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§ 1. Introduction. Let I'= (L, v, n,0,1) denote a distributive
lattice. I' is called Brouwerian (see [4]) if there is an operation a—b
(called pseudo-difference) such thatb

{a—bCo) =[aC(bwe)]. ) .

- We .shall consider in this paper the following three algebraic (struc-

tural) properties of lattices: ) ) ‘
1. The property of being Wallman, which means- that:

. (a ¢ b) = there is @ such that (0 #dCa)(bAd=10).
: v2. .‘The regﬁlarity of I': ‘ . . ‘

(2) (a @ b)=there are ¢ and d such that (¢ d=1)(age)(bnd=0).

) :_ '2...,'1‘.he_ normality of I'. . C L ) 2

(3) ‘(a}\b= 0) = there are ¢ andﬂd such that (cwd=1) (wnc,zo =b~d) .
Remark. It is easy to see that assuming the lattice to be Brou-

werian one can replace the formulas (2) and (3) by the following:

@) . . (agDb)=there is d such that b d =0 and adl—d,.

(8") (@ ~b=0)=there is d such that b~d=0 and an(1—d)=0%
The three above defined properties of T have algebraic aspect (they

have been defined without introducing any topology in I'). Nevertheless,

they origin is topological.. In fact, in order-that the _lafi':t:icev_zx of closed
subsets .of a topological space X. be structurally regular (resp. normal)

it is necessary and sufficient that the space X Dbe Iegula§ (resp. ii_b_rmall)_i
in the usual topological sense. If X is a G.-space, then 2% is structurally

‘Wallman. (the ¢onverse is nob true).
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The exponential topology of a 1att10e that we are going to consider
(and which in the cage of the space 2% is its Vietoris topology) is defined
as follows (see [2] where an extensive list of references is given).

Denote by I(a) and J(a) the ideals:

(4) I(a)={z: 2Ca} and J(a)=1{2r:2~a=0}.

The exponential topology of L is the coarsest topology in which
the ideals I(a) are closed and J(a) are open. In other words: the open
base of L is composed of sets of the form:

(8) B(ay, ay; ..y an) = J (@) — I () — ...— I (atn)
= {z: (@~ ayg=0)(x ¢ a) ...

(x G an)} .

It is worthy noticing that the following assumption can be made
about the sets B(ag, @y, ...; @n):

(6) aCa; i 1<gi<gn.
For, it is easy to see that ‘
(7) B(@g, @y vy Ga) = B, g Gy, vy Gy )

(of course, if n =0, we have B(a,) = J ().

In §§ 3 and 4 we shall establish for Brouwer and Wallman lattices I
equivalence between structural regularity, respectively structural nor-
mality of I', and its corresponding topological properties. Among others
we shall show that the topological regularity of these lattices is equiv-
alent to their complete regularity (this theorem and a number of other
theorems here considered have been proved by Michael for the case
I =2% X being a topological space; see [5]).

§ 2. Basic properties of I(a) and J(2) in Brouwerian Wallman
lattices. Let us start with the obvious statement: if & w b =1, then
J(ayCI(b). As av (1—a)=1, it follows that
@ - J(a)CI(1—a),

(ii) J(1—a)CI(a).

We ghall show that the formulas (i) and (ii) can be strengthened
as follows:

(iif) I(1—a) =J(aj,
(iv) J(1—a) =1IntI{a).

In fact we shall establish the more general theorem:

THEOREM. Let I' be a Browwerian Wallman lattice. Suppose that con-
dition (6) of § 1 is satzsfwd Then we have

(0)  J(ag)—I(a)—..—I(an) = I(L—ap)~J (1—a,)—

—I (1~ an) .
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Proof. For the sake of brevity, denote by B the first term of the
above identity (B being defined by formula (5) of §1) and by C its
second term.

According to formulas (i), (ii), and to the fact that the ideals I are
closed and J open, we have B C ¢. We shall show that ¢ C B.

Let p e 0 ~n G and G open. We have to define an element ¢ of L
such that

)] ' qeGnB.

We may suppose of course that & belongs to an open base of L.
Hence we may put (comp. § 1 (5)):

@) @ = J (o)~ I(b))— ..~ I (bm),

2" b, Ch .
As p e C, we have

(3) pCl—a,,

(4) p(l—ag) #0 for 1<i<n.

and as p €@, it follows that

(6) Prby=0,

(6) . pgb for 1<j<m.
Formulas (3) and (6) give

(7)) 1—ay by, hence (8) a@pub;#1,

gince svy =1=1—yCa.
(4) and (5) imply

©) 1—as@by, hence  (10)

The lattice I' being Wallman, it follows from (8) and (10) that there
are ¢; and d; such that

(1) ¢ #0, (12)
(14)  di 50, (18)

agw by #1.

(13) e nbd;=0,
di~by=0.

ernay=0,
dinag=0, (16)

Put g= (6, v ... W lm) v (dy v ... v dy). Formula (1) is fulfilled, i.e.,

A7) gnb=19, (18) ¢ by, (19) gna=0, (20) g a.
Indeed: (13), (2'), (16 =>(17); (18), (11) =¢; ¢ by=(18); (12), (15) =
(19) by virtue of §1 (8); (14), (15)=ds ¢ as=(20).
* Remark 1. In order to denve (iii) from the preceding theorem,
we put n =t 0. (iv) is obtained by putting n=1 and a, = 0. This 1mpl}es
the following
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COROLLARY. - Under the assumptions of the theorem we have

T (@) =T (@)= T{am) = T (@) A —L(a) A e v =1 (an).

Remark 2. Without assuming condition (6) of § 1, we have

T (o) — T (@) — <=1 (an) = J (@) A= L (@ 1) ~er v —I(ag " tn)
= I{1—ap)—d [1— (4 v ay)]—...—J[1—(ao v an)] ,

§3. Relations between structural regularity and the Haus-
dorit topology of a lattice.

TeporEM 1. If I' is structurally regulm, then L s topologwally
Hausdorff.

Proof. Let a = b, e.g. a ¢ b. In virtue of the regularity of I', there
are ¢ and d such thzut cud=1,a¢ecand bnd=0. Put U=—1I(c)
and V = J(d). Hence U and V are open and contain a and b, respectively,
Furthermore U and ¥V are disjoint, since for every ¢ we have @ = (€ ~ ¢) v
v (z~d) and if 2 ¢V, then © ~ d = 0, hence = © n ¢, i.e. #C ¢, which
means that x ¢ U.

THEOREM 2. Let I' be a Wallman and Browwer latlice and let the
space L be Hausdorff. Then I' is st’ructumlly regular.

Proof. Let a ¢ b. According to §1 (2') we have to define ¢ such that
(1) brne=0 and agl—c.

I" being a Wallman structure, there is p such that
(2) pAb=0 and O0x#pCa, hence bzxdbup.

L being Hausdorff, the last inequality implies the” existence of two
digjoint open sets @ and H such that be @ and (b v p) « H. Obviously,
one can assume that: & and H -belong to a base of L. In other terms,
there are two systems a,, ..., aw and b, ..., by such that:

(3) bra,=0, bga for i=1,..,m,

(4) C (bup)aby=0, (bup)gb for j=1,..,m,

and t}lere‘ exists no o satisfying simultajne@)usly the conditions:

(5) “.a;n%;_o,. % ¢,“f,’ w_mbo =0, @ (Z‘b; (i=1,.., m;:j =1,..,0).

Put ¢ = a,. In order: to‘prove (1), it remains to show that a ¢1l—c
Suppose the contrary is true, i.e. @ C1—a,, hence by (2)

(6) ' pCl—g,.
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We shall define pi, for ¢ =1, ..., m, and g;; for j =1, ..., n, 0 that:

(n : Pin(bva)=0, pi¢a,
(8) G (byoa) =0, q;¢b;s;

and then we shall put s =p,v..upnu g v..uU g One sees easily
that @ satisfies formulas (5), which means a contradiction. Thus the
proof will be completed.

Now, we define p: according to the Wallman condition applied to
the formula b ¢ a; v a, (which is a consequence of (3)); this yields:

(9 pin(aiva)=0 and 0#pCh.

But by (4), b ~by=0, hence the last inclusion give’s ps by = 0. Thus
according to (9) ps: satisties (7).

According to the second part of (4), there are for each j two
possibilities: : : .

1. either b ¢ b;, which yields b ¢ b; v a, (by (3)),

2. or p ¢ by, therefore p & bs v by (by (4)) and then by (6) 1—a,
¢ by by, which implies that a,w by by #1.

By the Wallmian condition there is g; # 0 which satisfies either
formulas

(10) grnbjua)=0 and ¢Cb,
or ‘
(11) ' g5~ (B by by) =0

Formula (10) implies that ¢; ~ b, = 0 since b ~ by= 0 (by (4)). Thus
in both cases, part.one of (8) is satisfied. Part two is satisfied too since
q;nb,—_—o and q;;&O :

COROLLARY. Let I' be a Brouwer and Wallman lattice. Tlien the fol-
lowiﬂg conditions are equivalent:

1. I' is structurally regular,
2. I' is topologically Hausdorff.

Tet us recall that these conditions are equivalent to each of thé
following (see [3] and [1],"D. 723):

3. the set {(x,y): w—y =0} is closed,
4. the mapping o—y: LxL->L is lower semi-continuous (1).

(*) The mapping f:- X—L is lower semi-continuous if the set {z f(a:) c a} is closed
for each a eL. .
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§ 4. Relations between structural normality and topological
regularity of a lattice.

LeMMA. Let I’ be a Brouwerian and structurally mormal lattice. Let
an~(l—c)=0. Then there exists a mapping f: R L (where R denotes
the set of rational numbers of the form k2", k=0,1,...,2") such that

1) 1(0)=a,

2) 1)y =¢,

(3) ) rp<m=>f(rg) n[1—f(r)] =0,

hence )

(3) 1o <t =[(r) Cf(ry), e [ 48 isotonic.

Proof. We proceed by induction. For n = 0, we define f(0) and f(1)
according to (1) and (2). Then (3) is obviously satisfied. Let » > 0
and k¥ odd. We may suppose that (3) is fulfilled for n—1. Hence

(e aleal

By formula (3') of § 1, there is an element of L—Ilet us denote it
by j( )—such that

) f(kr,nl) [1 f( )]=°%f(;) [1 7(k+1)]

By assumption f is an isotonic mapping for »’s having 2" as de-
nominator. Hence (4) implies (3) for the denominator 2.

AUXILIARY THEOREM. Let f: R L. Put O(z) = f[—dJ (2)] = {r: {(r) ~
Az 0} and F(z) = C(z) (= closure respectively to 3). (%) Suppose that
f satisfies (1), (2) and (3'); then the mapping F: L->27 is upper semi-
continuous.

Furthermore, if f satisfies (3), F is continuous.

Proof. 1. We bhave to show that, under the assumptions (1), (2)
and (3), if @ # A = 4ACJ, then the set

FUT(4)] = {&: F(z) ~ A =@}
is open. Put
(8) . : a=gup 4.

0

(®) 3 denotes the closed interval (01). A mapping F: X->2¥ is called upper &emb
continuous if the set {z: F(z) ~ 4 = 0} is open for each A4 closed in ¥,

©
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Let us note that if a=1 and 2 ~c¢+0, then aeF(x) ~ 4, ie.
leF(w) (since f(1) nax %0 by (2)). f 2~ c= 0, then C(x)= 0. Thus
(if a=1):

[F()nA Ol=(@ne=0), ie. FJ(A)]=J()

and the latter set i open by definition.
Hence we may assume that a« <1, We shall show that

(6) FUJ(A)] = TL)JaJ[f(T)],
what will complete the proof.

First, suppose that @ ¢F '[J(A)], ie. that F(z) ~ A =@. Since
aed, it follows that « ¢ F(z). Consequently, there is an r > a such that
r ¢ Olx), il.e. [(r) ~n@ =0, or equivalently = ¢J[f(r)].

Next, suppose that for an 7,> a, we have z e J[f(ry)], i-e. f(ro) ~ @
= 0. It follows by (3') that if f(r,) ~n2z #0 (ie. 7, ¢ C(w )) then r, > 7,.
In other terms, C(x) is contained in the closed interval (r,, 1), and so
is F(z). As 7, > q, it follows by (5) that P(z) ~n 4 = @, i.e. z e F[J(4)].

This completes the proof of (6).

2. Suppose now that condition (3) is fulfilled. We have to show
that F' is continuous. It remains to show that F is lower semi-continuous,
i.e. that the set F~'[I(4)] is closed for each A = 4 CJ. We shall prove
indeed that

FI(4)] =TQAI [1-7n1,

what will complete the proof since the sets I(z) are closed.
First, suppose that zeF[I(A)], ie. F(z)C A. Hence C(z)C 4,
which means that [f(r) n @ # 0]=r ¢ A for each r ¢ B. Otherwise stated:

T¢A=>_[f('r) Ane=0]=2Cl—f(r) =z eI[1—f(r)].

Next, suppose that » §FI(A)], i.e. F(z) ¢ A. Hence there is 1, <1
such that ry ¢ F{z)—A4. As F(z) = C(w), we may assume that 7, e O(2).
As 7,¢ A= A, there is 7, >r, such that 7, ¢4, and as ryeC(m),
ie. f(ry) ~n@w 70, it follows by (3), that a ¢ 1—f(r). Consequently
o ¢ I[1—f(ry)]. :

COROLLARY 1. (GENERALIZED URYSOHN LEmuA.) Let I' be a Brou-
werian and structurally normal lattice. Let a ~b=0 where a =0 3 b.
Then there is a continuous mapping ¢: L->J such that

(7 p(a)=0 and, more generally, anz#0=>p()=0,

(8) p(b) =1 and, more generally, xCb=g(z)=1.
Proof. According to formula (3') there is ¢ such that
(9) an(l—e)=0 and bne=0,.

Fundamenta Mathematicae, T. LVIII 15
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Hence by the lemma there is f satisfying conditions (1)-(3
F like in the Auxiliary Theorem and pub

@(x) = infF ()
(agsuming that inf @ = 1).

As inf: 297 is continuous (@ being isolated in 29y and as F L>93
is continuous by the Auxiliary Theorem, the composed mapping ¢: L3
is also continuous.

Tn order to show (7), consider an @ such that @(®) 5 0. Hence there
is #> 0 such that 7¢ C(x), ie. f(r) na=0. It follows by (3') that
f(0) ~nz =0, i.e. a ~no=0 (by (1)). Thus (7) is fulfilled.

Next assume Cbd. By (9), cno=0. It follows that C(z) =
Tor suppose 7 e C(x), ie. f(r) ~ & 5 0; then by (8') (1) n@ #0, ie.
¢a® 0 (by (2). The identity C(z) =@ yields tp( )., 1, which com-
pletes the proof of (8).

TrrorEM 1. Let I' be Brouwwerian and Wollman. If I' is struciurally
normal, then L is topologically completely regular.

Proof. Let a,¢ A where 4 is a non-void closed subset of L. We
have to define a continuous function y: L —~J such that

(10) wlag)=0 and x(@ =1 for awed.

If ao =0, we put £(0)= 0 and y(s)=1 for # 5 0; y is continuous
since 0 is an isolated point of L. Thus we may assume that a, # 0. Put
%(0) = 1. Hence we may assume that 0 ¢ A. Finally it may be assumed
that A belongs to the closed base of I, i.e. that (ef. § 1 (5)) there exist
Do, byy ..y bu all different from 0 and such that
(11) (wed)=(xnby#0) or (2Ch) or..or (2Cbhy).

As ay ¢ A, we have gy ~ by= 0.. By the corollary (where we replace
a by b, and b by a,), there is a continuous v, L3 such that
(12) wolw) =1, byna #0=y(z)=0.

Since a, ¢ by for =1, ..., n, thereis an as (I' being Wallman) such
that 0 2 asC a4y and a; ~ by = 0. According to the Corollary, there is
a continuous ¢;: L->J such that:

(13) anw #0=>px) =0, hence qyay) =0,
(14) 2 Cbs=pi(x) =

Put
(18) 2(@) = max[1—yy(@), ¢a(@), .., pa(®)] .
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Obviously y is continuous. Then x(a,) = 0 by (12) and (13). Further-
more, if @ ~ by % 0, we have y(#)=1 by (12), and if 2 C b;, we have
4(@) =1 by (14).
It follows by (11) that (10) is satisfied.
Conversely, the following is true.

TEEOREM 2. Under the same assumptions, if L is topologically re-
gular, I' is structurally normal.

Proof. Let a ~b=0, ie. aeJ(b). As J(b) is open, there is by
virtue of the regularity of L an open @ such that
(16) ae@ and GCJID).

We may assume that @ belongs to a base of L. Hence we may put
(see § 1):

G =J(a))—I(a)—...—I(as), where a,Cay.
As a € @, it follows that:
) ana=0,
(18) aGag for 1<i<n,

and as GCJ(b) we have by § 2 (0):

(19) I(1—a)~J(1—a)—
In view of (17) and of § 1 (3'), it remains to be shown that (1—a,) ~
A b= 0, i.e. that (1—a,) eJ(b), or that 1—a, belongs to the left mem-
ber of (19), which means that (L—ag) n(1—as) 0 for ¢=1, ..., 2.
Now, this follows from (17) and (18). For (18) implies a ~ (1— as)
#0, and by (17), a = a  (1—ay).

COROLLARY 2. For Brouwerian and Wallman lattices the conditions
of topological regularity and of topological complete regularity are equivalent.

—J(L—an)CI (D).

Finally, let us recall that the structural normality of the lattice I’
can be characterized also by each of the two conditions (see [2], p. 16):

1. the set {(w,y): @ ~y=0} is open,

2. the mapping @ ~y: L XL L is upper semi-continuous.
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Two theorems on the generation of systems of functions
by
Karl Menger and H. Ian Whitlock (Chicago) *

This paper deals with two basic questions about multiplace func-
tions (“functions of several variables”) defined on a finite set N
= {1, ..., m}. How many functions can k functions generate by com-
position, and how many functions are needed to generate by compo-
sition all p-place functions?

The essential feature of the paper is its algebraic approach to the
subject matter in contrast to the traditional treatment of functions in
logic (*). Consider e.g. the functions over N,. By composition, the two
basic logical functions, negation and disjunction, do not generate more
than eight functions, namely, the four 1-place funetions, four of the
sixteen 2-place functions and none of the higherplace functions (see
Example 2). All that Sheffer’s stroke (herein denoted by a frontal A)
generates are four of the 2-place functions. The traditional statement
that A (z,y) also generates e.g. the 1-place negation #(x) is based on
the fact that n(x) = 4(x, x). But in so saying one substitutes x for ¥;
and similarly one substitutes 4 (y,z) for y in saying that A(x,y) ge-
nerates 4 (x, A(y, z)). Substitution of an expression for a variable, how-
ever, is not the composition of functions. Nor is it possible to obtain
any 1-place of 3-place function from 4 by compositions.

From our strietly algebraic point of view, we prove that the max-
imum number of functions that k functions can generate depends
upon k but (except for trivial limitations) is independent of the place-
numbers of the functions (Corollary 2 of Theorem I). At least p func-
tions are mnecessary (Corollary 3 of Theorem I), and p properly chosen
functions are sufficient (Theorem II), to generate all p-place functions
for p > 1 with one important exception: the 2-place functions over N,.
Thus while three functions are needed to generate all the 2-place func-

* Theorem I and its Corollaries are due to the first author, Theorem II is the
work of the second.

(*} Another algebraic approach to the study of multiplace functions is the Mar-
czewski abstract algebra which, however, stresses the domains of the functions rather
than their composition.
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