absolutely free
and related algebras (voir ce volume, p. 63-72).

11. IX. 1964. P. Freyd (Philadelphia, Penn.), Algebra valued func-
tors in general and tensor products in particular (voir ce volume, p. 89-106).

11 IX. 1964. M. Armbrust (Bonn), Quasi-direct products and de-
compositions.

There are various notions of combining algebraic structures sub-
directly coinciding with the full direct product in the case of finitely
many factors: the direct product itself, the weak direct product (e. g.
in group theory), in generalization hereof the weak direct product with
respect to a selected family of subalgebras by Karolinskaya (12) (wor-
king on algebras with finitary operations) or the L-restricted produet
by Hashimoto (13), and the direct sum of Hilbert spaces. Looking for
a workable decomposition theory it seemed useful to amalgamate all
these “products” and to investigate them under a more general point
of view.

In the following the term product means a universal subdirect
combination of algebras which is fully direct in the case of finitely many
factors, i. e. a function [] assigning to every family (A4,).p of algebras

of the same species a certain (arbitrary) set [[A; of subdirect products
teT

of the 4,, this set consisting of the direct product aione if 7 is finite.
Imposing the directness condition upon finite families only does not make
much sense if there is no connection between finite and infinite families.
The most natural feed-back is furnished by associativity of the combina-
tion in some sense or other. An efficient notion of associativity is that

(%) For definition see T. Frayne, A.C. Morel and D. 8. 8¢ ott, Leduced direct
products, Fundamenta Mathematicae 51 (1962), p. 195-228.

(1) G. Gritzer, op. cit.

(1) JI. H. Kapoaunckasn, pamse pasaoncerus abemparmuns anzeép ¢ om-
Meuernnumu nodareebpamu, Yemexu MareMaTHYECKHX Hayxr 14, 5(89) (1959), p. 230-231.

() J. Hashimoto, Direct, subdirect decompositions and congruence relations.
Osaka Mathematical Journal 9 (1957), p. 87-112.
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of associativity from above: 1 call a product [[ associative from above iff
for every Ae[[A; and for any partition P of 7 and SeP the projection

teT
A®) — f(pryw)y: ved)
is in J]A,, and
teS
A" = {{(pri@)ses)sep: 2 ed)
being eanonically isomorphic to A4, lies in [JA®). The niceness of this
SeP
sort of associativity is buried in the fact that there is a distinguished
product associative in this sense: Calling [[, = [], iff for every (4,).s

[ 4= [ ]

tel teT
in the set theoretic sense, one has a greatest product |]* with this asso-
ciativity property, namely Ae[[*4, itf Ae[] A, for some product []

teT teT
associative from above. 1 have called the elements of |]* A, almost direct

products of the A,. There is a surprisingly simple characterization of
almost direct products:

THEOREM 1. A subdirect product A of the A, (tel) is almost direct
off for any @, yeA and S < T there is a ze A such that prz = pryz for all
teS and priz = pry for all teT—S8; z is uniquely determined.

All aforementioned practically important products are almost direct
products.

Obviously, [[* is finitely associative from below, i. e. for every family
(A)er, any finite partition P of T, and arbitrary

Als’en*At (8eP) and A’en*A‘S)
teS SeP

there is an Ade[[* A, such that
tell’

S ’ P . /
A®) = {(priaoYes: ved}  and A" = {((pr@)rg)sep: @A)

However, this condition does not hold for arbitrary partitions P.
The attempt to escape this inconvenience by enlarging []* must neces-
sarily destroy associativity from above; but there is a weak form of
associativity from above which leads to full associativity from below and
furnishes the most comprehensive product with a smooth decomposition
theory: A product [][ is called finitely associative from above iff the condition
for associativity from above holds for partitions P of 7 such that there
is an SeP containing all but finitely many elements of 7. Here again
we have a greatest product []° finitely associative from above — I have
called it quasi direct product — and the simple characterization is easﬂv
seen to run as follows:



366 COMPTES RENDUS

THEOREM 2. A subdirect product A of the Ay (teT) is quasi direct iff
for any w,yeA and tyeT there is a zed such that pr,z = pryx and Prz
= pryy otherwise; z is uniquely determined.

This product |[° is associative from below but not fully associative
from above. Nevertheless, this notion of product is a suitable framework
to construct a workable and comprehensive decomposition theory:

The representations of an algebra A as quasi direct product of other
algebras correspond — up to canonical isomorphisms — one-one with
the sets R of congruence relations on 4 with the properties

(i) Mo =idy,

ecR

(i) p-()o = AX A for every peR,
oe R
a#p

(ili) 4xA¢R

(condition (iii) is but to exclude trivial factors). The congruence relations
in R are the kernels of the natural projections of A onto the factors of
the corresponding representation. Decomposition theory is thus a matter
of the set A and the congruence lattice ¢' alone (by the way, this is not
the case in algebras with partial operations). The notion of refinement
between representations is to be translated as follows: Quasi direct de-
composition R is finer than quasi direct decomposition S iff every ceS
is the meet of some peR, what is the same as to every peR there is a oel
such that p o ¢. The investigation of the order theoretic structure of
the system of all quasi direct decompositions of an algebra is not very
fruitful without any special information about the algebra; even direct
decompositions are not very pleasant in general. However, there is a lat-
tice theoretic aspect of decomposition theory which gives some nice
results without specializing the algebra considered.

Let, for example, A be a Hilbert space with a compact symmetric
operator: the decomposition of A into the eigenmanifolds of the operator
is an almost direct decomposition of 4 and at the same time induces
a direct decomposition of the complete lattice of topologically closed
invariant subspaces (it is even the finest direct decomposition of this
lattice). Similar examples give rise to the notion of faithful decompositions:
Let A be an arbitrary set and ' a system of equivalence relations on A
containing the identity relation and being closed with respect to any
intersection. Then I call a quasi direct decomposition R < C of 4
O-faithful iff it induces a direct decomposition of €, regarded as complete
lattice, in a natural way, that means iff €' is canonically isomorphic to

the direct product ><[o, 4 x A] of the intervals [0, Ax A] in €. The
oel?

characterization of faithful quasi direct decompositions is given by
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TaroreM 3. The quasi direct decomposition R < C of A is C-faithful
iff
o= ()(e+0)

oeR
for every ceC, g+ o being the least upper bound of ¢ and o in C.
Faithful quasi direct decompositions form a semi-lattice with respect
to refinement:

THEOREM 4. There is always a coarsest common refinement for fimitely
many faithful quasi direct decompositions.

This is not the case with faithful almost direct decompositions.
However, there is at most one nonrefinable faithful almost direct de-
composition which is then the finest one; moreover, the system of all
faithful almost direct decompositions is conditionally complete:

THEOREM 5. For every non-void system of faithful almost direct de-
compositions there is a finest common coarsening.

In some important special cases — for instance, if C is inductive —
the faithful almost direct decompositions form a conditionally com-
plete lattice. If O satisfies the ascending or descending chain condition,
then there are only finitely many faithful almost direct decompositions
and therefore the finest faithful almost direct decomposition exists which
ig finite and hence a direct decomposition of A. Without any restrictions
on O, the faithful direct decompositions of 4 form a conditionally complete
latitice.

A detailed treatment of the first part of this summary is contained
in the paper Die fastdirekten Zerlegungen einer allgemeinen Algebra, I,
which has appeared in this volume (p. 39-62).

11. IX. 1964. Y. Hion (Tartu), Q-ringoids, Q-rings and their repre-
sentations (présenté par A. G. Kurof).

Let A = {a,b,...; be an Q-algebra, i. e. a universal algebra with
a system Q = {w, ¢, ...} of operations. If ® is an n-ary operation, we

w
denote by a,a,...a,® = )a; the reqult of © for the arguments a,, ..., a,.
i

If » is a nullary operation, 0, denotes the unique value of ».
An Q-algebra A is called an Q-ringoid, if, additionally, in 4 is defined
an associative multiplication such that

b Zw‘a,- = jba-i, b0, = 0,

i 7

for any n-ary (#» > 0) operation o, any a;, b, and any nullary operation ».

An Q-ringoid, satisfying the analogous right-hand side conditions
is called an Q-ring. An Q-ringoid without multiplication (i. e. the corres-
ponding “additive™ -algebra) will be denoted by A“,
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The following algebraic systems are examples of Q-ringoids: rings,
semigroups, near rings, neo-rings, distributive lattices.

Let M = {x,y,...} be an Q-algebra and S(M) = {a, b, ...} the
set of all mappings @ — xa of M into itself. Let us consider in & (M) the
ordinary multiplication of mappings and, moreover, let us introduce by
the formulas

“
g | Y .
v(z ai) =3 rag,  x0, =0,
(3

q

operations in S(M) corresponding to those belonging to £.

So, for every Q-algebra M, S(M) is an Q2-ringoid. If A is a primitive
class of Q-algebras, amd MeA, then S?(M)eA.

The set E (M) of all endomorphisms of an Q-algebra M is in general
not closed with respect to operations belonging to 2. An Q-algebra is
called Abelian if for any w, ¢eQ, @1y, ..., Xy ooy Tpuyy ooy T e M (@ n-ary
operation, ¢ m-ary operation) we have

j(jm?) - Zw'(ijf'fw), 0, =i, j(),, =0,.
© 7 q ‘ o

It an Q-algebra M is Abelian, then F(M) is an Abelian Q-ring. It
Med, then E?(M)eA.

THEOREM 1. Any Q-ringoid A is isomorphic with an Q-subringoid
of the Q-ringoid S(M) for a certain Q-algebra M. If A% eA, then it is pos-
sible to choose MeA.

It turns out that not every Q-ring 4 is isomorphic with an Q-sub-
ring of the Q-ring B (M) for some Q-algebra M. In this paper there are
given some necessary and sufficient conditions for the existence of such
a representation of an Q-ring. -

The problem of representation of Q-ringoids and £2-rings is related
with the problem of adjoing of a unit element to them. Let 4 be an
Q-ringoid with 4”eA. An Q-ringoid B (with B?eA) with a unit element e
is called A-free unitary extension F(A, A) of A, if 1° there is a monomor-
phism a: 4 — B, where Aase, 2° for any homomorphism $: 4 > O,
where 0” ¢ 1 and € has a unit element, there exists a unique homomorphism
y: B — O such that g = ay.

THEOREM 2. For any Q-ringoid A eA there exists a (unique up to iso-
morphisms) A-free unitary extension F(A, A).

It is shown in the paper, how, by the aid of free unitary extensions,
a survey of all representations of a given Q-ringoid 4 by mappings of
Q-algebras can be obtained.

It turns ont that not for every Q-ring there is a free unitary extension
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(in the class of Q-rings). A necessary and sufficient condition for the
existence of such an extension is given.

11. IX.1964. E.T. Schmidt (Budapest), Congruence lattices of
abstract algebras.

11. IX.1964. H.J. Hoehnke (Berlin), Finige neue Resultate iiber
abstrakte Halbgruppen (voir ce volume, p. 329-348).

11. IX. 1964. L. Budach (Berlin), Transfinite iterations of functors
and their importance for the theory of ideals.

11. IX. 1964. J. Stlominski (Torun), A theory of P-homomorphisms
(voir ce volume, p.135-162).

*

Lies communications suivantes ont été présentées hors de séances
en résumés polygraphiés:

J. Schmidt (Bonn), Conecerning algebraic independence.

In the Bourbakian hierarchy of mathematical theories, General
Algebra may be considered as the link —hitherto missing or at least un-
derdevelopped — between General Set Theory, the fundament of the
entire hierarchy, and the higher and more special algebraic theories like
those of groups, rings, fields, moduls. It is with General Topology and
its very universal concepts of continuity, compactness, connection ete.,
that General Algebra may be compared in its tendency of developping
and studying algebraic concepts of analogous universality. One of these
concepts is no doubt that of independence in the algebraic form, the
importance of which has been emphasized by Prof. Marczewski in a short
note in 1958, and which was already semi-published, but never actually
published, in a lecture of Philip Hall in 1949, as we have been informed
in the lecture of Prof. B. H. Neumann held in New York in 1961-1962.
It is well known that this concept of independence is closely related
to the notion of a free algebraic system that goes back to a famous paper
of Birkhoff in 1935. In my communication, I want to give a summary
of a part of a general theory of algebraic independence which contains
the above notions as special cases.

Let us consider the species of algebras (A, (f:)iz) of type 4 = (K)o,
i. e. the fundamental operations f; being of types K; respectively, fi: A% — A.
A, B being algebras of type 4, subset M < A is B-independent iff each
B-valuation of M, p: M — B, can be extended to a (necessarily unique)
homomorphism ¢: CM — B, CM being the closure of M in algebra A,
i. e. the subalgebra generated by B. In particular, @ < A is B-independent
iff there is a (necessarily unique) homomorphism ¢: C 4,0 — B (which is
onto Cp@); this is always the case if type 4 is without constants, i.e. K; = O
for all iel, C 0 then being empty for all algebras A of type 4. B being

Colloguium Mathematicum XIV 24



COMPTES RENDUS

370

any class of algebras B, one may call M B-independent iff M is B-in-
dependent for each BeB. The largest class B such that M is B-inde-
pendent, ind M = {B | M B-independent}, is called the degree of indepen-
dence of M (with respect to algebra A). This class is primitive, i. e. closed
with respect to direct products, subalgebras, and homomorphic images;
in particular, any algebra B of order [B| <_1 belongs to ind M. These
notions are (i) invariant, i. e. preserved under isomorphisms; (ii) absolute,
1. e. not depending on the entire algebra A, but only on subalgebra CM;
(ii1) hereditary, i. e. if M is B-independent, then so is any subset M’ < M
(M" <« M implies indM' = ind M).

There are two extreme special cases: (i) ind M is the entire species
(the largest primitive class); then M is called absolutely independent.
It is well known that this is the case iff the following Generalized Peano
Awioms hold true:

P1. fi(a)¢ M for any index iel, for any sequence ae (CM)%i;
P2. fi(a) = f;(b) implies i = jand a = bforany i, jel, a, be (OM)%i,

(As a matter of fact, adding the Awxiom of (“complete”) Induction:
P3. CM = 4,

we obtain the full set of Peano Axioms for the case of an arbitrary type
4 = (K;)ir, the classical case being the special case 4 = (0, 1).) Answer-
ing a question of mine, Diener has obtained the remarkable result that M
is absolutely independent iff M is B-independent in any extension B
of A and O is absolutely independent in 4 (this indispensable additional
condition holding trivially true in the special case without constants).
The extremally opposite special case: (ii) ind M is the smallest primitive
class that consists precisely of the algebras B of order |B| < 1; we may
call M absolutely dependent, the inner characterization of absolutely de-
pendent sets may be put as an open problem.

Then the “normal” case of a set M = A lies between those two ex-
tremes of absolute independence and absolute dependence. Let us con-
sider the important special case that A itself belongs to ind M ; this what
has been called independence by Prof. Marczewski, Hall-independence
by Prof. Neumann in honour of the quoted lecture of Philip Hall. There
is the remarkable Marczewski Independence Criterion: M < A is inde-
pendent iff g(idy) = h(idy) implies g = h, for any algebraic operations
g, b of type M in algebra A, id,, denoting the identical sequence of type
M in A. This criterion has been proved by Prof. Marczewski in the case
of finitary fundamental operations f; and has been generalized by me to
arbitrary infinitary operations. It may be considered as the combination
of the following fundamental facts: (i) the independence of identity opera-
tions, i. e. the set B (A) of identity operations of type M in A is an A-
independent subset of algebra 0™ (4) = A4™ of all operations of type M
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in A, or what is the same (due to absoluteness of independence) of the
subalgebra FM(A4) < OM(A) of algebraic operations of type M, i.e. the
subalgebra generated by E*(A) (this is the reason why F(A4), Tarski’s -
“function algebra of order M over A7, is called the “free algebra in M
variables over A” by Birkhoff); (ii) the representability of elemenis of
CM by means of algebraic operations, i. e. (as a consequence of (i)) there
is one and only one homomorphism of F(A4) into A, onto CJM, which
carries identity operation e¥: A™ — A into zeM, namely the restriction
of the natural projection of direct power 44™ onto A which belongs
to index idy e A™ (in particular, each element xeCM may be represented
in the from x = g(idy) with suitable ge FM(A)); (iii) the regularity cri-
terion  for homomorphisms: a homomorphism ¢: CM < A — B where
M is (A-) independent, is injective iff ¢| M is and ¢ (M) is A-independent
(in B) (this is an obvious generalization of a regularity criterion for linear
operators). .

Closely related to this general regularity criterion is the following
theorem of Philip Hall: a surjective homomorphisms ¢: A = CM — B,
where M is an (A-) independent subset and therefore a basis of 4, is fully
invariant (i. e. its congruence relation ¢ 'ogp admits all endomorphisms
of A or, what is the same, each endomorphism o of 4 induces a — ne-
cessarily unique — endomorphism = of B such that to¢ = ¢oo) iff [B] < 1
or ¢| M is injective and ¢(M) is a (B-) independent subset and therefore
a basis of B. There is the following strengthening of Hall’s theorem: we only
assume M to be B- (instead of A-) independent and replace “fully in-
variant” by “superinvariant” (i.e. each homomorphism y: A —~ B in-
duces a — necessarily unique — endomorphism v of B such that rop = p).
There is an even more general theorem which delivers as another special
case the following transitivity of independence: if M is a B-independent
subset of A, N a C-independent subset of B of power |N| > | M|, then M
is a C-independent subset of A.

This important property involving cardinals may be strengthened
by means of the dimension introduced (in an ordinal form) by Stominski,
the dimension 8 of A = (K;);; being defined here as the least infinite
regular cardinal number > all | K,|. First, we have the following strengthen-
ing of hereditariness of independence: M is B-independent iff so is any
M" = M of power |M'| < 8, i.e.

indM = () indM’;
MM
PUMES-

the exactness of this upper bound being left as an open problem (¢).

(%) This problem has been solved in the meantime by Peter Burmeister and
the author (added in proof).
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By combination with transitivity: if M is B-independent in A,
N C-independent in B, of power |N| > 8, then M is C-independent in A.
This is an important clue for structural insights like: if B contains a C-
independent subset N of power |N| > 8, then C is the homomorphic
image of a subalgebra of a direct power of B, e. g. of subalgebra F°(B)
< BBY. This can be used for a structural characterization of the “func-
tionally free” algebras in the sense of Tarski, and for an extreme general-
ization of Birkhoff’s theory of equations.

S. Fajtlowiez (Wroclaw), Properties of the family of independent
subsets of a general algebra (voir ce volume, p.225-231).

B. Weglorz (Wroclaw), Remarks on compactifications of abstract
algebras.

A topological algebra is a general algebra in the set in which a Hausdorff
topology is defined in a way that algebraic operations are continuous.
By a compactification of a topological algebra 2l we mean a compact
topological algebra that contains 2l as a dense subalgebra and such that
the induced topology coincides with the topology of 2. A compactifica-
tion of an abstract algebra 2 is a compactification of the discrete topolo-
gical algebra 2.

THEOREM 1. Let Y be a completely regular topological algebra such
that the fundamenial operations have mo more than one variable. Then A
admits a compactification.

TuEOREM 2. If 2 is a completely regular topological algebra which,
in addition, is R,-compact and locally R,-complete, then 2 admits a com-
pactification.

Let 2 be an abstract algebra, K an arbitrary class of compactifi-
cations of 2. We say that a topological algebra K is a maximal com-
pactification of 2 with respect to the class K if the following conditions
are satisfied: \

(i) 8 is a compactification of 2;

(ii) any algebra TNeR is a continuous homomorphic image of K
and the homomorphism is a continuous isomorphism on the embedding
of 2 into K and N, respectively.

(iii) if a topological algebra M satisfies (i) and (ii), then & is a con-
tinuous homomorphic image of M and the homomorphism is a continuous
isomorphism on the embedding of 2 into 9N and K, respectively.

THEOREM 3. For any non-void class K of compactifications of an abstract
algebra AU there exists a maximal compactification of 2 with respect to the
class K. Any two mazimal compactifications of 2 with respect to K are
topologically isomorphic.



