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1. The following paper is related to the well-known and stil un-
solved monotone mapping problem. That is, if f is a monotone map
of B" onto E, then is f a compact map [7]? Whyburn [6] has shown
that for n = 2 any monotone mapping of E* onto K* is necessarily a com-
pact mapping. B. H. Connell [1] has shown that if f is a monotone map-
ping of B" onto B such that for p ¢ B, Ha[f (p)] = 0 for n = 1,2,..,
then f is compact.

The close relationship between upper semi-continuous decompositions
and the monotone mapping theorem are well known ([8]; [7]). In fact
the theorems of Proizvolov [4] would give the monotone mapping prob-
lem as an immediate corollary if all the results were correct. In [23, -
I point out the existence of particularly nice counter examples to the
two main theorems and to two corollaries of Proizvolov. Lemma 2,
below, also furnishes a counter example, but the mapping there is not
as simple and does not yield as much further information as in [3].

The main result is that for m > %> 3 there exists a monotone
non-compact mapping of E™ onto E". Also we get that for m > n > 3
there exists a monotone non-compact mapping of E™ onto &° and this
generalizes easily to a monotone non-compact mapping of E™ onto
8 xB*, where 3+ % < m.

2. The standard terminology E", 8" will denote euclidean =-space
and the n-sphere, respectively. F} will denote the closed half space
of B" given by {» ¢ B"| # = (#, ..., %) and s > 0}.

A mapping f taking X onto Y is monotone if counter images of
points in ¥ are continua (that is, for y e ¥,/ (y) is a compact con-
neeted set) ([4], [6]). A mapping f taking X into ¥ is compact if for
each compact set .4 C ¥, (4) is compaet. We will call a map f of X
into ¥ non-compact if f is not compact (that is, if there exists a com-
pact set A C¥ such that 77'(4) is not a compact subset of X).

A compact set X is an absolute retract, denoted AR, if and only if
for each homeomorphism of X onto a subset i(X) of a compact space ¥,
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h(X) is a retract of ¥ (that is, there exists a continuous mapping r:
Y +h(X) such that r(y) =y for each point ¥ e h(X)).

3. TeMmA 1. For each m > n =1 there ewists a continuous mapping f
of B™ onto E% . Furthermore, for each point y € "t we have the following:

y e B % {0} CHY,

| point eE" if
B y e W — (B" x {0}).

an (m—n)-sphere CE™  if

@)

Proof of Lemma 1. The mapping f is immediate if we consider
B as Box8™™ with y x 8" ™" identified to a point for each y N E"“; X
% {0} C B% . Hence for @ ¢ B, # corresponds to a point (y,p)e Iy x g
and we define f taking ™ onto E} by letting f(#)=4y.
" Lmnra 2. There emists o 1-1 continuous map ¢ taking B onto E°.

Proof of Lemma 2. Let U = intI% the unit cube in F* Let D
denote the front face of I® Since U--intD is homeomorphic to B, it
will suffice to show there exists a 1-1 continuous map g taking U-+intD
onto an open subset ¥ of E® which is homeomorphic to E®. The map g
will be gotten by describing a sequence of 1-1 continuous maps '{gi}
=0,1,2, .., where g; deforms the image of g;—1 by only moving points
in an open set Ny; of the image g;_1, so that gi(N¥—1)C open set M;CE?,
and the diameters of N;—; and M;—0 as i->co. The first map g, will
deform V +intD into an open solid torus I' plus an open annulus
W CBAT where W bounds the “hole” of 7' The remainder of the maps
will give us a process of ‘filling” the “hole” which will be the set V.

Now for some details. In order to deseribe the maps g: it will be
convenient to lable certain points of Bd.D. Let B denote the top edge
of BdD, with left end point e and right end point ¢. Let f and ¢ denote
the left and right end points, respectively, of the bottom edge of Bd.D.
Let [, si, ti, ] be a countable infinite collection of 4-tuples of points
of B (always ordered as given from left to right) with the following
properties:

(1) the interval [uy, v,] of F lies in the interior of F;

(2) for i =1, [u;, V4] C(%i—1, 8,‘_1);

1 .
(3) diameter of [us, m]<?ﬁ, i>0.

Also, for each i, let us denote the semi-circular open arc in intD,
having % and v as limit points, by 4; and the region of int.D bounded
by Aio [u4, 0] by R;. Finally, let ab be a vertical closed gpanning
segment of D so that the top point a of ab lies in ¥ between ¢ (the left
end point of B) and u,.

The map ¢, is gotten as follows. g, will fold U+intD around, pre-
gerving levels, so that the right vertical edge ¢d of Bd.D matches up
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with ab and ﬂle light Afacg\ of I* matches up with the region of intD
bounded by ea+ab+-fb-ef, say D,. Then 9o(U+D,) will be the open
solid torus 7' and gy(D—D,) will be the open annulus W bounding the
“hole” in 7.

In describing the maps g; (4=1), we will only modify the image
of gi-1 in a small neighborhood N, (in the image of g;_y) of gi—a(Ri—a).
g, will make use of N, to fill most of the “hole” of T—in so doing form
another such torus (except now with a smaller curved ‘“hole”). g, will
make use of N; to fill most of the new “hole” and again form another
such torus with a smaller curved “hole” yet. The size and shape of these
“holes” will be of the magnitude of A;, for each gi.

g, will fold over go(R,) (folding forward) so that the part of the top
edge of go(R,) corresponding to the open interval (sy, #,) of B is matched
up with 4, and points of N, are used to fill in the resulting “cylinder”
ggrresggonding g g,,(’l\(u), lvhere K, is the region of intD bounded by
ab+ aty+ A4+ vy¢+cd - bd. The annulus W, bounding the “hole’ of the
new torus formed will be given by #{90(Ro+4,)), where W, curves
around in a similar manner as 4,. g,(¥,) will be contained in the “hole”
of T; this will correspond to the open set M, in EP ag promised.

The maps ¢ (¢ 2) will now merely repeat the above procedure
folding over the decreasingly smaller regions corresponding to R;_;, and
using ;-1 to fill in the resulting decreasingly smaller “cylinders” formed.
A neighborhood of the region in FP filled in will be our My's of the first
paragraph of the proof. Clearly by taking the foldings as nice as possible
we can insure that N; has diameter <1/4* (diameter B; < 1/4™%) and
that M; has diameter < 1/4“1. Each g¢ is 1-1 and continuous, and only
moves points in N;—y with ¢4(N;-,) C Mi. Also the sets Ny and M;—>0
a8 i-»co and in fact they will converge to the point which will correspond

to ﬁ [, v;] which does not lie in the desired set V= T plus “filled
holz;”l.

If we define hi= g (gi_l(...(g,,(U-{-intD))...)), then g = ?Eh;. Note
g =h; outside of 7 (Ns) (i =1).

Remark 1. In [3] it is shown that the 1-point compactification
of ¢(intD) is a compact AR (in fact, general conditions are given so
that this is always true). Also the explicit compact AR is given.

Levuma 3. There exisis o 1-1 continuous map @ iaking H: onto E™
(n =>3). .
Proof of Lemma 3. Considering B} as B} xE"™°, G(z)= G(p, q)
=(9(p), g) where p ¢ B%, ¢ B"® and ¢ is the map of Lemma 2.
Remark 2. In [3] it is shown that no such map exists for n = 1 or 2.
12+


GUEST


icm

180 L. C. Glaser

TEMMA 4. There emists a 1-1 continuous map h taking B onto §°

Proof of Lemma 4. The description of i here will be much sim-
pler than that of g in Lemmsa 2. The author discovered the map h first
and in trying to prove you could not get a 1-1 continuous of B onto B*
diseovered the map g also.

In order to describe h, let us consider a solid closed cone with the
disk forming the base of the cone removed. Since this is homeomorphie
to B%, it will suffice to get a map & of this set onto §% Also for pe
int (cone), if we can get a 1-1 continuous of the above set —{p} onto E®
5o that the map is the identity in a neighborhood of p, we can also get
our desired h. Or, another way of looking at this is to consider p as the
point at infinity and then it will suffice to get a 1-1 continuous map
of E3—{open solid cone O+ closed disk ¥ forming base of €'} = M onto E®.
The boundary of M is an open disk D and under the 1-point compact-
ification of E®= E®+ {w}, M + {w} is topologically equivalent to ..

The mapping & of M onto B® will be described by making use of
the construetion of a contractible 2-complex known as the dunce hat.
The dunce hat is the decomposition space gotten by identyfying a line
segment L corresponding to a radius of a circular closed digk F' with
its boundary. That is, the dunce hat is formed from ¥ by wrapping L
around BAF in a smooth manmner so that under the resultant identific-
ation, the end points of L have been identified, along with L to BdPF.

We can repeat this same identification on the open disk D of BAM
except using a segment L in D as a half-open line segment. Let M’ de-
note M under such an identification (in fact M’ can be gotten from M
in B® by merely deforming D and hence a neighborhood of D in M so
that D becomes a dunce hat). Let 2’ be the natural 1-1 continuous map
from M onto M'. M’ is topologically equivalent to B®— {open solid cone
C'+open disk E’ forming base of ('}. Here, however, the cone 0’ is
twisted so as to lie “inside” the dunce hat. That is, ¢ will contain the
dunce hat. Let k' correspond to the 1-1 continuous map which results
by pushing up points near the bage of ¢’ in M’ to fill the hole and hence
get E® Then the desired % taking M onto FP is merely b= h" oh'. The
map h taking B% onto 8° results by extending h to take oo onto oco.

LeMMA 5. There emists a 1-1 continuous map 1-1 taking By onto
S xE (n=3).

Proof of Lemma 5. Considering B} as B x B ™", H (x) = H(y,p)
= (h(y), p) where y eEL, p e B"" and } is the map of Lemma 4.

THEOREM 1. For m>mn =3 there exisls a monolone non-compact
map F taking E™ onto B '

Proof of Theorem 1. By Lemma 1 there exist a continuous map f
of ™ onto EY} so that inverses of points in E% are points or (m—mn)-
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spheres. By Lemma 3 there exists a 1-1 continuous map @ taking EY
onjm E". Then F = Gof. F is monotone since inverses of points
points or (m— n)-sphere. F is non-compact since @ is (
any ball in B" intersecting G(E"* x {0})).
THEOREM 2. For m>n>3 there ewists a monotone
X = ! ne non-compact
map F taking B™ onto §* xE*3, ’

are
that i3, consider

Proof of Theorem 2. Let f be as in the proof of Theorem 1.

By Lemma 5 there exists a 1-1 continuous ma i
n : $ p H taking E% onto
S xB". Then F = Hoj. £
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