Absolute Borel sets in their Stone-Cech
compactifications *

by
S. Willard ** (Bethlehem, Penn.)

The following theorem is well known (definitions and notation are
given in Section 1):

THEOREM 1.1. For a metrizable space X, the following conditions are
equivalent:

(i) X is completely metrizable,

(ii) X is a Gy set in some complete metric space,

(iii) X is an absolute G,

(iv) X is a Gy set in BX,

(v) X is @ G5 set in some compactification, BX.

Alexandroff proved the equivalence of (i) and (ii), while the equiv-
alence of (i) with (iii) is due of Sierpiriski. Both these results appeared
in the 1920%. In 1937, Cech ([1], p. 838) proved (i) equivalent to (iv),
and (v) is clearly equivalent to (iv) by the mapping property of the
Stone-Cech compactification (Theorem 1.4 below). B

In this paper, it is our intention to generalize Cech’s result as
follows:

THEOREM. For o metrizable space X, the following conditions are
equivalent:

(i) X is an absolute @,

(i) X 4s a Gy set n BX,

(ili) X 48 a G, set in some compactification, BX.

Since every absolute Borel set X is an absolute &, for large enough «
(depending on X), we derive as a corollary that every absolute Borel set
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at the University of Rochester.
** The author was supported while doing this research by a National Science
Foundation Cooperative Graduate Fellowship.
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is @ Bovel set in dts Stone-Cech compactification. Our theorgm "f"lso gives
a start toward the reverse implication, completion of which is related
to two problems: A

1) Can a result similar to the theorem above be obta..lned for F, sets?

2) Ts there a convenient classification of the possible Borel types
of a metrizable space X in fX?

1. Preliminaries. Throughout this paper, we reserve the symbols X
to mean a metrizable topological space, ¥ to mean a .Hausdorff topo-
logical space, and a, f§, ... to mean ordinals < the first uncountable

ordinal, w;. The interior and closure of 4 C Y will be denoted by Intr A -

and Cly A, respectively. . . '
A sub’set A of Y is a Gyset (Fyset) in ¥ iff 4 is open (closed) in ¥
and o Ge-set (Fo-set) in ¥ iff either A =] 4n (the additive case) or

n=1

A= F\ A, (the multiplicative case), where each A is a @, set (I, set)
=1 X
in Yn for some fn < a. Our notation in this respect follows that in [31,

but we will not make the usual distinction between additive and
multiplicative sets, except to note that G, sets (F, sets) are 'multl.phc-
ative for odd (even) a and additive for even (odd) «, with limit ordmah
considered even. We assume standard facts about @, and F, sets (see [3])
such as: .

1) the complement of a @, set is an F, set, and vice versa,

2) every G, set (F, set) is a Gp set (Fj set), whenever a < B,

3) every G, set (¥, set) in a metric space is both a Gp set and an
F; set, whenever a < f,

4) finite unions or intersections of @, sets (F. sets) are G, sets
(Fo sets), :
and so on. 4

The collection of Borel sets in a space Y is the smallest collection

of sets containing the open sets and closed under complementation and
countable union and intersection. The F, sets and @, sets, 0 <o < wy,
are Borel sets and in a metrizable space they are the only Borel sets.

A metrizable space X is an absolute G, (absolute F,) iff X iy a G, seb
(P, set) in every mefric space in which it is embedded. From the above
remarks, every absolute G, (and every absolute F,) is both an absolute
G5 and an absolute F'y, whenever a < f. The absolute G. and F. spaces
are referred to collectively as the absolute Borel sets. We will need the
following well-known result:

THEOREM 1.2. A meirizable space X is an absolute G, for a>1
(absolute F, for a = 2) iff X is a G, set (F, set) in some complete metric space.

Proof. See [3], p. 339.
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A metrizable space X is completely metrizable itf there is a complete
metric on X which gives the topology on X. Theorem 1.1 gives the
relationship between a completely metrizable space and its absolute
Borel properties. '

A compactification K of a space Y is a compact Hausdorff space
in which Y is densely embedded. If ¥ ig completely regular, it has
a Stone-Cech compactification, f¥: with the property tthat if i: YK
is continuous, where K is a compact Hausdortf Space, then f has a con-
tinuous extension /*: Y K (ff is called the Stone extension of /). By
applying this property in conjunction with Lemma 1.3, which we Wl]]
also need later, we get the important Theorem 1.4 below. '

Lemma 1.3. If h: ¥ ~Y' is continuous and RX is a homeomorphism
where X is a dense subset of ¥, then we have rY-X)C Y—-1h(X)

Proof. See [2], p. 92.

TEROREM 1.4. If Y is completely regular and K is any compactifi-
cation of ¥, there is a continuous function g: Y =K such that g(y) =y
for each y e Y and g(BY—-Y)=K-—Y. )

2. Covering uniformities. A covering U (not necessarily open)
of ¥ iy said to refine a covering W’ of ¥, U < AU, if for each Ueql,
there is a U’ W' such that U C U’. We also say that W is a refine-
ment of U’

It UeW, the star of U in W, St(T, W), is the set | J[V eW| VAU
# @].. The covering W is said to star-refine the covering A, WU *< W'
if for each U e, there is a U’ e’ such that St(T, W) C U'. We also
say that W is a star-refinement of AU'.

A (covering) umiformity for ¥ is a collection w of open coverings
of Y (called the uniform coverings) satisfying the conditions:

(A) If W <W, Wep, then U’ ep.

(B) If W, U € u, then there is a U’ e u such that W' *< Us, W'’ *< U,

A basis (or base) for the nniformity u is a subcollection u, of x with
the property that

o= [UW! for some Uy e py, Wy <W].

A collection u, of open coverings of ¥ is a basis for some uniformity
iff it satisfies condition (B) above.

A topology on Y can be obtained from a uniformity as follows.
Let x be a uniformity, or even a base for a uniformity, and if ye ¥,
let St(y, W)= {J[UeW| yeU] Then [St{y, W) Wepu] is a neighbor-
hood basis at y. The topology which results is smaller (has no more
open sets) than the original topology on Y. If, in faet, it is the same


GUEST


326 4. Willard

topology, then the uniformity x on Y is said to be compatible with the

topology on Y. . .

A uniformity # on a set X will be called metrizable (pseudometriz-
able) if there is a metric (psendometric) on X such that ‘[%1,‘112,....] is
& basis for pu, where Uy is the set of all spheres of radius 1/3" in X.

THEOREM 2.1. (Wei.) A auniformity g is pseudometrizable iff it has
a countable basis.

Proof. See [6], p. 61.

Let X be a metric space and for each # ¢ X and each integer n > 0,
let Unz be the 1/3" sphere about «. It we let Uy = [Uns| 2 € .X], then
[y, sy, ...] is o basis for a metrizable uniformity on X which is clearly
compatible with the metric topology on X. Note that we have Wy, *< Wp_y
for each %> 1. We will now show that there is a Dasis [W;, Wy, ...] for
this uniformity which also has the property that W, *< W,_, for each
n> 1, and which has the additional property that its elements consist
solely of regularly open sets (ie. sets A such that IntxClx A = 4).

" Let Vapz= IntyClyUnz, for each zeX and n>0, and let U
=[Vns| ® ¢ X] for each n > 0.
LEMMA 2.2, Vyg is vegularly open for each m >0 and xeX.

Proof. Certainly Viy C IntxClyVnz. On the other hand, IntxCly Uns
CClxUnz, and hence IntxCly(IntxCly Uss) C IntixCly Ung. That is
Intx ClxVsz C Vuz. Thus Vye is regularly open.

THEOREM 2.3. [U,, Vs, ...] is a basis for the same uniformity as
[Usy, W, ...], and Vapiy *< Ugpq, for o> 0.

Proof. Clearly Uy < V,. On the other hand, if Vay = IntxCly Uns
€V, then Vs CSt(Unz, Un) C Uy-yy for some 4, and hence Uy < Uy-s.

Thus we have the following relationship:

oo < VUpgr <UWyy < U < Wopy < 1

It follows immediately that
(i) [Uy, Vs, ...] is a basis for the same uniformity as [WUy, W, ...J, and
(i) Vsps1 *< VUgpoq, for all 2 > 0.

This proves the theorem.
Thus the statement made prior to Lemma 2.2 iy true; for take
chn-:‘Um—l-

3. Extension of uniformities. Let X be a metrizable space,
BX an arbitrary compactification of X, and 4 an open subset of BX.
From the previous section, there is a uniformity on X, compatible with
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the m‘etrizable topology on X, having a base u, = [Uy, Uy, ...] with the
following properties (U, here is the W, of Section 2):
(1) W #<< Wiy,
(if) The sets of U, are indexed by the points of X, for each n > 0
(this is just a convenience),
(i) Bach Unz Wy is regularly open.
Define Wn;CBX for each %> 0 and x ¢ X as follows:

W, — [ (I’Ilthele Unz) ~nA if Unz CA )
nr =
. | (IntpxClpy Uns) otherwise .

Let &= (| Whns). Then G is a G in BX and X CG. Now define

n=1 Tex
Vaz C G for each >0 and 2¢X by: Vag = Wnz ~ G Then for each
n >0, the collection VU, = [Vyps|we X] is an open covering of @ and
we have:
Lemma 3.1. For each n>0 and 2 e X, Upz=Varn~ X.

Proof. Since U,y is regularly open in X and X is dense in BX,
we have Upg = (IntyxClyx Uns) ~ X. The lemms follows immediately
from the definitions of Wy and V. . -

LeMMA 3.2, 8t(Vaz, Un) = U[Vay| Uny n Unsz O]

Proof. If Vg A Vay # @, then Vay A Vs is an open set in & and
X is dense in &, 50 (Vay n Vaz) n X %= @, Thus

Uy n Unz=Vay n X) n Vpz n X) = (Vay A Vnz) n X #0,
by the previous lemma. On the other hangd, clearly Uny A Uns 52 @ =Vpy A
AVnz #@.

LEMMA 3.3. Uy *< Up—y, for each n>1.

Proof. Let Vuz e Uy, for n> 1. By 3.2, St(Vaz, Va) = \J[Vay| Uny
A Unz 5= @], Since Uy *< Up—y, there is a set Up-1,€Un_y such that
S6(Unzy Wn) C Upere. We claim  that St(Vaz, Un) CVaore. Suppose
@' € 8t (Vaz, Un); say 2" € Vay, where Vay ~ Vaz £ 3. Then by 3.2, Uyy
C8t(Unazy Uon) C Up—y,. But from the definition of the Vs, Uny C Up 1.
implies Vay C Viuoy,. Thus &' e Vy_y,. That is, St(Vas, Un) C Ve, and
we have shown that U, *< U,_;. This completes the proof of the lemma.

Thug Uy, Vy, ... is a sequence of coverings of G such that ... *< U,
* << Upyog < ok < Uy, Henee [V, Vs, ...] is a basis for some pseudo-
metrizable uniformity on G- We will call the set G with the pseudometric
topology (&, o) or @, denoting by (@, BX) or @px the set G with the
BX-induced topology. The relationship between (@&, p) and (@, BX)
is given by the following lemma.

LemMA 3.4. The topology on (G, o) is smaller (has no more open sets)
than the topology on (G, BX).


GUEST


328 8. Willard

Proof. Tt suffices to note that sets like St(w, Va), which are ele-
ments of a neighborhood basis at # in (&, g), are open in (@, BX), since
each VeV, is open in (&, BX). This proves Lemma 3.4.

Tevma 3.5. X is topologically embedded in (G, o).

Proof. Tt is sufficient to note that the restriction of our pseudo-
metrizable uniformity on (&, o) is just the original uniformity on X,
with base [Us, Wy, ...J, since Unz = X ~ Vag, for each u >0 and 2 e X.
Thus Lemma 3.5 is established.

We note in passing that, in the case BX = fX, unless G =X
(hence, unless X is a @ in AX and thus an absolute @) the topology
on (@, p) must be strictly smaller than that on (&, BX). Otherwise,
(@, BX) would be metrizable and hence each of its points would be
a Gy in @ and thus in AX. But no point of fX—X is a G in fX (see [2]
p. 132).

Now let us define an open subset B of 4 ~ G as follows:

B= Intgg(A [a G’) .
Then we have:

LevmA 3.6. BAX =4~ X.

Proof. Since BC A, we have B ~ X CA ~ X. On the other hand,
suppose # ¢ A ~ X. Then there is an # > 0 such that St(z, Un) C 4 ~ X,
since A A X is open in X. But clearly St(z, Un) = U [Vay| # € Uny] and
since Uny C A=V, C A, we have St(z, VUy) CA. Thus #eB, so that
A A~ XCB~ X, establishing the claim.

Thus given an open set 4 in SX, we have found a pseudometric
space (@, o) and an open set B in (@, g) such that:

1) G is a G, set in fX containing X,

2) The pseudometric topology on @ is smaller than the X -induced
topology,

3) BCA and BAX =4~ X.

4. Some facts about 7, and @, sets. We gather together in
this section several results about F, and G, sets which will be referred
to often in the ensuing development. Any proofs which are omitted are
easy transfinite induction arguments.

Levma 4.1. If H is a G, set (F, set) in ¥' and b: Y=Y’ is a con-
tinuous map, then W™ (H) is a G, set (F, set) in Y.

CorOLLARY 4.2. If v and ©' are two topologies on Y with v smaller
than 7', then a Gy set (F, sef) in (X, ) is also a Gy set (F, set) in (¥,1').

Levma 4.3. If H is a G, set (B, set) in a pseudometric space (M, o)
and x ¢ H, then o(x,y) = 0=y < H.

©

icm
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Levwa 4.4. If ¥’ CY, then a subset A’ of ¥’ is a G, set (F, set) iff
there is @ G, set (Fy set) A in Y such that A’ = 4 ~ Y.
Qur final result in this section requires the introduction of some
terminology. Let ¥ be a topological space, & a family of subsets of ¥,

Define & = & and for each ordinal a > 0, define &, — [EC Y| B = | ] H»
n=1

o«
or B =) HE,, where each H, &, for some B, < al.
n=1

Levma 4.5. If §C&, then §,C5,, for each a> 0.

THEOREM 4.6. If & is any family of subsets of Y, then E e §,<> there
is a countable collection CC & such that B «C,.

Proof. Sufficiency is proved by Lemma 4.5. Suppose that & is
a family of subsets of ¥ and E € §. Then certainly F ¢ G, for a countable
subcollection € of & so the theorem is true for o= 0. Suppose it true

for all f < a and let E €§,. Then E = GE,L or B = ﬁEn, where each
n=1

n=1

By € &, for some f, < a. Now by the inductive hypothesis, for each n
there is a countable collection C" C § such that B, € Cj,. Letting € = | JC"
we have HneCg, by Lemma 4.5, for each n. Hence FeCG,. Since C is
a countable subcollection of § we are done.

If & is taken to be the collection of all open (closed) sets in ¥, then
Eeb<=F is a G, set (¥, set) in ¥ and Theorem 4.6 can be rephrased
as follows.

COROLLARY 4.7. A subset B of Y is a G, set (F, set) in Y<=>FEeC,
for some countable collection C of open (closed) sets in Y.

5. The pseudometrie construection. The material of the next
two sections iz directed specifically toward proving the most difficult
part of our theorem; namely that if X is a @, set in X then X is an
absolute @,. Hence, for the next two sections we assume that X is
a G, set in X.

From section 4, X belongs to C,, where C is some countable eol-
lection of open sets in SX. From section 3, if C == [Cy, 0y, ...], then for
each n there iy a @5 set Gy in fX, a pseudometric g, on Gz, and an open
set B, in (Ga, on) such that B, C Cp and By ~n X = 0y ~n X. We may
assume that each g, is bounded by 1.

Let G =) G, and define g(m,y):Zﬂg—}l’—) on @. Then (@, o)
=

is a pseudometric space and a G5 set in fX and we have the following
important result:

Lemma 5.1. (1) If H is open in (G, oa), then H ~ G is open in
(@, o) (in particular, By, ~ & is open in G, for each n > 0).
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(i) If J is open in (@, g), then J is open in G with the BX -induced
subspace topology.

Proof: (i) If H is open in (G, gu) and € H n @, then since H ~ @
is open in (G, gn), there is an & > 0 such that [y € G| gu(x,y) < e]CH A 4.
But then clearly we have [ye@| o(x,y) < ¢2"1C[ye G| oulm, y) < ¢
CH n &, so that H ~ G is open in (&, p).

(li) Let J be open in (@, ¢) and w eJ. Pick ¢> 0 so that [y e (|

[>]
o(z,y) < €] CJ. Pick N large enough that 3 1/2° < ¢/2. Now for
) i=1

k=1,.., 5 the set Up=[2e@| onlx,2) < 2%/2N] is open in (&, o)
N

and hence in (G, pX). But if ye| ) Ux= U, then
k=1

¥ . ® LA
olr, y) < X Lo, 1)/2"4 3 1/2" < Y (s2N)+ef2 =6
k=1 Je=N+1

and consequently ¥ eJ. Hence U is a neighborhood of 4 in (@, fX) which
is contained in J, and we have proved the claim.

LeMMA 5.2, X is topologically embedded in (G, o); that is, o is a mel-
ric on X and 1s equivalent to the original metric o. ‘

Proof. Part (ii) of Lemma 5.1 shows that every open set in (X, p)
is open in (X, o). Conversely, if H is open in (X, o), then H is open in
(X, @), since by Lemma 3.5, X is embedded in (G, g,). But by Lemma 5.1,
part (i), every open set in (X, g,) is open in (X, ¢): Hence H is open
in (X, ¢) and the lemma is proved.

THEOREM 5.3. $=[Bi~n G, By~ G,..] is a collection of open sels
in (G, 0) and X ¢B,.

Proof. (The sets B; were introduced at the start of this section.)
Bi ~ @ is open in (&, o) by part (i) of Lemma 5.1. To prove that X e 3,,
we will establish the following statement by transfinite induction:
I Y ¢C, in BX, there is a subset ¥’ of &, ¥’ ¢ B, such that ¥’'C Y and
Y~ X=Y~X.

For a=0, Ye¢C means ¥ e¢C, say ¥ = C,. Then ¥’ = By}
satisfies the requirements. Suppose that the claim is true for all f<a
and let Y ¢C,. Then ¥ = (J¥, or ¥ = [ ¥,, where ¥, € G, for some
Bn < a. By the inductive hypothesis, for each » there is a Y, ¢ By, such
that Y, C Y, and Y3~ X = ¥, ~ X. Define ¥’ = JYh or ¥'=N7Y,
(respectively, as ¥ is defined above). Then clearly Y'CY and Y A X
=Y ~n X, while ¥’ is an elément of $,. Hence the inductive step is
completed and the statement of the first paragraph is established.

Letting X = ¥, we find that if X G, , then there is a ¥’ ¢ B, in
(@, o) such that YCX and ¥' ~ X = X. Then we mugt have ¥' = X
and hence X ¢ B, as claimed.
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6. The metric identification. Let @* denote the wmetric space
obtained from the pseudometric space (G, @) of section 5 is the usual
way. That is, the points of G* are the equivalence classes in (&, o)
under the equivalence relation z~y<=o(2, y) = 0, and the metric on

"@* is defined by o*([«], [¥]) = o(«, ), where [#] denotes the equivalence

class containing =.

Lemya 8.1. X ds topologically embedded in @*.

Proof. Let h: (G, o) ~G* be the identification map, h(x)= [r], for
each e (G, p). We assert that hlH is a homeomorphism.

Since ¢ is a metric on X, h is clearly 1-1 on X. In proving h and 1%
continuous, it iy sufficient to note that

hly « X| o(@,y) <el=[ly] e H(X)| g*([a], [¥]) <e],
W7 y] € B(X)| oX((a], [¥]) < e] = [y e X| olz,y) < ¢]

for each @ ¢ X. This establishes Lemma 6.1.

THEOREM 6.2. For the collection B of open subsels of (G, p), W{B)
= [1(B)| B e®] is a collection of open subsets of G*, and if HeB,, then
h(H) e [h(B) .

Proof. Obviously each h(B) is open, since % is an open map. The
second claim is true for a =0, by definition. Suppose it true for all
f< e and let HeR, Then, say, H=(\H,, where each H,e B, for
some fin < a. It is sufficient, by the inductive hypothesis, to show that
h(H) = [h(Hy). Certainly we have h(H) C (\h(Ha,). Conversely, suppose
[#] € (\h(Hn). Then, for each n, there is an @, ¢ H, such that h(w,) = [«].
By the nature of the map h, we must then have o(z,, #,) = 0 for each n.
Then by Lemma 4.3, we have @, ¢ H, for each n, so that o, e (H, = H.
Thus [@] = h(2;) e h(H). Thus [h(Hs) Ch(H) and hence equality. The
cagse H = ) H, being obvious since | Jh(H,) = h(|JHy), the theorem is
proved.

COROLLARY 6.3. X s a G, set in G*.

Proof. X ¢®, from section 5, so by the previous result, A(X)
e[h(B)],, and hence h(X) is a @, set in G*. Since we may identify X
and kh(X), this proves 6.3.

7. The main theorem.
THROREM 7.1. If X is meirizable, the jollowing condilions are equiv-
alent for a=1:

(i) X s an absolute G,
(i) X is a @, set in fX,
(i) X 4s a @, set in some compactification, BX.
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Proof. We will show that (i)=-(iii) =(ii) =(i).

(i) =(iii). If X is an abgolute G, then X is a @, set in some com-
plete space X’. Now by Cech’s result, X' is a @5 set in fX’, so that X
is a @5 set intersected with a @, set in BX’, and hence a G, set in X",
Then X is a G, set in Clyx-X, which is a compactification of X.

(iii) =(ii). Suppose that BX is a compactification of X in which
Xisa G, set. Let h: X —-BX be the Stone map (see 1.4). Then X = h“l(X)
is a G, set in BX, by 4.1.

(ii) =(i). Suppose that X is a G, set in fX. Then X is a G, set in G*
from section 6 and the mappings i: (G, fX) (G, ¢) and h: (G, o) >G*
are continnous and preserve X topologically. We will identify & o i(X)
with X when it i3 convenient. Letting f = ho4, we have:

a 1
XC@xCpX

x& e pam,
where “XC ¥ méans “X is a G, set in Y.

Now f can be considered as a continuous mapping of (@, fX) into
BG* and, as such, it has a Stone extension f: f(&, fX)—~>BG*. Since
B(@, pX) = X (see [2], D. 89), we have f*: X —>pBG*. Furthermore,
(BX) is a compact subset of fG* containing G*, so f(BX) = SG*.

Since /(@) = (@)= G* and f* is onto, we must have f/(BX— @) C
C pG*— G*. Furthermore, f is a homeomorphism when restricted to the
dense subset X of fX, so by 1.4, f/(fX—X) = f@*—X. Thus /X~ @)
CpG*—X. Hence we have G*—G* C{(fX— @) C pG*—X. Thus, if we
define H = pG*—(BX— @), then X CHC G*.

But Gis a G, setin fX, s0 X — @G is o-compact and hence (BX— @)
= fAUFn) = Uf*(Fa), each Fy compact, so that /AfX—@) is an F,-set
in fG* Thus H is a @, set in fG* and hence in Clgge H. Since this last
is a compactification of H, H is completely metrizable by Cech’s orig-
inal result.

Finally, X is a @, set in G* and hence in H. Thus X is a G, set in
a complete space and therefore an absolute @,, by 1.2.

This completes the proof of Theorem 7.1.

A careful examination of the proof of the implications (1) =-(iii) =(ii)
above reveals that it contains nothing which cannot be used in a proot
of the following:

COROLLARY 7.2. If X is metrizable, then (1) =(iii) = (ii) below: (a = 2)

(i) X is an absolute F,,
(i) X is an B, set intersected with a Gy set in BX,

(i) X ds an F, set intersected with a G, set in some compactifica-
tion pX.
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To prove that (ii)=(@i) in 7.2 an analogue for closed sets is needed
to the construction of the set B in section 3. This seems to be difficult
to accomplish. One might better hope to establish a result like: X is
Borel in X iff X is a G,-set in BX, for some a.

In the case of F, sets, A. H. Stone ((4)) has proved that: a metriz-
able space X is an absolute F, iff X is o-locally compact. This, combined
with the well-known fact that a subset of g locally compact space is
locally compact iff it is the intersection of an open set with a closed set,
yields the following

THEOREM 7.3. A metrizable space X is an absolute F, iff X is the
wunion of countably many sets in BX, each of which is the intersection of
an open sel with a closed set in SX.

Since every absolute Borel set is, for some @, an absolute @, Theo-
rem 7.1 yields:

THEOREM 7.4. If a wmetrizable space X is an absolute Borel sel, then
X is o Borel set in fX. ’
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