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Generalized idempotence in cardinal arithmetic
by
E. Ellentuck * (Princeton, N.J.)

1. Introduction. Set theories including the axiom of choice are
dominated by absorption laws which completely trivialize the problem
of idempotence and idemmultiplicity of infinite cardinals. Using the
usual algebraic nomenclature we say that a cardinal m is idempotent
if m=m? and idemmultiple if m = 2m. A direct application of Zorn’s
lemma shows that every infinite cardinal is both idempotent and idem-
multiple. Conversely, Tarski has shown (cf. [9]) that the idempotence
of every infinite cardinal implies the axiom of choice. For the moment,
let us understand by set theory the usual axioms of Godel-Bernays,
excluding the axiom of choice. Since the axiom of choice is relatively
independent of set theory (ef. [1]), the existence of infinite non-idem-
potent cardinals is relatively consistent with set theory. It is therefore
natural to inquire into the various pathologies concerning idempotence
and idemmultiplicity which are relatively consistent with set theory.
As a consequence of these observations we see that our theorems will
have the character of relative consistency results, i.e., will have the
form, “If set theory is consistent, then no inconsistency obtains the
additional hypothesis ¢.”, where ¢ expresses some unusual property of
cardinal arithmetic.

There are regularities in the additive theory of cardinals which do
not appear in its multiplicative counterpart unless use is made of the
axiom of choice. Of chief importance is the fact that without using the
axiom of choice we can prove that if % is a non-zero integer, and m
and n are cardinals, then

1) Em<kno>m<n  (cf. [10]).

That we do not have a multiplicative analogue of this theorem follows
from a result of Tarski (cf. [9]) which asserts that the cancellation

* We are particularly indebted to Professor Myhill for his encouragement regarding
this research, and refer the interested reader to the latter’s parallel investigations in [6].
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law m@=12->m=n for all cardinals nm and n implies the axiom of
choice.

Now suppose that for some cardinal m, and integers 0 <j <% we
have jm = km. Then we will also have jm < (f+1)m < km = jm. Since
the Cantor-Bernstein theorem holds without the aziom of choice, it
follows that jmt = (j-+1)m. Mathematical induction on the integer ! will
then give us jm=Im for every 1> j. In particular if I= 2§, then jm
= 2jm. Hence as a consequence of (1) we have m = 2m. Induction on
the integer ! will then give us m = Im for every !> 0. Thus the terms
of the sequence of successive multiples m, 2m,3m,... are either all
distinet or all identical, and one of the following two cases must arise:

’

(2) m<2m<3m<..,
3) M= 2m = 3m = ...

‘Which does is completely determined by the initial relation between m
and 2m, i.e., by the idemmultiplicity of m.

Considerably less can be sald about the sequence of successive
powers 1, m2, m? ... If for some integers 0 <j <% we have m/=m¥, then
as in the preceding paragraph the Cantor-Bernstein theorem and in-
duction on the integer 1 gives us mJ = m! for every !> j. Thus one of
the following two cases must arise:

(4) m<m <N <
or for some integer % >0

(5) m<m <., <mi-l b =mhtl =

There are several easily obtained relations between powers of a car-
dinal and multiples of those powers. If for some integer j > 0, m/ = 2my,
then for every integer 1> j, m! = 2!, This follows by multiplying both
sides of the former equation by m*~. Let us assume in the sequel that
m > 1. If for some integer j > 0, m? = m/+?, then an application of the
Cantor-Bernstein theorem gives m/ = 2m/. Thus one of the following
three cases must arise:

am < 2m? < ..,
(6) (A
m< m<..,

or there is an integer %> 0 such that
2m < 2m? < L. < 2MEl < 2k < L

(7) VoV ey [
m< m<..< mtla k<.
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or there are integers 0 <k <! such that

2m < 2m? <L < 2ME < 9mE << L, < 21 = OmitE — .,
(8) v % v I il i
m< M<a. < Ml M < m= mtl=...

Let min, when applied to a predicate containing the free integer
variable % be the least integer operator when it exists and equal to w
otherwise. For any cardinal m define chy(m) = min,(m» = 2m»), chy(1m)
= ming(M* = M), and ch(m) = {chy(m), chy(m)>. ch(m) is called the
character of m, and generally for m > 1, 0 < ¢hy(m) < chy(m) < w. Thus
for (6), ch(m)=w, wd, for (7) ch(m)= (k, 0, and for (8), ch (1)
= <k, I>. In terms of these notions our principal result is that except
for the restrictions developed in the preceding paragraphs, the existence
of cardinals having arbitrary character is relatively consistent with seb
theory. More precisely:

THEOREM. If set theory is consisient, then mo inconsistency obiains
under the additional hypothesis that, “For all a, B, with 0 < a < < w,
there is a cardinal m having the character {a, p>.”

We prove this theorem by exhibiting a model of set theory which
contains cardinals having the desired characters. Generally there are two
methods available for the construction of such models. First are the by
now classical Fraenkel-Mostowski (henceforth FM) models of set theories
containing urelemente (cf. [4]). Second are the more recent Cohen mod-
els of Godel-Bernays set theory (cf. [1]). Although it is possible to obtain
our theorem musing models of either type, FM methods encompass fewer
technical difficulties. Consequently urelemente set theories will be ex-
clugively used throughout the remainder of this paper.

2. Preliminaries. Let G be a set theory differing from that of [4]
only in regard to an additional axiom:

(1) There is an infinite set K of all urelemente. (1)

(}) Urelemente are a lowest layer of objects out of which it is possible to con-
struct a set theory. Although individually they contain no elements, they are distinct
from one another as well as from the empty set (henceforth denoted by ). S is essen-
tially a variant of the Gtdel-Bernays axiom system with a weakened axiom of extension-
ality so as to allow for the possible existence of urelemente. On a first classification
the objects of & are divided into the categories of ‘individuals’ and ‘classes’. x is an
individual if for some, y, = €y.  i8 a class if it is either A or for some y, y e x. Indi-
viduals (classes) are denoted by lower (upper) case Latin letters unless expressly stated
otherwise. Objects which belong to both categories are called sets. Our resulting theory
is symmetrical in that it provides for proper individuals (the urelemente) as well as
for proper classes. Between these two extremes lie the sets which are the natural do-
main of mathematical discourse.
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@ is obtained from & by adding the axiom of choice for sets of
finite sets, S+ is obtained from S by adding the prin.ciple O.f line.ar Ol‘del"~
ing, and &** is obtained from G by adding the a}uom.ot choice. It. is
known that &+t G+, &% & in that order are of strictly dec.reasu%g
strengths. Bach of the following leminas, theorems, and corollaries will
be Iabeled as to the theory in which it occurs.

We denote ordinal numbers by lower case Greek letters and define
them in such a way that each ordinal number is the set of all ity pre-
decessors. An ordinal number is an infeger if both it and each of its
predecessors contains a largest element. Integers are denoted by lower
case Latin letters. co is the first ordinal which is not an integer, and as
a set, is the set of all integers. A is the empty set.

The notion of a cardinal number may be defined by the method
of Seott (cf. [8]). First we recursively define a hierarchy of sets
Ry=K, Rs= R; U B(R:) (where P is the power set operation), and
Ry =\ {Re: £< 2} for limit ordinal 2. An application of the axiom of
regularity shows that each individual » is an element of some Rg. Then
we define the rank of &, t(x) as the smallest ordinal nwmber & such that
o ¢Ry. In particular the urelemente are exactly those individuals of
rank 0, and sets all have positive rank. We denote equivalence between
sets by = (in context 4 =~ B) and take it to have the usual meaning
that there exists a one to one correspondence mapping 4 onto B. Using
these concepts we define the cardinal number of a set M as
(2) {4: 4
According to this definition the cardinal number of A is itself a set
which we shall denote by |M|. Let I' be the class of all cardinal numbers.
Members of I' will nsually be denoted by lower case German letters
unless we specifically wish to refer to the set of which it is a cardinal
number.

We say that a set is finite if it is equivalent to an integer. A cardinal
is finite if it is the cardinal number of a finite set, or what amounts
to the same thing, if it is the cardinal number of an integer. Distinct
integers have distinct cardinal numbers and the ensuing correspondence
preserves order in both the ordinal and cardinal sense. For this reason
we shall sometimes identify the notions of an integer and a finite cax-
dinal. @ is the first ordinal which is not finite. We say that a set is
denumerably infinite if it is equivalent to o, and take %y =|w|.

A function is a class of ordered pairs () satisfying the usual many
oneness condition. By requiring that a function be a class we insure

=

M A (VB)(B = M>1(4) <t(B))]}.

(*) The ordered pair (w,y) is the set {{x}, {»,}}. This is noted because in the
sequel we shall distinguish between ordered pairs and 2-tuples.

icm°

Generalized idempotence 245

the uniqueness of the function with empty domain. If 7 is a function
and # is an individual ‘then by F(z) we mean the value of P for the
argument # if # is in the domain of F, and the value A otherwise.
If 4 is a class then by F[A] we mean {F(z): © ¢.4}. Let F be a function
and 4 a set. Indicate a restricted quantifier by appending the restriction
to the quantifier bracket. Then we define the general direct product by

(3) XxX{(z): wxed}= {f: fis a funetion with domain

AN (Va)lf (x) e Fl2))} .

Let M and N be any two sets. Take F(0) = M, F(1) = ¥ and 4 = {0, 1}.
The special case of (3) which results for this 7 and 4 is called the direct
product of M and N and is denoted by M x N. Let M be any set and %
an integer. Take F(i) = M for 4 <k and 4 = k. The special case of (3)
which results for this F' and 4 iy called the direct power of I and is
denoted by M". Tt is not diffieult to show that if M ~ M, and ¥ = N,
then M XN =~ M, xN, and M* =~ M% Consequently we are justified
in defining the cardinal product and cardinal power operations by
mi = | M X N| and m* = | I¥| respectively, where M and N are any sets
with m = | M| and n = |N|. We shall systematically abuse this notation
only in the case where either m or n is an integer by failing to distinguish
between the integer (an ordinal) and its cardinal number. Thus, for
example, we write km in place of |km for any integer k and cardinal m.
A function # whose domain is an integer % is called an ordered k-tuple.
In this case we let x; = ®(i) denote the ith component of x and write
X =By, ..., Tp—1y. Ordered k-tuples of cardinal numbers will also be
denoted by lower case German letters.
For any set M, let us define

B(M)={d: AC M A|A] <},

(5) P(M) = {Ay o | J{M": 0 <k < ).

It is not difficult to show that if M o~ M, then B(M) =~ F(M,) and P(IH)
= P(MM,). Consequently we ave justified in defining e(m) = |B ()| and
p(m)= |P(M)|(®) where M is any set with m = |}|. In terms of these
operations we have the following three lemmas, the proof of the first
being quite elementary and consequently omitted.

S-LeMMA 1. For any cardinals m and n, (1) e(xg) = 8y, (ii) e(m-m)
=e(m)e(n), (iil) e(m 4 x,) = xe(m).

{*) The author is grateful to the referee for suggesting the operation p and for
the statements of lemma 2, and (i) of lemma 3. Further, the use of p has considerably
shortened many of the original proofs of lemmas found throughout the remainder of
this paper.
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S-LemMa 2. For any cardinal m >0, p(m) = p(p(m)) = xop(m).

Proof. We prove this lemma by giving individual demonstrations
of three parts corresponding to the inequalities p(m) < p(p(m), p(p(m))
< nep (1), and xyp(m) < p(m) respectively.

Part 1. Obviously m < p(m) and it is not difficult to show that
p is an increasing function. Hence p(m) < p(pmu)}.

Part 2. Let M be a set with m = | M|]. We shall construct a one-one
function f mapping P (P(M)) into o X P(M). Let & eP(P(M)). ta= 4
let f(z) = <0, A). Otherwise for some integer k>0, 2= {&yy .-y Tp—1)-
If every component of z iy A let f(z)= ky A>. Otherwise let
A = {i: m; % A}. Take y to be the sequence obtained by amalgamating
the sequences @y, i< A, naturally ordered by the index ¢, and let n
be an integer whose prime power representation indicates how 2 may
be uniquely obtained from y. In this case let f(#)= {(n, ¥>.

Part 3. If m=1 then p(m)=x, and we are done. Therefore let
us suppose that m > 1. Let M be a set with m = | M|, containing two
distinet members ¢ and b. We shall construct a one-one function map-
ping o XP(M) into P(M). Let z e w xP(M). It 3= <n, 4> let f(x) be
the sequence consisting of n+1 a’s. Otherwise # will have the form
{m, w> where u is a sequence of elements of M. Let ¢ be the first ele-
ment of a, b (in that order) which is not the last member of the se-
quence #. Take y to be the sequence consisting of « followed by n-+1
of the ¢’s. In this case let f(z) =y. Q.E.D.

S0 -LeMMA 3. (i) For any cardinal m > 0, p(m)=wye(m). (ii) For
any integer k> 0 and cardinal m, spe(nm) = xye(km).

Proof. We prove (i) by giving individual demonstrations of two
parts corresponding to the inequalities 8;e(m) < p (M) and p(m) < 8,e(m)
respectively. Let M be a set with m= [M]|. Bach element z e H(M)
is a finite set and consequently is equivalent to some integer k. Since
there are only finitely many such equivalences mapping « onto %, we
may use the axiom of choice for sets cf finite sets to choose one, and
then use the chosen equivalence to induce an ordering on . Thus there
exigts a one-one function h taking each z e B(M) into some k-tuple
composed of all the elements of .

Part 1. We shall eonstruct a one-one function f mapping w X E(M)
into w X P(M). Let x e o xE(M). If 2 = <{n, A take f(x) = ». Otherwise
@ has the form {(n, 4> where u is a finite non-empty subset of M. In this
case take f(@) = (n, h(u)). Thus Nee(m) < x,p(M). But by the preceding
lemma p (1) = 8,p (M).

Part 2. We shall construct a one-one function f mapping P(M)
into wXE(M). Let zeP(M). If = A take f(z)= (0, A). Otherwise
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# will be a sequence of elements of M. Let 4 be the set of distinct terms
of # and # an integer whose prime power representation indicates how
@ may be uniquely obtained from k(y). In this case take f(z) = {ny Yo
(ii) of the lemma now follows by simple algebra. If m =0 then e(m)
= ¢(km) and we are done. Otherwise by lemma 2 and the monotonicity
of p, p(m) <p(km) < p(p(m) = p(m). Hence p(m)= p(km). But then
by (i) of this lemma nje(m) = xye(km). Q.E.D.

Before resuming our study of cardinal character it is necessary
to introduce the notion of a Dedekind finite cardinal. A set is Dedekind’
finte if it is not equivalent to a proper subset of itself. A cardinal is
Dedekind finite it it iz the cardinal number of a Dedekind finite set.
Let 4 be the class of all Dedekind finite cardinals. Tarski (cf. [10]) states
that for every cardinal x the following conditions are equivalent:

(i) zed,
(ii) = #3x+1,
(6) (i) ~w<x,

(iv) (Vm,n)(z-+m=x+n->m=n),

)
(v) (Vm,m)E+m<r+n->m<mn),

These equivalences are obtained in & and serve to provide alternative
definitions of 4. For our purposes (iii) is extremely useful. In terms of
sets it asserts that a set is Dedekind finite if it has no denumerably
infinite subset. It is well known that 4 is closed under the cardinal oper-
ations of plus and times. It is of considerable importance that A also
has the following closure property. ’

S°-LEMMA 4. If med then e(m) ed.

Proof. Suppose that me4 and M is a set with m = | M|. If E(H)
is not Dedekind finite then it has a denumerably infinite subset
{44 i < o} of distinet elements. Without loss of generality we may suppose
that each Bip= 4z— |J {4s i <k} is non-empty. Then {B:: i< w} is
a denumerably infinite disjoint family of non-empty subsets of M. By
the axiom of choice for sets of finite sets we may choose elements x¢ ¢ By.
But then {#:: i < w} is a denumerably infinite subset of M. This is
a contradiction. Therefore (M) is a Dedekind finite set. Q.B.D.

3. Main construction. With these preliminary lemmas out of the
way we will proceed to construet cardinals having specified character.
In order to have this character the cardinal must satisfy certain equa-
lities and certain inequalities. In this section we shall present several
cardinal polynomials which by virtue of their form automatically satisfy
the proper equalities. In the next section we shall show that in an ap-
propriate model of set theory the proper inequalities are satistied as well.
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Let £> 0 be any cardinal and p(¥)= % No. Unless we wish to
accent the cardinal ¥ we will generally write p instead of p (¥). The follow-
ing lemma is quite elementary and is consequently offered without proof.

S-LeMMA 5. For each integer s > 0, p* = x5+ 8o¥~L.

G-COROLLARY. Let x e and s> 0 be any integer. Then

(i) of p®=2p° then ¥ < 8¥ 71,

(i) if p®=pst! them x° << ReX*L.

Proof. If ps = 2p° then - x¥5~1 == 23°4- K¥*~1. Since x e 4, ¥ e 4
as well and we may therefore use the Tarski cancellation theorem
(ef. (6) (iv) of section 1) to obtain sex¢~1 = x5+ s,¥°~*. But this implies
our result. (ii) is treated in a similar fashion. Q.E.D.

Let k>0 be any integer and *= (%, ..., ¥-1) any k-tuple of
cardinal numbers with x;_; > 0. Consider the expression
(1) qr(%) = e(%)+ ...+ 6 (Xg—2)+ Ro¥p-1
Unless we wish to accent the k-tuple ¥ we will simply denote this ex-
pression by q. Let Y and J] be the repeated sum and product oper-
ations as applied to cardinal numbers. Now for each integer j <k let
us define t;(x, 0) =x, and for 1 <i<j

@) ty(x, i) = %o 2 (I fe(xa): Ged): ACHA|A] =4}

and t(x, 1) = 14(z, j) for integers 7> 4. We will often omit the argu-
ment ¥ and simply write this function as 1y(4).

S'-LEMMA 6. For each integer s =%, ¢ —2,’0,—1 (8—§) %1
i=

Proof. Consider the multinomial expansion of °. Clearly the coeffi-
cient of ¥§_; is t1(0)=s,. For any 0<j<s the coefficient of ¥,
is a sum of terms each having the form t= &[] {e(aszs): ¢ < k—1}
where the ass are integers which sum to s—j. Hence by lemma 3
there is a set 4 C k—1 containing s—j or fewer elements such that
t= x5 J] {e(x0): e A}. We can expand A to a set BC k—1 contain-
ing exactly min{s—j, k—1} elements such that t< %, J] {e(x:): 4 ¢ B}
But this implies that the coefficient of ¥};_, is dominated by k- ,(9—7)
The coefficient of z%., is a sum of terms each having the form
t=J] {e(aixs): 4 < k—1) where the a/s are integers which sum to s.
Hence by lemma 3

<o ] {eaxs): i <l—1} < <so[]{e(xi): 4 <k—1}.
Thus we see that the coefficient of *%_; is dominated by tr-a(k—1)
=1;_1(8). By combining these results we see that q® is dominated by
®

3) D tiea(s— )
=0

7
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Now since s—1 > k—1, tra(s) = t;_1(s—1). Consequently for the first
two terms of (3) we have

Ba(s—1)xps < Tia(s) + tya(s—1)%py

But tr-1(s—1) is idemmultiple and hence by the Cantor-Bernstein theo-
rem the first term of (3) is absorbed by the second term. Consequently
q¢ is dominated by ’

4) D teea(s— ) ¥y
7=1

Conversely it is clear that every term of (4) ix dominated by some term
in the multinomial expansion of q¢. Hence by the Cantor-Bernstein
theorem (4) equals ¢°. Q.B.D.

&°-CorOLLARY. (i) g* = 2¢¥,
then

< 2ta(s—1)%py .

(i) 4f for some integer s =%, q° = qs+1

8
41 o F
0o < Ztk-q(s“])ﬁn—l .

”km7<kh+2h

Proof. The coefficients of ¥;_; for 0 < § < k—1 in the multinomial
expansion of q’~ ! are treated exaectly as in the preceding lemma. The
coefficient of ¥}, consists of [] {e(xs): ¢ < k—1} as well as terms of the
form t =[] {e{asx;): i < k—1} where the a;’s are integers summing to
k—1 and some a;> 1. But then there is some set 4 Ck—1 with fewer
than k—1 elements such that s, [] {e(a:x:): © < k—1} = s, J] {e(z:): 1 e 4}.
Suppose that 4 has k—1-—j elements. Then t< s J] fe(x): 5 A
< ty-a(k—1—7). Consequently tp_i(b—1—f)%h—1 < t+tios(k—1—j)xhs
< 2t y(k—1—§)¥_,. But the idemmultiplicity of tp_i(k—1—j) implies
that t is absorbed. Q.E.D.

&- COROLLARY. If X, ...,

G- LeMMA 7. (k—1—j)%h_,.

¥p-oed and qF~1 = 2q*-1 then
k-1
[T i< -1y < X ta(e—1—j)xh.
i=1
Proof. Since each %;e4, e(x)ed as well by lemma 4. Hence
Il {e(xs): 4 < b—1} e 4. Now use the same procedure as we did for the
corollary to lemma 5. Q.E.D.
Let 1>7%>0 be any integers and = <%, ...,
of cardinal numbers. Consider the expression

(h) (%) = € (%) + oot 6 (¥pm2) -+ ¥ [(¥po1) + ... +e(T11) -

Unless we wish to accent the I-tuple ¥ we will simply denote this ex-
pression by t.

%1y any [-tuple
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©v-LeMMA 8. For any integer s =%, 8= h(s).

Proof. Consider the multinomial expansion of t¢. Terms occuring
in it will have the form t= afl {e(aexs): 4 < 1} where a is either 1 or s,
and the ag’s are integers summing to s. By lemma 3 there is some
%t AC1 with s or fewer elements such that t<x I {6.(0:1$1): 1< 1}
=K, H‘{e(xi): ieA}. We can expand 4 to a set BC containing exactly
min{s, 1} elements such that t<Cs, [Tie@:): ie B} < tz.(ﬂ). But then by
the idemmultiplicity of tys), 1 < ti(s). Conversely it iy clga.r that any
term of h(s) is dominated by some term in the multinomial expansion
of ts. Hence ¢ = ti(s). Q.E.D.

©°- COROLLARY. (i) tF = 2tk,
so [T {e(za): 4 < 1} < H(1-1).

For our final lemma we need the additional function

(i) ¢=1, (i) if vl=1l then

6) tpa(x) =so 2 T fe): ied) ACINA#E—1A|4]= k—1).

Unless we wish so aceent the I-tuple ¥, we will simply write this func-
tion as Up_;.

S0-LeMMa 9. vh-1 =[] {e(xs): ¢ < k—1}-Up—1.

Proof. Consider the multinomial expansion of t®-. A term occur-
ring in it will either be [1{e(x:): i < k—1} or else have the form
t = aJ]{e(asx:): i <1} where ais either 1 or &, and the as’s are integers
summing to ¥—1 with either a; > 1 for some ¢ < k—1 or a; > 0 for some
i > k—1. Hence by lemma 3 there is a set AC1l, 4 # k—1 with k-1
or fewer elements such that 1< g [] {e(asxs): 4 < U= g/ fe(xe): tedl.
We can expand 4 to a set BCIl, B k—1 containing exactly k—1
elements such that t < so]] {e(%:): © e B} < Uzx—;. Conversely it is clear
that any term of u,.; is dominated by some term in the expansion
of %1, Our lemma follows by the Cantor-Bernstein theorem. Q.E.D.

©°-COROLLARY. If %, ...,%—s €4 and 151 = 2tk~1 then

ITie(x): i < k—1} <pey

4. The model. Let S*(ch) be obtained from &t by adding the
hypothesis:

(1) For any ordinals « and B, 1 < a<f < w, there ewists a cardinal
m¢ A4, having character {(a, B>.

In this section we will show that if & is consistent, then so is G*(ch).
We do so by the technique of FM models. We have seen in the last
section how the cardinals p, q and r satisfy the equalities necessary to
have specified character. Further if they do not satisfy the necessary
inequalities, then certain dependencies are introduced between the car-
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dinals x¢. Hence our problem is to find a model of set theory and of the
principle of linear ordering, which contains cardinals that are extremely
independent in some imprecisely defined sense. .

Before proving our theorem we shall give a brief resume of the FM
technique (cf. [4]). It is well known that if & is congistent then so is
the theory &+* which is obtained from & by adding the axiom of choice.
In [4] a model W+ is constructed in S*+ which satisties the axioms
of &, the principle of linear ordering (and consequently the axiom of
choice for sets of finite sets), but which does not satisty the full axiom
of choice. Roughly speaking we construct B+ in the following way.
By the axiom of choice there exists a dense unbordered ordering < of
the infinite set K of all urelemente. Let G+ be the set of all <-monotone
permutations of K and let M*= H(K). For g G* and o ¢ K, let g, |
=g¢@). If ¢K let |p, x| = {p, y|: ¥ ex}. This will inductively extend
the action of permutations in G+ to the whole universe of individuals.
For A e M*, let

(2) &1 (4) = « 6*: (Va)afp(a) = o)} ;
3) I+ = {o: (EA)(Vpdoreal|p, o] = @)} -

£* ig essentially the class of those individuals which are symmetrical
with respect to M*. W+ will then consist of all individuals which together
with every element of their transitive closure belong to X+. We define
the primitive notions of our model as follows. The individuals of the
model are just the members of MW+ The classes of the model are just
those classes B C I3* such that (HA)u+(Vp)e+s(V2)(z e B = |p, 2] ¢ B).
The ¢ of our model is the restriction of the ordinary e relation to the
individuals and classes of the model. We shall use the same symbol 2B+
for the composite notion of the model as well as for its domain of indi-
viduals. It is not difficult to verify that I3+ satisfies the axioms of &.
A seb A « M* i3 said to support an x e Wt if (Vo)g+(|p, | = =). The
crux of the rather involved proof that B+ satisfies the principle
of linear ordering consists in showing that every individual in the
model has a unique minimal support. The notion of support and the
theorem on minimal support extends to classes of the model in the
obvious way. .

Many notions are absolute with respect to B+, i.e., they assume
the same meaning with respect to I+ as they do with respect to the
universe of S+, Besides the absolute notions mentioned in [4], we can
easily show that the ordinals belong to W+, and are absolute (are exactly
the ordinalg in the sense of the model). Further, each ordinal has empty
support. o is absolute and consequently so is the notion of finite. K e W+,
has empty support, and since the notion of being a set is absolute, the
elements of K are precisely the members of ¥+ which are urelemente
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in the sense of the model. Let us indicate notions relativized to the model
by appending a superscript ‘¥ to the symbol for that notion.

S+ Lemma 10. (K is an infinite Dedekind finite set.)t

Proof. Since finite is absolute, K is clearly infinite in I+ Suppose
that K were not Dedekind finite in 98+, Then by the absoluteness theo-
rems of [4] there would exist a one-one function fGﬂB:’",' mapping o
into K. Let A ¢ M+ support f. Since the range of f is infinite and A is
finite, we may choose an element  in the range of f but not in 4. ’1‘.11e.11
for some % ew, (n,z)ef. Choose ¢« GH(d) such that ¢(z) # o. Since
permutations commute with ordered pairs and integers have empty
support |@, (n, z)|= (lg, |, lp, o)) = (’”‘7‘?(*”")) elp,fl=1. Th‘fm (”7?’(”")) ef
But 7 is a funetion, consequently ¢(z)= @ which contradicts our choice
of ¢. Q.E.D.

For some integer 1> 0, let ¥ = (¥, ..., ®-1> be an l-tuple of car-
dinal numbers. Consider terms constructed from the X; having the form

(4) s(x) =[] {e(xo): i e A} ] (=12 i e B}

where 4 and B are disjoint subsets of I, and & is a function mapping
B into . In this case we say that s(x) has the type <4, B, k). If 5(%)
and s,(z) are terms having types {4y, By, hoy and <{4,, By, hy) respectively,
we say that the type of s,(x) is greater than or equal fo that of sy(x) if
4,C 4, ByC By, and (Vi)my{ho(4) < Iu(i).

Let K, i < I, be a partition of K inte ! non-empty disjoint intervals
(with respect to <0) without endpoints. Take ¥= (&, ..., f-1> where
each ¥; = | K| For some integer m > 1 consider m terms $4(x), ..., Sm-1(¥)
of the form (4) having types (4:, Bi, hi> respectively and where B, C B;
for each 0 <4 < m. Then

m—1
Gr-LEMMA 11. I (5(F) < % 2 su(B))* then at least one of the su,
i=1
0 <1< m, has a type greater than or equal to that of s,.
Proof. Let us represent the cardinal si(f) by the set Sy = X {L(XK,):
jediw By} where L(K;) = B(K;) for j ¢ 4; and L(K;) = K" for j e By.

m—1
Now suppose that (s,(f) <8y 3 s(f))*. Then there exists a one-one fune-
i=1

m—1
tion f e W+ mapping S, into o x | Si. Let R e M+ support f as well as
=1

each of the K¢s and take N = max{h;(i): 4 ¢B; A j<m}. Define an
element # € 8, by 2; ¢ B(K;—R), |2;] > N, for j ¢ 4, and a; ¢ (K;—R)»,
the components of z; distinet, for jeB,. Then f(z)= {a, y) e o X8y
for some 0 < § < mes Without loss of generality we may take j=1.
Now suppose that the type of 5, is not greater than or equal to that of so.

Generalized idempotence 253
This can happen in either of two ways. First there is some jedo—A4,,
or seeond A,C A, but for some j ¢ By, hy(j) > In(j). In the former case,
it y; is defined then je¢ B,. Since |a;]|> ¥ there is some element Texy
which does not oceur in the sequence y;. Similarly if y; is not defined.
In the latter case the elements of the Zyf)-tuple z; are distinet and
ho(7) > hy(j). Hence there is some element z oceurring in the sequence a;
which does not occur in the sequence y;. In either event choose a per-
mutation ¢ e +(R) which leaves K: pointwise fixed for i = j, which
leaves each element occurring in y; fixed, but for which @(2) # 2. Then
lp, 2| # @ and |p,y|=y. Now f(s)=<a,y> and aew hence lg,f(a)] = ().
Since (J?, f(@)‘)) €/, "F’) (w7 f(.ﬂ))' = (I‘Pi JI;], 1977 f(m)l) = (|9”: ‘T‘:f(-l')) E}‘F}ﬂ =f
and consequently ([«79, xl, f(m)) ef. This contradicts the one oneness of b
and therefore s; has a type greater than or equal to that of s,. Q.BE.D.

Now consider the cardinals p, G, rx; of the last section. Let a — o,
b= <&, -y Te-1Dy and ¢ =, vy Bo1)

St+-COROLLARY. (p(), qu(b), rra(c) ¢ 4 and have characters (o, w3,
<y wdy {ky 1> respectively. )+

Proof. Since , explicitly oceurs in their construction, none of these
cardinals are members of A+. W+ satisfies the axiom of choice for sets
of finite sets and by lemma 10 each f; € A+. ITence we can apply the
corollaries of lemmas 5, 6, 7, 8 and 9 which however all contradict
Lemma 11. Q.E.D.

Theorem 1 below, our main result, is consequently the corollary
to Lemma 11 reformulated as an assertion about relative consistency.
Its content is entirely syntactical and it is intended to be a theorem
of elementary arithmetic.

THEOREM 1. If © s consistent then so is S+(ch) (4).

Since &° is weaker than &+ we have, a fortiori, demonstrated the
relative consistency of &ch), the theory obtained from &° by taking (1)
as an additional axiom.

5. Applications. In this section we will apply theorem 1 to a re-
stricted decision problem for the arithmetic of cardinals in the theory &°,
Before doing so we study further algebraic properties of cardinal numbers
and relate them to the notion of character. Since we are primarily in-
terested in cardinals m ¢ 4, we shall not always state our lemmas in full
generality, particularly when doing so necessitates a more detailed proof.
The strongest form of the lemma, however, will be stated as a footnote.

(*) In order to replace & in theoremn 1 by the Godel-Bernays axioms Z, we add
countably many generic sets of integers to a countable complete model of X' (ef. [1])
and then use permutations of these generic sets in much the same manner as we used
permutations of urelemente in this paper.
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G- LEMMA 12. For any cardinal m and inieger ky, (1) if m¢ 4 then
k< e (1) (), (i) 4f m>1 and Mk = mF+ then mk = ¢(m).

Proof. If me¢ A then m-4x,=m. Consequently (i) follows easily
from mF < p(Mm) = Kpe(m) = e(M+x,). In order to prove (ii) first note
that if m>1 and mF=mF then mk <M+l < 2mk < m+l, Hence
mb = mk+1, But this implies m¥ ¢ A. Consequently m ¢ A as well. Now
mk < 8oME < mE+1, Therefore m¥ = symb. Since Mk = mE+l an induction
on the integer I gives m¥ = m' for 1>k, all equivalenetas .being effectiv-
ely constructed from the one where 1= k-+1. Hence it is 1}01.3 hard to
show that p(m) = L-+m-+ ... +me-tfgmb= gmk By combining these
results we have e(t) = e(M-F§,) = 8ye(m) = p (M) = 8,M¥ = m¥. Q.E.D.

©°- COROLLARY. For any cardinal m ¢ A, (i) if chy(m) =T then m* = ¢(m),
(ii) 9f ehy(m) = o then m* < e(m) for every integer k.

Thus we see that for m ¢ 4, the position of e(n) among the various
integer powers of m explicitly depends wpon 1’s eharaotgr.

Now for each integer %, let us define the set operations

(1) (”,f)z{A:AgMA[A]:k},
(2) [ﬂ = {m: e " A has no repetitions} .

. M M,

It is not difficult to show that if I = M, then (%) =(%) and
‘;ﬂ o [ﬂ,f‘] Consequently we are justified in defining (';:) = 1( k)' and
D:] = ‘ [Jlkl] l, where M is any set with m=|M|. We easily see that (T;:) ([1;;])
is an extension to cardinals of the ordinary mnotion of the number
of combinations (permutations) of m things taken % at a time. Let
k! = (E)(k—1) ... (2)(1), 0! =1 be the usual factorial function. Then

S*-LeMMA 13. For any cardinal m and integer k, k! (1;:) = [1;;]
Proof. Let M be any set with m=|M| and H be the set of all

permutations of k. H contains %! elements. Bach 4 e(l}tﬂ is equivalent

to % and since there are only finitely many such equivalences, we
may use the axiom of choice for sets of finite sets to choose one.
This equivalence uniquely determines a k-tuple g(4) composed of the

distinet elements of A. Take Hx(l;f) a§ representative of k!(‘:) and

consider any element = e H X(l,l;[) « will have the form = (b, 4. If

() It can be shown that this result holds in & even when we only require that
m be infinite in the ordinary semse.
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g(d) = <ag, ---;Jj‘:{k—1> t&k(?Mf(m) = a0y y vy Ongi—1)- f IS & one-one function
mapping HX(k) onto [L] Q.E.D.

S-Lemma 14. For any cardinal m¢ 4 and integer &, mk = [T;:]

Proof. Let M be any set with m=|M |- We may assume without
loss of generality that M is disjoint from o. Since [J;f] C Ar* half of our
theorem is obvious. Conversely consider any @ e M*. Generally z will
have repetitions. For j < %, let q(j) = mini{i: @; = x;}. Define )=y
by y5=a; if ¢(j) =4 zﬂu;lcl ys=2""8" if g(j) <j. J is a one-one function
mapping M* into [ ;: w]. Hence m* < [m;;" °]. But me¢ 4, hence
M4 Ry = M. Q.K.D.

©"- COROLLARY. For any cardinal w¢ A and integer k'(?:) = mk,

A consequence of this corollary is that for meé 4, mk ig divisible
by kLl By (1) of section 1 the result of division by a finite multiple is
unique. Hence we may rewrite the corollary as (';:) =mtk! .

In [8] Myhill introduced the notion of combinatorial functions.
These functions were invaluable in [2], where they were used to give
a general theory of Dedekind finite cardinals. For the purposes of this
section it is convenient to identify the integers with the finite cardinals.
Every function f: w -w can be expressed in the form

3) Ha) = 3 e(i)(})

where the summation is extended over all i <  and the ¢(¢) belong to
the ring of positive and negative integers. The ¢(i) are uniquely det-
ermined by f and are called the Stirling coefficients of f. If they are all
non-negative f is called a combinatorial function. The functions ¥, (:)
and e(x) arve combinatorial, further, sums, products and compositions
of combinatorial functions are combinatorial. With each combinatorial

- funetion f having the expansion (3) we associate a unary function @,

called the normal combinatorial operator inducing f, and given by
(4) B(M) = {{Ad,ny: AeB(M)An<c(4]}.

@ induces f in the sense that f(|M|) = |@(M)| for each finite set AL
Since @ preserves equivalence of arbitrary sets we are justified in de-
fining a new function fr: I'->I given by fr(| M|) = |®(M)| for any set M.
This function jr, which agrees with f on w, is called the canonical ex-
tension of f to I'. Although combinatorial functions provide an extremely
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rich tool for the investigation of 4 (cf. [2]), the following theorem shows
that they degenerate rather badly for arguments Mé¢ 4.

S°-THEOREM 2. For every combinatorial funciion f, as W ranges over

. . i
I'— 4, fr reduces to either (i) a constant, (ii) @ function of the form Emk’

or (iii) the function e(m).

Proof. If ¢(i) = 0 for i > 0 then clearly fr(m) = ¢(0). If only finitely
many of the ¢(i), but at least one for i >0, differ fromlO.let k be the
largest integer such that ¢(k) # 0. In this case it is not difficult to show

that fp(m)= 20(‘12)(?). By the corollary of lemma 14 we may replace
(’;‘) by mijil. Consequently fr(m) can be written as @ (m)/k!, where @(m)
is a polynomial function of degree % and leading coefficient ¢(k). Since
me 4, m+i=m for every integer i. Hence by successively factoring
and using this absorption law we can reduce @(m) to ¢(k)m® But then
frim) = %’f—)mk Finally suppose that infinitely many of the ¢(i). differ
from 0. We easily see from (4) that &(M)C E(M)X ». Hence fr{m)
< ¥pe(m) = e(m) sinee m ¢ A. For the converse inequality there is no
loss of generality in assuming that M is disjoint from w. Let & be
a one-one increasing function mapping o onto {i: ¢(i) # 0}. Clearly
i < h(3) for every ¢ < w. For 4 ¢ E(M), define g(4) to be the pair (B, 0>
where B is obtained from 4 by adding the first h(|4|)—|4| integers to 4.
We readily see that ¢ is one-one funetion mapping (M) into @ (M U o).
Hence e(m) < fr(m4x,). But m-+g8, =m. QE.D. '

For integers 4, j, k, and 1, let us define predicates

(3) Rig(m) = %(T) =k (‘?) )

(6) Qup(m) =1 (T) = e(m).
By theorem 2 any equality of the form fp(m)= gr(m), where f and ¢
are combinatorial, reduces to either an identity or to one of the pred-
icates (3) or (6). Consequently we shall not pursue the notion of com-
binatorial funetion, but focus our attention on expressions built up from
the R’s and Q’s.
S*-LeMMA 15, For any cardinal wié A having character {a, ),
(i) Byam)=(=1A(G=kva<)) V(E<irB<), (il) Qum)=p<j.
Let 4 be a language, the formulae of which are constructed from
the various R’s and Q’s (all with the same m) by means of the sentential
connectives, and the sentences of which are obtained by prefixing a for-
mula by one of the restricted quantifiers (Vm)gs or (Em)y. Let 3 be
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a language (with the same connectives) for the elementary theory of
the model {w-1, <> containing constant symbols for each element
of w+1. For every formula A(m) of #, associate a formula A(a, f) of B
by replacing each ocewrence of an Rima(m) or of a Qu(m) in %(m) by
the corresponding formula of $ as given in lemma 15. Then

€°-CoROLLARY 1. For any cardinal m¢ A having character {a,B>,
Am) = W(a, ).

&% COROLLARY 2. (Ve flicacpcadl (@, B) - (VN)e A ().

©*(ch)- COROLLARY 3. (Va, f)icacsca M (2, f) = (Vimt)gr (m).

THEOREM 3. (1) T'he set of sentences of # which are theorems of &(ch)
is @ complete and decidable theory. (i1) The sct of sentences of # which are
theorems of &° is a decidable theory.

Proof. By Corollaries 1, 2, 3 and the fact that the elementary theory
of {w-+1, <> is complete and decidable. Q. E.D.

6. Some examples. The present work started with an attempt
to decide whether Tarski’s cancellation theorem (cf. (1) of section 1)
could be strengthened to a cancellation law having the form

) (Vm, m){fr(m) = fr(n) >ut = n)

where f is some non-linear combinatorial function. As it stands (7) does
not come under the heading of theorem 3, however the following im-
mediate consequence of (7) does.

(8) < (Vn)(fr(m) = fp(2m) >m = 2m) .

If fr reduces to ]—j—| mF on I'—4, where k> 2, then the hypothesis of (8)
=l

2 i2 . . . .
becomes ka = %m". Thus any cardinal m having character <2, 2; will

serve as o counterexample to (8). If fr reduces to e(m) on I'—4, then
the hypothesis of (8) becomes e(m) = ¢(2m) = ¢(m)%. Thus any cardinal m
baving the character <2, 2) will also serve as a counterexample to (8).
Therefore with the single exception of the Tarski theorem, &° conlains
no other cancellation laws which can be framed as examples of (7).

Another interesting question is whether every idemmultiple cardinal
is also idempotent. Clearly every cardinal of character <1, w)> will serve
as a counterexample to this conjecture (%). In conelusion, we hope that
the reader will be able to use the notion of cardinal character to settle
other interesting questions in the arithmetic of I'—4.

(%) It has recently come to our attention that this guestion has previously been
answered by A. Lévy (cf. [3]).
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Note: In our definition of 8+ on page 251, add the following requirements.
Besides being a dense unbordered ordering of K, < must also be weakly homogeneous
in the sense that for every A, Be¢E(K), 4 = B, there existy a <-monotone permu-
tation of K which maps 4 onto B. The existence of such a < can easily be proved
with the aid of the axiom of choice. This note also applies to [2].
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Heckonbxo TEOPpEM O IPOUIBEICHHU
TOHOIOI'HICCKHX IPOCTPAHCTB

A. Mumenxo (Mocksa)

Hacroamas craThsi MOCBAINEHA MCCIIEOBAHUIO HEKOTOPEIX BECOBBIX XapaK-
TEPUCTHK TOMONOIMYECKUX TIPOCTPAHCTB M CIPYKTYDBI OTOOpaYKeHM IpoMsBe-
[eHHil TOMONOrnYecKuX npocrpanctB. EmE B 1949 rogy Ecemun-Bonsmam mo-
kasan B [11], uro BeAxwmi muamyuecknii GUKOMIAKT C HepBoi axcuomol cuér-
Hocry Merpusyem. OTCIOzA CIEMYeT, UTO ecyy 06pas ¥ MpOuaBeeHMs JHCKPETHEIX
J[BOETOYMII TP HENPEPHIBHOM OTOOPAKEHMM YHOBIETBOpSET IEpBOH aKcHome
CUETHOCTH, TO OTOOPaYKEHHE MOMKHO DA3JIOXKUTH B KOMIIOSHIMIO MPOEKITMY IIPOH3-
BefleHUsL JBOCTOUMI HA €ro IpaHb, 8 MMEHHO, NIPOM3BENEHHE CUETHOIO MHOMKE-
CIBa IBOETOYMH, ¥ HEKOTOPOro OToGpayKeHWs STOM IpaHy HA IIPOCTPAHCTEO Y.
Ecma mpl yrxe 3apaHee TaKkoe PAasiIOKeHHE OCYUIECTBEM, TO METPU3YEMOCTH Gu-
Kommaxra Y BBITEKAeT H3 TOro, uro o0pas KOMIAKTA IPH HENpephIBHOM oTofpa-
SKEHHH SIBIISIETCA KOMITAKTOM, @ 3HAUMT, METPUSYEMBIM IIPOCTPAHCTBOM.

B. Edumon B paGorax [9] u [12] mam HexoTOpbIe AOCTATOUHLIE YCIIOBHS,
KOJla YKasaHHOe BBILIE PAasiloyKeHEEe OTOOPAYKEHHST BO3MOYKHO, & 3HAUWTH AUa-~
Jmueckuif GMKOMITAKT MeTpuayem. 3anaua of omeHKe Beca 00pasa IPOHSBENECHHUA
TPOCTPAaHCTB pasOusaercss Ha mee wacru: 1) Halfrn ycnoeus pasnosxenus oTo-
6pa>keHMsI B KOMIO3MIHMIO IIPOEKIMYM HA IPaHb MEHBIIEH MOIHOCTH M 0TObpa-
>KeHHs 9Toi rpasu Ha o6pas, 2) Haiftu ycioBus, uroGsr Bec 06pasa He TIpeBOC-
Xomun Beca npoobpasa. Mel B jammOR crathe saiimémcs mepsoil samaueii.

B uacrosie# crarbe maxomsrcs Gonmee mmpokse (TMOYTH OKOHYATENBHBIE
B CMbICJIe, YKA3AHHOM HMXKE) JOCTATOYHEBIE YCJIOBHA, HANaraeMble HA IPOCTPaH-
crBa X, 9roGbl 0TOGpaXKEeHKE | NPOM3BEIEHHS Il X, Ha IIPOCTPaHCTBO Y, JO-

a€

KaJIbHBIH IICEBHOBEC KOTOPLO HE MPEBOCKOMMT 11, PABJIATANOCh B KOMIIO3HLMIO
IBYX OTOGparkeHmH: NPOEKIMM HA IPAHb MOIIHOCTE T M OTOOpayKeHusT 9TOH
rpany Ha OpocTpaHcTBO Y. OKAaspIBaeTcs, TAKMM CBOMCTBOM HpPOCTPAaHCTE X,
SBNACICA HAlMYMe TOMOJIOIMYECKHX Kaymbpos;, BBefsHEbix Iammmem B [4].
Ecrmm sxe xorst GBI ISt OJTHOTO M3 comuosxuTenelf X, 8T0 CBOHCTBO He HMeer Me-
cra, a.JIOKaJBHBIY ICeBOBEC IpocTpaHcTBa X, He IPEBOCXOMHUT 1H, TO MOMKHO
TOCTPOMTE OTOGpaYKeHue ]Z X,—Y, He pasyaraioleecss B YKasaHHYIO KOMIO3H-
a€.

IMI0 ABYX oToGpayKennif, XOTS JOKaNbHBIA [ICEBI0BEC MpocTpancrsa ¥ He mpeBoc-
XOTHT 1. B 3TOM CMBICIIE HOCTATOUHEIE YCHIOBHS SBIIAIOTCA MIOYTH HEOOXOMMMBIMHL.
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