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Generalized Fréchet varieties

by
J. Segal (Seattle, Wash.)

‘Introduction. The theory of Fréchet varieties and specifically
Fréchet surfaces has been a subject of considerable interest not only
in its own right but because of its applications to the theory of length
and area. Though progress in this area had been made for over sixty
years the more recent work of Cesari, Federer, Rado [4] and Youngs [7]
has given it a sense of completeness. In the latter work the represen-
tation problem is solved for Fréchet surfaces. :

This paper deals with the representation problem for two new col-
lections of spaces, called monovarieties and perivarieties, which are each
generalizations of the notion of Fréchet variety. In Seetion 1 we state
the representation problem for monovarieties and consider the general
situation. In Section 2 we obtain a reduction theorem for some cases
of monoequivalence analogous to Youngs’ reduction theorem for Fréchet
equivalence. Then we show that a monosurface is actually a Fréchet
surface. In Section 3 we state the representation problem for perivarieties

-and consider the general situation. In Section 4 we obtain a reduction

theorem for periequivalence. Then we show that a perisurface is also
a Fréchet surface. So since the representation problem has been solved
for Fréchet surfaces, we have a solution for monosurfaces and perisurfaces.
We attempt to parallel Youngs’ notation and development of Fréchet
varieties. All manifolds considered are compact and connected.

1. The representation problem for monovarieties.

NoTATION. If fi: X ¥ is a mapping where X and Y are metrie,
n=90,1,2,.., then the notation f,=-f, means that f, converges umi-
formly to fo; that is, if 2{fa, o} = supe{fs(®), fo(#)}, © € X, where o is
the distanee function in ¥, then g{fs, fo} 0. Also f: X =Y means that
f maps X onto ¥. Throughout this paper X will denote the class of Peano
spaces (ie., the class of locally connected (metric) continua) and & the -
class of mappings f: X Y where X ¢ X and Y is metric. Whenever the
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letter X (possibly with subseript) is used to denote a space it is under-
stood that X e X.

DEFINITION 1.1. A mapping f: 4-B is said to be monotone pro-
vided that, for each point b in B, the inverse F7b) is conmnected. Two
spaces A and B are called monomorphic if'each is the image of the other
under a monotone mapping.

DEFINITION 1.2. A mapping f,: X;~Y is said to be Fréchet equivalent
to a mapping f,: X,—Y (notation:f, ~F f,)if and only if there is a sequence,
{kn}, of homeomorphisms, kn: X;=X,;, n =1, 2, ..., such that fiku=f,.

DEFINITION 1.3. A mapping f: X;—Y is said to be monoequivalent
to 2 mapping f,: X, —Y (notation: f, ~™f,) if and only if there are sequences,
{gn}, {hn}, of monotone mappings, g»: X, =X, and ks X,=>X;, n =1,2, ..,
such that fuga=f; and fihn=f,. Under these circumstances it will
be said that there is an appromimate monomaiching between f; and f,.
In the event that there are monotone mappings gn: X; =X, and hy:
X,=X, such that g(fy, fogn) =0 = @(film, ), We say the monomatching
is exact.

Note that the above definition is a weakening of Fréchet equivalence
(actually the homeomorphisms %, and %;* required for Fréchet equiv-
alence are replaced by monotone mappings ¢, and h,). In view of the
fact that being monomorphic is an equivalence relation and standard
techniques of double limits it follows that monoequivalence is also an
equivalence relation over the class §§ and so partitions it into mutually
exclusive equivalence classes, [f]. Each equivalence class, [f], will be
called a monovariety, M. Any representative of the equivalence class

(that is, any mapping in [f]) is said to be a representative of the mono-

variety, M.

It is now possible to state the representation problem for monovarieties:
Given one representation of a monovariety, find all of its represemtations.
The representation problem for monovarieties really asks for suitable
criteria with which to test the validity of the statement f, ~™f,; any such
criterion will be called a *M-e¢riterion.

It f, ~™f, then even though one has control over the accuracy of the
approximation it is not possible to obtain an éxact monomatching.
Youngs’ example ([7], p. 7) with g, belng the homeomorphism h,m de-
seribed there with e(n) =1/n and hy, = g;* shows that f, ~m fay but the
monomatching is not exact for this particular choice of g, and hy, nor
ig it for any other choice (since f, iy a homeomorphism and f,h cannot
be a homeomorphism for any map h: X,=X).

This example shows that exact monomatehing is not a necessary
condition for monoequivalence. One necessary condition is that -the
spaces X; and X, be monomorphic. Another necessary condition is thab
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f(X;) = fo(X,). Both conditions are immediate consequence of the def-
inition of monoequivalence.

Remark 1.1. If M is a monovariety with representatives f;: X, —¥
and f,: Xy;—Y where X, and X, are n-manifolds, then the fact that
X, and X, are monomorphic makes it possible to associate a class <M}
of m-manifolds, M, each of which is monomorphic to the domain space
of any representation of M whose domain space i3 an #-manifold.

It is possible to distinguish further between monovarieties, M, in
terms of the associated classes of manifolds, (M. In general, a mono-
variety, M, is called a monovariety of the type of an n-manifold B
if and only if each space (i.e. manifold) in <M} is monomorphic to B.
Note that in some cases all the elements of ¢(M) are homeomorphic.
For example, if B is a 1-cell (1 :sphere) then any nondegenerate mono-
tone image of B is also a 1-cell (1-sphere). Thus a monovariety, M,
is called a monocurve if and only if <M ) is the class of 1-cells or 1-spheres.
Furthermore, if (M) is the class of 1-cells, then the monocurve, M,
is known as a monocurve of the type of a 1-cell; if <M is the class of
1-spheres, then the monocurve, M, is known as the monocurve of the
type ¢f a 1-sphere. A monovariety, M, is called a monosurface if and
only if (M) is the class of 2-manifolds which are monomorphic images
of some 2-manifold B. Actually we will show in this case that all the
elements of (M) are homeomorphic to B (see Theorem 2.4). This state-
ment is not true if B is a higher dimensional manifold, nor if (M) is
replaced by all the monomorphic images of B even when B is a closed
2-manifold. Moreover, we show in the next example that it is possible
for f,~™f, and the domain of f, to be a closed 2-manifold and yet the
domains of f, and f, are not homeomorphic.

ExAMpLE 1.1. Denote the sphere in euclidean 3-space with radius 1
and center at the origin by 8. Then a point of § can also be described
in terms of the spherical coordinates <p, 8>, 0 <o<2m, 0<O<=
(where ¢ is the geographical longitude, i.e., the angle between the
xz-plane and the plane determined by the point and the z-axis, and
6 is the polar distance, i.e., the angle between the radius to the point
and the positive z-axis).

Suppose now that:

1) X, =8,

(2) X, =8 u T where T ={(z,9,2)|z =9y =0, 1 <z2<2},

(3) ¥ =0,1] (the closed unit interval),

4) fi: X;=Y is defined by f,(<p, 8>) =% where 6 = =i, 0

(5) fo: X,=Y is defined by fi<p, 6)) =1 where § ==, 0
(Le., (f2|8) =/1), and f[T] =0.

Fundamenta Mathematicae, T. LVIII 3

t<<1,

<
<t<gl
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Then f, ~™f, with respect to the monotone mappings {ga}, {ha} defined
as follows:
© 1) gut X=X, is given by

0,0,—2"+42) eT,

0 2
nl <, 2) = {@,an(t)mes, 27" <i<1

where 6 = nt and Au(f) = (t—27™)/1—27"), and

(@) by =h, for n=1,2,3,.., where h: X;=X, is given by (h|8)
=identity and A[T] = <0, 0.

In one direction we have exact monomatching, ie.,

8 (filmy f) =2(frh, fa) =0.
‘While in the other direction we have

01y fagn) = sup {o(f(<@, 60), fagn(<p, 03))|<ps 65 € Xy} ‘
= sup {Q(fl(@” 7)), fagn(<p, 7'Ct>)) 0<p<2m 01}
< sup{elt, £(0, 0, 2"+2)}]0 <t <27}
+sup {e(t, f(<ps M) 7)) |27" <t <1}
=sup{e(t, 0)]0 <t <27+ sup {oft, M(t)) 27" < ¢ <1}
=2"" 427" =2.27",

80 (f1, f2gn) >0 and we have that f; ~™f,.

2. Monoequivalence and monosurfaces. After stating some
well-known results we obtain a reduction theorem for monoequivalence
which reduces the problem of finding M -criteria for general mappings
to that of finding MM -criteria for monotone mappmgs ‘We then prove
that a monosurface is actually a Fréchet surface.

DEFINITION 2.1. A mapping f: A-B is said to be light provided
that, for each point b in B, the inverse image f~(b) is tota]ly discon-
nected (i.e., every component of f *(b) is a single pomt it #7(b) is not
enpty).

THEOREM 2.1 '(BEilenberg-Whyburn Factor Theorem [6], p.143).
If A is compact and f: A =B is a mapping, then there emists a factorization
f = 2u such that u: A =% is monotone and i: =B is light.

In the above theorem Au is called the monotone-light factorization of f.
The space U is the middle space of the factorization. If Ax is a monotone-
light factorization of f it is usually referred to as being unique while
what is meant is that it is unique up to a homeomorphism. That is,
if 2,4, and Ayp, are monotone-light factorizations of f with middle spaces

©
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U, and s, respectively, then there is a unique homeomorphlsm k: Uy =,
such that p, =%p, and 2, = 4 %™ (actually & = B ).

Lmnora 2.1 ([4], p. 47). Suppose that {u,} is a sequence of mappings
where py: X, =X, and that i: X,~X, is o light mapping. If the sequence
{Aun} ds equicontinuous on X, then the sequence {un} 48 also equicon-
tinuous on X,.

Levwma 2.2 ([4], p. 55). Suppose that {u,} is a uniformly convergent
sequence of monotone mappings from X, onto X,. Then the limit function
of the sequence {ua} is a monotone mapping.

THEOREM 2.2. If two mappings fi: X, »Y and f,: X,—Y are mono-
equivalent, then there ewist mnotone-lzght factorizations, Au, for f, and
Ay for fr.

Proof. By hypothesis there exist sequences of monotone mappings
{gn} and {h.} such that fogn=f, and fihs=f,. Replacing f, by its mono-
tone-light factorization Auy we have Apyhy=f,. Therefore {Au;h,} is equi-
continuous, s0 by Lemma 2.1 we have that {u,h,} is equicontinuous also.

Thus it contains a uniformly convergent subsequence. So renumbering

if necessary and letting the limit mapping be p, we have p, by = u, which
is monotone by Lemma 2.2. From this it follows that f;hn = gy bn = Au,.
But fihn=f, 50 f3 = Au, and we have the desired result.

TEEOREM 2.3. Two mappings f,: X;—Y and f: X,~Y are mono-
equivalent if there are monotone-light faciorizations Auy for f, and Aps for f,
such that w, and u, are monoequivalent.

Proof. Since p~™u, there are sequences {gn} and {h,} of monotone
mappings such that (1) gn: X,=X, and hy: X,=>X, for each positive
integer n; (2). pagn=>p 20d phn=piz. ThUs fogn = Auagn=-Ap =f, and
fohn = Apghn=>Aus =f,. This implies that f, ~@f,.

Levmua 2.3. Suppose: (1) {gs} i3 a sequence of mappings of B onto C
such that gn=g, (2) {ka} 18 a sequence of mappings of A onto B such that
Gnkon=>p. Then gly=>p.

Now as a partial converse to Theorem 2.3 we have the following

THEOREM 2.4. If two mappings fi: X,—Y and f,: X,—Y are mono-
equivalent with respect to {gn} and {hy} and gnhn =1, & homeomorphism,
then there are monotone-light factorization Ap, for f, and Au, for f, such
that py, and us are momnoequivalent.

Proof. Since f, ~™f, with respect to the sequences {g»} and {hs} of
monotone mappings, we have (1) gn: X;=>X, and hy: X=X, for each
positive integer n; (2) foga=f, and fihs=f;. Choose any monotone-light
factorization Au, of f, and denote the middle space by X. Then we have
Apogn =1, and so {Au,gs} is equicontinuous. So applying Lemma 2.1 we
have that {u,gx} is also equicontinuous and, therefore, has a convergent

3*
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whose limit w, is a monotone map of X, 0111;9 X
:EE;E%EZ?;M{ ﬂig]‘i} Now let kn =Mhnr"‘ where 7 is the homeomorphism
to which the sequence {gnhn} converges. Since pagn =t and Hadm Fong = pig
by Temma 2.3 we have that pyka, = fe- Therefore g, ~™ t, With respect
and {fn}. . )
N {gCn:)}NJECTéRE. Theorem 2.4 remains true if one deletes “‘gnhn =1,
a homeomorphism”. . '

DerviTIoN 2.2. If M is a topological space and p i8 a 1)911113 of M
such that M—p is not connected, then ? is called a cut‘ p?mt of M
A torological space is said to be cyclic if it hag no cub 13011%1{3.. A point

~p of M is said to be a local cut point of M provided there o:xwt,s zm open

set U, p e U, such that for each open set V,peVCU, pisa cut‘ 1101111-,
of V. (Note that the cut points of a connected spacc are also local cut
points.) A Pearo space is said to be locally eyclic if it has no local cut
points.

DEFINITION 2.3. A generalized cactoid is a Pem}o space whose every
maximal cyclic elemert (see [6]) is a closed 2-manifold :%nc_l only a ﬁ?:ute
number of these are different from 2-spheres. A mantotd is & monotone
continuous image of a closed 2-manifold.

 LEmMA 2.4 ([5], p- 854). The class of mantoids. is the cl'ass of Pea:no

spaces each of which can be oblained from o generalized cactoid by making
a finite number of 2-point identifications.

LeymA 2.5. If A and B are monomorphic closed 2-manifolds, then
they are homeomorphic. .

Proof. Supgpose that g: A =B is monotone and let b' = g~ (b), b eB.
By Theorem 4 of [5] each component of A—Db’, b e B has just one cyl-
inder of approach to b’. Since B has no cut points, 4—Db’ is connected.
Therefore, Theorem 2 of [5] applies and we have RYB) < R{4) (Wher.e
R#Y) denotes the (mod2) n-dimensional Betti number of‘Y) and if
A ig orientable so is B. Now consider 4 to be the monotone image of B
and we get that R{4) < RY(B) and if B is orientable so is 4. Therefore,
R(4) = RY(B) and cither 4 and B are both orientable or both non-
orientable. This imylics that A and B are homeomorphic.

LevmA 2.6. If A and B are monomorphic 2-manifolds with boundary,
then they are homeomorphic.

Proof. Suppose that A has boundary curves Ay, .., 4dm and g:
A =B is monotone. Now as in [7], p. 15, let A’ be the closed 2-manl-
fold obtained by capping the boundary curves with open 2-cells Oy, ..., Cm.
It i possible to adjoin an open 2-cell B to g[Ad, i =1, ..,m, in such

a way that (1) B*=Bu 1Um1 Ey) is a Peano space, (2) the frontier of Hi

icm°
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is g[4d, i=1,...,m, and (3) Bs nE; =05 i #§; 4, =1, ..., m. More-
over, there exists a- mapping ¢’: A4A'=B* such that (§'|4) =g and
2 = g''g'(z) for # ¢ A'—A. Now B* being a monotone image of a closed
2-manifold is by Lemms 2.4 a mantoid. Since B is a 2-manifold with
boundary, it must be contained in a maximal locally cyclic element

n
B’ of B*. Now B’ =Bu(‘U Ds) where D; is a 2-cell capping B,
=1

i=1,..,n There is a monotone retraction of B* onto B’ (just send
a component of B*—B’ to the point in B’ which is its frontier and leave
the points of B’ fixed). Therefore we have RYA4’) > RYB’) and if 4’ is
orientable so is B’. Similarly we get RY(B’) < RY(A’) and if B’ is orient-
able so is A'. Thus R*(A’') =RYB’) and either 4’ and B’ are both
orientable or they are both nonorientable. Therefore A’ and B’ are
homeomorphic by the fundamental theorem of the topology of closed
2 -manifolds. Now letting y(X) denote the Euler characteristic of a poly-
hedron X, we have y(4) = x(4')—m and z(BY = y(B')—n. Since x(4")
= x(B’) it follows that m—n = x(B)— x(4). Recall that the Huler-
Poincaré formula holds for all fields. Then since (1) B%(4) =1 =-R%B),
(2) R{A) = RY(B) (since there is a homomorphism taking H,(4, Z,) onto
H,(B, Z,) and vice versa by the Vietoris mapping theorem), (3) R(A4)
=0 =R%B), we have that m—n =0, ie., A and B have the same
number of boundary curves. From this and the previously determined
structure of A and B it follows that 4 and B are homeomorphie.

TeEEOREM 2.5. If A and -B are monomorphic 2-manifolds, then they
are homeomorphic.

Proof. Assume that 4 is a closed 2-manifold. Then so is B since
it is a generalized cactoid. Therefore Lemma 2.5 applies and A and B
are homeomorphic. Now assume that 4 is a 2-manifold with boundary.
Then B must also be a 2-manifold with boundary, otherwise 4 being
a generalized cactoid would be a closed 2-manifold. Therefore Lemma 2.6
applies and 4 and B are homeomorphic.

The 1-dimensional case of the following is to be found in [4], p. 67-68,
and the 2-dimensional case in [8].

THEOREM 2.6. Suppose that g: A=-B is a monotone mapping of a
1-manmifold or a 2-manifold A onto B where B is homeomorphic to A.
Then there ewists a sequence of homeomorphisms {km} such that km=g.

THEOREM 2.7. Suppose that X, and X, are 1-manifolds or 2-mani-
folds. Then fi: X, Y and fy: X,—Y are monoequivalent if and only if
they are Fréchet equivalent.

Proof. Obviously Fréchet equivalence implies monoequivalence.
Consider the converse. Now X, and X, are homeomorphic by Theorem 2.5
in the 2-dimensional case and by well-known results on the nondegen-
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erate monotone images of 1-cells and 1-spheres in the 1-dimensional
case. Let {gs} be a sequence of monotone mappings such t.hat On: Xy =X,
and fyga =f,. Now by Theorem 2.6, for each n, thire exists a s:,quenee
of homeomorphisms {km}, m =1,2,3, ... such that km=>gn. S0 f kmn=> fagn,
for each n, and since fygn=f;, We can choose a subse_quence {Fm}, call
it {&s}, such that foksi=f,. Therefore f, is Fréchet equivalent to f,.

3. The representation problem for perivarietieg. 'A;Et.}er
some definitions we state the representation problem for perivarieties
and consider the general situation with respect to these classes.

DEFINITION 3.1. The norm of a function f: X—¥ is the sup {diamf " (y)|
9 e Y}. An e-mapping of a metric space A onto B is a continuous func-
tion, f, of A onto B.of norm less than e Two spaces A and B are fle-
fined to be quasihomeomorphic if, for each ¢> 0, there exist an e-mapping
of A onto B and an e-mapping of B onto A. If these g-mapping of A
onto B and B onto 4 are {p; and {o,}, respectively, then we say that
A and B are quasihomeomorphic with respect to {p} and {w.}. If 4
and B are quasihomeomorphic with respect to e-mappings {g.} and {w}
and in addition these mappings are all momotone, then we say that 4
and B are perimorphic (with respect to {p.} and {ws}) or B a pem‘morphzia
image of A. (Note that two spaces can be monomorphic and quasihomeo-
morphic without being perimorphic (see Example 4.2).)

DEFINITION 3.2. A mapping f,: X;—»Y is said to be periequivalent
0 2 mapping f,: X,—Y (notation: f, ~f,) if and only if f, is monoequiv-
alent to f, with respect to sequences of monotone mappings {pa}, {on}
such that ¢, and w, are each e;-mappings and & —0. ‘Under these cir-
cumstances it will be said that there is an approwimate perimatching
between f, and f,. If the event that the monotone e,-mappings @s:
X,=>X, and og: X,=X, are such that o(f;, fags) = 0 = 0(fro0m, fa)y We say
that the perimatching is exact.

Note that the above definition is a weakening of Fréchet equivalence
(actnally the homeomorphisms, k; and ', Tequired for Fréchet equiv-
alence are replaced by monotone e,-mappings g and o, with &->0).

Tn view of compactness the relation’ ~P is easily seen to be an equiv-
alence relation over the class §§ and so partitions it into wutually
exclusive equivalence classes, [f]. Bach equivalence clags [f] will be called
a perivariety, P. Any representative of the equivalence class (that is,
any mapping in [f]) is said to be a representative of the perivariety, P.
We have a representation problem as in the case of monovarieties.

If f, ~?f,, then even though one has control over the accuracy of

the approximation it is not possible to obtain an exact perimatching.
Youngs’ example cited in Section 1 and the argument given there show
that this is the case. -
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The example just mentioned also shows that exaet perimatching
is not a necessary condition for periequivalence. One necessary condition
is that the spaces X, and X, be perimorphic. Another necessary con-
dition ig that f,(X;) = f,(X,). Both conditions are immediate consequences
of the definition of periequivalence. ‘

Remark 3.1. If P is a perivariety with representatives f;: X;—~Y
and fy: X;—Y, then the fact that X, and X, are perimorphic makes it .
possible to associate a class [P] of Peano spaces, P, each of which is
perimorphic to the domain space of any representation of P.

It is possible to distinguish further between perivarieties, P, in
terms of the associated classes, [P). In general, a perivariety, P, is called
a perivariety of the type of @ B if and only if each space in [P] is peri-
morphic to B. Note that in some cases all the elements of [P] are homeo-
morphic. For example, this is the case if B is a 1-cell or a 1-sphere.
Thus a perivariety, P, is called a pericurve if and only if [P] is the class
of 1-cells or 1-spheres. Furthermore, if [P] is the class of 1-cells, then
the pericurve, P, is known as a pericurve of the type of a 1-cell; if [P}
is the class of 1-spheres, then the pericurve, P, is known as the peri-
curve of the type of a 1-sphere. A perivariety, P, is called a perisurface
if and only if [P] is the class of perimorphic images of a 2-manifold.
Actually we will show (Theorem 4.1) that all the elements of [P] are
homeomorphic in this case also. It is an open question whether this
situation holds for higher dimensional manifolds.

4. Periequivalence and perisurfaces. In this section we show
that if 4 is perimorphie to B a 1-manifold or s 2-manifold, then A
and B are homeomorphic. We then obtain our main result which is as
follows:

Suppose that X, is a 1-manifold or a 2-manifold. Then f;: X;—~Y
and fy: X,—~Y are periequivalent if and only if they are Fréchet equivalent.

Note that while it was necessary in the corresponding theorem for
monoequivalence to require that X, also be a manifold of dimension 1
or 2 this is not the case here.

LenvwmaA 4.1. Suppose that there are monotone ¢-mappings of X, onto X,
for all £> 0. If X, is locally cyclic, then so is X;.

Proof. Suppose not, i.e., there is a connected open subset U of X;
and a point p e U such that U—p = U, v U, where U; and U, are
mutually separated and each has positive diameter. Now there is a pos-
itive number ¢ such that &< min(diam Uy, diam U,) and the s-neigh-
borhood of » is contained in U. Consider a monotone ¢-map g: X; =>X,.
There is an' > 0 such that if € is a subset of X, and the diam C < 7,
then diam g*[C] < e. Since X, is a Peano space, there -is- a connected. -
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open set V in X, which contains g(p) and whose diameter ig less than #.
Thus diam g~YV] < ¢ and, since p e g~}[V], we have g~ [V1C U. By hypo-
thesis g(p) is not a cut point of ¥, and so V—g(p) is connected. Hence
gince ¢ is monotone we have that g [V—g(p)] = g~V1—9~"g(p) is also
connected. Therefore, g[Uy] = g(p) or g[Us] = g(p), otherwise g—[V]—
~g~1g(p) would contain points of U, and U, which would contradict
the fact that it is connected. So norm g > min(diam Uy, diam Uy), but
this is a contradiction. '

TEmoREM 4.1. If A is perimorphic to B & 1-manifold or- a 2-mani-
jold, then A and B are homeomorphic.

Proof. Since any nondegenerate monotone continuous image of
“a 1-cell. (1-sphere) is a 1-cell (1-sphere), the 1-dimensional case is
immediate. Now the 2-dimensional cage splits into two parts. The first
+treats the case when B is closed and the second when B hds a boundary.

Suppose that B is a closed 2-manifold. Then 4 is a mantoid which
by Lemma 4.1 is locally cyclic and hence must be a closed 2-manifold.
Now, since 4 and B are monomorphie 2-manifolds, we can apply Theo-
rem 2.5 to get that they are homeomorphie.

Suppose that B is a 2-manifold with boundary curves By, ..., Bs
(each B; is a 1-sphere). We will first show that, for ¢ sufficiently small,
any monotone s-map m: B=4A iy such that (m|B:) is also monotone
for 4 =1, ..., n. Now each B; has an n:;-neighborhood, Ny, which is an
annulus. Let & = diam By and yg = (1/2) o(Bs, B'—Bi), where B’ denotes
the boundary of B. Finally, let 5 = min (5, ..., fny 15 ey Ony Y1y ooy Vu)
and for the rest of the proof assume that ¢ < 7, m: B=-4 is a monotone
e-map and u¢ = (m|Bi).

To prove that each us is monotone we will show that if @, b € ui’ Yy),
y e A, then one of the two ares a;, a, in By from a to bis also contained
in ui(y). Suppose that this is not the case. Then the continuum
K =m~Yy) is a cutting of Ny (i.e., Ny—K iy the union of two mutually
separated sets NG and NZ%). It follows that A—y = m[N}] v m[N7] where
m[N3] and m[N%] are mutually separated and hence y is a cut point
of A. But this is impossible since 4 has no local eut points by Lemma 4.1.
Hence each w; must be monotone. Moreover, since & < diam By we have
that ufBi] is nondegenerate and so must be a 1-sphere.

Now ag in [7], p. 15, let B’ be the closed 2-manifold obtained by
capping the boundary curves By, ..., B, with open 2-cells D, ..., Dn.
It is possible to adjoin an open 2-cell O; to m[Bil, 4 =1, ..., n in guch

a way that @€ A’ = Ao (.U1 ) is a Peano space, (2) the frontier of s
=

is the 1-sphere m[Bi], ¢ =1,..,m, and (3) Cin C;=@; i5j; 4,
j=1,..,n ~Moreover, there exists a mapping m': B'=A4’ such that

icm°®
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(m'|B) =m and 2 =m'~'m(z) for ¥ ¢ B’—B. Thus A’ is a mantoid and
since A is locally cyclic so is 4'. Hence 4’ is a closed 2-manifold. There-
fore 4 and B are both 2-manifolds with boundary and being mono-
morphic they are homeomorphic by Theorem 2.5.

TEEOREM 4.2. Suppose that X, is a 1-manifold or a 2-manifold. Then
fi: XY and f,: X,—Y are periequivalent if and only if they are Eréchet
equivalent.

Proof. Obviously Fréchet equivalence implies periequivalence. Con-
sider the converse. By Theorem 2.5, X, and X, are homeomorphic. Let
{gn} be a sequence of monotone e,-mappings with e,—0, ¢gn: X;=X,
and f,gn=f,. Now by Theorem 2.6, for each n, there exists a sequence
of homeomorphisms {kn}, m =1, 2, ..., such that k=g, (over m). So
fokm =1agn, for each n, and since f.pn=>f;, We can choose a subsequence
of {¥m}, call it {k}, such that fyki=f,. Therefore f, is Fréchet equiv-
alent to f.

ExampreE 4.1. In this example we construct two Peano spaces,
X and Y, which are perimorphic but not homeomorphic. For each pos-
itive integer 4, let T denote the solid triangle in the plane with vertices
(1/2%,0), (1/2*7% 0) and (3/27, ¥/3/2°*") and A; denote the segment in
euclidean 3-space from a = (3/27%, 13272 0) to (3/2°1%, ¥/3/27%, 1/i).
We define X and Y as follows:

X=|JX;v(0,0,0), where X;=1T; for ¢=1,2 and Xi=Tiyv 4,
i=1

for i>2;

Y=‘UY;U(O,0,0), where ¥; =7, and ¥y=Tiv4; for i>2.
=1

Now X and Y are clearly not homeomorphic and so we proceed
to construct the necessary monotone e-maps to show that they are
perimorphic. For any & > 0, we will define a monotone s-map gt X=>Y
as follows. Let D be a circular disc in the interior of X, with center p
and radius 7 < ¢/2. Let O¢ denote the circle with center p and radius i.
Then D = | J{0:|0 <t <r}. Now ¢, is defined to be (1) identity map
on X—X,, (2) on X, 2 map which sends D onto 4, by sending C: to
(3/2"%%, ¥/3/27, (r—1)[2r) and (3) a homeomorphism of X,—D onto ¥,—a,
which is the identity map on the boundary of X,.

To obtain a monotone s-map w: Y =X, for any & 0<e<1/4,
let o, be 2 homeomorphism of ¥; onto X4, sending (1/2°, 0) to (1/2°%%, 0)
and (1/2°7%, 0) to (1/2%, 0) for 4> 2. Now let K be the segment joining
(1+2)2,0) to (3/4,V3/4) and L the segment joining ((1-+4=2)/2,0) to
(2 ¢)/4, V3¢/4). Then w, on Y, is defined to be the vertical projection
of the points above K u L onto K v L and the identity elsewhere on Y,
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followed by a homeomorphism onto X, v X, which sends (1/2,0) to
(1/4,0), {1+2)/2,0) to (1/2,0) and (1,0) to (1,0).

EXAMPLE 4.2. The purpose of this example is to show that Theo-
rem 4.1 is false if instead of requiring 4 and B to be perimorphic we
only require that they be quasihomeomorphic with respect to {p,} and
{w,} and that each w, be monotone. It also shows that two spaces which
are monomorphic and quasihomeomorphic need not be perimorphic.

Let T, and T, be the solid triangles described in the previous
example. Let A =T, v Ty, B = T and let w;: B=4 be the map (a,|T})
defined in the previous example. Now to obtain @: A =B, for any
(z,y) in 4, let

@, ) it @t+eol<o<l,
@, 9) = (@+o)fd,9), i (2—e)t <@ < (@+e)d,
(@+ef2,9), i lh<ae<(@—ot

¥ <<
T <

and let k,: %[A]=B be a homeomorphism. Finally ¢. is defined by
@, = kyk,. Note that the g, are not monotone and indeed by Lemma 4.1
it is not possible to find monotone e-mappings, for all 6> 0, of 4
onto B.

Kuratowski and Ulam [3] asked whether or not two guasihomeo-
morphic #-manifolds are homeomorphic. We ask a more restrictive
question, i.e., are two perimorphic #-manifolds homeomorphic? For

=1 or 2 we showed that the answer to the latter question is in the
affirmative (actually we only needed to assume one of the gpaces was
a 1-manifold or a 2-manifold). Thus for a generalization of the lower
dimensional results the question should be as follows: If A is peri-
morphie to an n-manifold B, are A and B homeomorphic? (Borsuk [1]
has shown that there is a non-(absolute neighborhood retract) which is
quasihomeomorphic to a 3-cell.) It seems necessary to have an approx-
imation theorem of the type of Theorem 2.6 for n-manifolds to gen-
‘eralize Theorems 2.7 and 4.2. This problem is rather well known.
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