

The global dimension of the group rings of abelian groups II

hv

S. Balcerzyk (Toruń)

In the present paper we compute the global dimensions of group rings R(H) where H is an abelian torsion-free group and R is a commutative Noetherian ring. We show that R(H) regarded as an R-algebra satisfies

(*)
$$\operatorname{gl.dim} R(\Pi) = \operatorname{gl.dim} R + \operatorname{dim} R(\Pi)$$

for commutative Noetherian rings R and

$$\dim R(\Pi) = \begin{cases} r(\Pi) + 1 & \text{if } \Pi \text{ is a torsion-free not finitely generated} \\ r(\Pi) & \text{if } \Pi \text{ is finitely generated torsion-free} \\ & \text{abelian group} \end{cases}$$

for an arbitrary commutative ring R $(r(\Pi) = rank(\Pi))$.

The above theorem generalizes the author's former results, published in [1] and concerning the case of R being the ring of rational integers.

Formula (*) does not hold for arbitrary (non-Noetherian) rings; for such rings we have the inequalities

$$\operatorname{gl.dim} R + r(\Pi) \leq \operatorname{gl.dim} R(\Pi) \leq \operatorname{gl.dim} R + r(\Pi) + 1$$
.

1. In this section we prove some preliminary lemmas. All rings and groups are assumed to be commutative.

LEMMA 1. If A is an R-module and

$$0 \leftarrow A \leftarrow Q_0 \leftarrow \dots \leftarrow Q_s \leftarrow 0$$

is an R-projective resolution of A and $\operatorname{Im}(Q_s \to Q_{s-1})$ is not a direct summand of Q_{s-1} , then $\dim_R A = s$.

Proof. If we had $\dim_R A = k < s$, then $\operatorname{Im}(Q_k \to Q_{k-1})$ would be R-projective and Q_i , i = k, k+1, ..., (s-1), would admit direct summands $\operatorname{Im}(Q_{i+1} \to Q_i)$, contrary to our assumption.

LEMMA 2. If R is a commutative Noetherian ring, B is a finitely generated R-module and $\dim_R B = 1$, then there exist finitely generated R-projective module Q and an R-free resolution

$$0 \leftarrow B \oplus Q \leftarrow F_0 \stackrel{a}{\leftarrow} F_1 \leftarrow 0$$

such that free generators w_1, \dots, w_m of F_0 and free generators v_1, \dots, v_n of F₁ satisfy

$$a(v_i) = \sum_{i=1}^{m} r_{ij} w_j$$
 $(i = 1, 2, ..., n)$

and all ideals

$$\mathfrak{a}_i = (r_{i_1}, \ldots, r_{im})$$

are different from R.

Proof. Since $\dim_{\mathbb{R}} B = 1$, then there exists a resolution

$$0 \leftarrow B \leftarrow P_0 \leftarrow P_1 \leftarrow 0$$

and P_0, P_1 are finitely generated R-projective modules; thus there exist finitely generated R-projective modules Q, Q_1 such that $P_1 \oplus Q_1$, $P_0 \oplus Q_1 \oplus Q$ are R-free. If we add the exact sequences (2) and

$$0 \leftarrow 0 \leftarrow Q_1 \leftarrow Q_1 \leftarrow 0$$
$$0 \leftarrow Q \leftarrow Q \leftarrow 0 \leftarrow 0$$

then we get an R-free resolution of type (1). Now we subject Q to the additional condition that the rank $r(F_1)$ is minimal. We show that such free resolution satisfies all conditions of our lemma. In fact, if one of ideals, say a_1 , were equal to R, then $a(v_1)$ would generate a direct summand of F_0 and we would get an R-resolution

$$0 \leftarrow B \oplus Q \leftarrow F_0/R\alpha(v_1) \leftarrow F_1/Rv_1 \leftarrow 0$$

with projective $F_0/Ra(v_1)$. Adding an appropriate projective module to the first and the second terms, we get an exact sequence

$$0 \leftarrow B \oplus Q' \leftarrow F_0' \leftarrow Rv_2 \oplus \ldots \oplus Rv_n \leftarrow 0$$

with Q' projective and F'_0 free, contrary to our choice of F_1 of minimal rank. Using the notation of [1], we have

LEMMA 3. If R is a ring and H is a non cyclic torsion-free group of rank 1 generated by elements $\sigma_1, \, \sigma_2, \, ... \,$ such that $\sigma_{n+1}^{t_{n+1}} = \sigma_n \, (n=1,2,...;$ $t_{n+1} > 1$), then the sequence

$$0 \leftarrow R \stackrel{e}{\leftarrow} P_0 \stackrel{d'_1}{\leftarrow} P_1 \stackrel{d'_2}{\leftarrow} P_2 \leftarrow 0 ,$$

where

 $P_0 = R(\Pi)$

 P_1 is an $R(\Pi)$ -free module on free generators $x_1, x_2, ...,$

 P_2 is an $R(\Pi)$ -free module on free generators $y_1, y_2, ...,$

ε is the unit augmentation,

$$d_1'(x_n)=1-\sigma_n,$$

$$d_2'(y_n) = x_n - s_{n+1}x_{n+1} \text{ with } s_{n+1} = 1 + \sigma_{n+1} + \sigma_{n+1}^2 + \dots + \sigma_{n+1}^{t_{n+1}-1},$$

is an $R(\Pi)$ -free resolution of R (Π operates trivially on R) and $\dim_{R(\Pi)} R = 2$

This lemma was proved in [1], p. 298 for R=Z, but the same proof applies to an arbitrary ring R.

LEMMA 4. If R is a Noetherian ring, B is a finitely generated R-module, $\dim_{\mathbb{R}} B = 1$ and Π is a non cyclic torsion-free group of rank 1, then $\dim_{\mathcal{R}(\Pi)} B = 3$ (Π operates trivially on B).

Proof. By Lemma 3 it follows that for any R-projective module Q we have $\dim_{R(II)} Q \leq 2$; then to prove the lemma it is sufficient to prove $\dim_{R(II)}(B \oplus Q) = 3$. Let Q satisfy all the conditions of Lemma 2; we then have an R-free resolution F

$$0 \leftarrow B' \leftarrow F_0 \stackrel{d_1''}{\leftarrow} F_1 \leftarrow 0$$

of $B' = B \oplus Q$.

Let $S = P \otimes_R F$ be the tensor product of the R(II)-resolution P of R and the R-resolution F of B'. The complex S is $R(\Pi)$ -free and acyclic because $H_0(P) = R$ is an R-free module. By Lemma 1 it is sufficient to prove that $\operatorname{Im}(S_3 \to S_2)$ is not a direct summand of S_2 .

Let us assume that $\text{Im}(S_3 \xrightarrow{d_3} S_2)$ is a direct summand of S_2 ; then there exists a homomorphism $\varrho: S_2 \to S_3$ such that ϱd_3 is the identity on S_n . If we write $z_n = y_n \otimes v_1$, then the module

$$W = R(\Pi)\{z_1, z_2, ...\}$$

is R(II)-free and is a direct summand of S_3 . Let π be the natural projection of S_3 onto W. Thus we have

$$\begin{split} z_n &= \pi(z_n) \\ &= \pi \varrho d_3(y_n \otimes v_1) \\ &= \pi \varrho [(d_2'y_n) \otimes v_1 + y_n \otimes (d_1''v_1)] \\ &= \pi \varrho [(x_n - s_{n+1}x_{n+1}) \otimes v_1 + y_n \otimes (d_1''v_1)], \end{split}$$

and for the elements $\xi_n = \pi \varrho(x_n \otimes v_1) \in W$ we get the relations

$$z_n = \xi_n - s_{n+1} \xi_{n+1} + \pi \varrho [y_n \otimes (d_1^{\prime \prime} v_1)].$$

Since $d_1''v_1 \in \mathfrak{a}_1F_0$, we have $\pi\varrho[y_n \otimes (d_1''v_1)] \in R(\Pi)\mathfrak{a}_1W$, and writing

$$\vec{R} = R/\alpha_1, \quad \overline{W} = W/R(II)\alpha_1 W$$

S. Balcerzyk

we can easily see that \overline{W} is an $\overline{R}(II)$ -free module on free generators $\overline{z}_1, \overline{z}_2, \dots$ and that the elements $\overline{\xi}_n \in \overline{W}$ satisfy the system of equations

(3)
$$\bar{z}_n = \bar{\xi}_n - \bar{s}_{n+1} \bar{\xi}_{n+1} \quad (n = 1, 2, ...).$$

The elements \bar{s}_{n+1} are neither units nor zero divisors in $\bar{R}(\Pi)$; we then get a contradiction with (1.4) of [1], which states that system (3) has no solutions in \bar{W} .

2. In this section we prove

THEOREM 1. If R is a commutative Noetherian ring and H is an abelian torsion-free group which is not finitely generated, then

$$\operatorname{gl.dim} R(\Pi) = \operatorname{gl.dim} R + r(\Pi) + 1$$
,

and if A is such an R-module that $\dim_R A = \operatorname{gl.dim} R$, then

$$\operatorname{gl.dim} R(\Pi) = \operatorname{dim}_{R(\Pi)} A$$

(II operates trivially on A).

If R is a commutative ring and II is an abelian finitely generated torsion free group, then

$$\operatorname{gl.dim} R(\Pi) = \operatorname{gl.dim} R + r(\Pi)$$
,

and if A is such an R-module that $\dim_R A = \operatorname{gl.dim} R$, then

$$\operatorname{gl.dim} R(\Pi) = \operatorname{dim}_{R(\Pi)} A$$

(II operates trivially on A).

Proof. The second part of the theorem was proved in [1].

If $\operatorname{gl.dim} R = \infty$ or $r(\Pi) = \infty$, then the theorem is obvious.

To prove the first part of our theorem let us start with a non-cyclic group H of rank 1 and a commutative Noetherian ring with $\operatorname{gl.dim} R = s < \infty$.

If s=0, then R is a direct product of a finite number of fields, and we can consider the case where R is a field. By Lemma 3 we have $\operatorname{gl.dim} R(II) \geqslant \dim_{R(II)} R = 2$ and R(II) is a union of an increasing sequence of rings of global dimension 1; then $\operatorname{gl.dim} R(II) \leqslant 2$.

If s > 0 and $\dim_R A = s$, then there exists an R-projective resolution

$$0 \leftarrow A \leftarrow Q_0 \leftarrow Q_1 \leftarrow \dots \leftarrow Q_s \leftarrow 0.$$

Let us write $B_{-1} = A$, $B_i = \text{Im}(Q_{i+1} \to Q_i)$, i = 0, 1, ..., (s-1); we then have exact sequences of R-modules

(4)
$$0 \leftarrow B_i \leftarrow Q_{i+1} \leftarrow B_{i+1} \leftarrow 0 \quad (i = -1, 0, 1, ..., (s-1)).$$

We can consider these sequences as exact sequences of R(II)-modules with trivial II-operators. Since $\dim_{R(II)} R = 2$, we have $\dim_{R(II)} Q_i \leq 2$ and for any $m \geq 3$ we have

$$\operatorname{Ext}_{R(II)}^{m}(B_{i+1}, X) \approx \operatorname{Ext}_{R(II)}^{m+1}(B_{i}, X)$$
 for $i = -1, 0, 1, ..., (s-1)$.

Consequently

$$\operatorname{Ext}_{R(II)}^{s+2}(A, X) = \operatorname{Ext}_{R(II)}^{s+2}(B_{-1}, X) \approx \operatorname{Ext}_{R(II)}^{s}(B_{s-2}, X)$$

We know that $\dim_R B_{s-2} = 1$ and B_{s-2} is a finitely generated R-module; then by Lemma 4 it follows that there exists an R(II)-module X such that $\operatorname{Ext}_{R(II)}^3(B_{s-2}, X) \neq 0$ and thus $\dim_{R(II)} A \geqslant s+2$. On the other hand,

$$\operatorname{gl.dim} R(\Pi) \leq 1 + \operatorname{gl.dim} R(Z) = s + 2$$

because the ring R(H) is a union of an increasing sequence of rings isomorphic to R(Z) (see (1.3) of [1]). Consequently

$$\operatorname{gl.dim} R(\Pi) = \operatorname{dim}_{R(\Pi)} A = \operatorname{gl.dim} R + r(\Pi) + 1$$

for groups Π of rank 1.

Let us assume that the theorem holds for groups of rank < r and let Π be non-finitely generated torsion-free group of rank r. It is easy to see that the group Π contains a subgroup Π_0 of rank r which is not finitely generated and is an extension of a group $\Pi'_0 \approx Z$ by a torsion-free group Π''_0 of rank r-1. By (1.3) of [1] we can deduce that

$$s+r \leq \operatorname{gl.dim} R(\Pi) \leq s+r+1$$

and it is sufficient to prove that $gl.\dim R(\Pi) \geqslant s+r+1$.

For any $R(\varPi_0^{\prime\prime})$ -module A and an $R(\varPi_0)$ -module C we have a spectral sequence

(5)
$$\operatorname{Ext}_{R(H_0^{\prime})}^{p}(A,\operatorname{Ext}_{R(H_0^{\prime})}^{q}(R,C)) \stackrel{\Rightarrow}{\Rightarrow} \operatorname{Ext}_{R(H_0^{\prime})}^{n}(A,C)$$

(see [2], Chapter XVI, Theorem 6.1). We take for A such an R-module with trivial H_0'' -operators that $\dim_R A = \operatorname{gl.dim} R$ and for C such an $R(H_0)$ -module with trivial H_0' -operators that $\operatorname{Ext}^{*R}_{R(H_0')}(A, C) \neq 0$. For an $R(H_0')$ -module R we have an $R(H_0')$ -free resolution

$$0 \leftarrow R \leftarrow R(\Pi_0') \stackrel{1-\sigma_0'}{\longleftarrow} R(\Pi_0') \leftarrow 0 ,$$

where σ'_0 is a generator of Π'_0 . Thus we have

$$\operatorname{Ext}_{R(H_Q^n)}^q(R, C) = \begin{cases} 0 & \text{for} & q > 1, \\ C & \text{for} & q = 1 \end{cases}$$

and

$$\operatorname{Ext}_{R(\Pi_0'')}^k = 0 \quad \text{for} \quad k > s + r.$$

The "maximum term principle" of spectral sequences yields

 $\operatorname{Ext}_{R(H_0')}^{s+r+1}(A,\,C) \approx \operatorname{Ext}_{R(H_0')}^{s+r}(A,\,\operatorname{Ext}_{R(H_0')}^1(R,\,C)) = \operatorname{Ext}_{R(H_0')}^{s+r}(A,\,C) \neq 0 \; ;$ thus

$$\operatorname{gl.dim} R(\Pi_0) \geqslant \operatorname{dim}_{R(\Pi_0)} A \geqslant s + r + 1$$

and the theorem follows.

It is easy to see that Theorem 1 does not hold for arbitrary non-Noetherian rings. In fact, if we put $R = K(\Pi)$ where K is a Noetherian ring and Π is an abelian torsion-free group of finite rank which is not finitely generated, then

$$\begin{split} \operatorname{gl.dim} R(\varPi) &= \operatorname{gl.dim} K(\varPi \times \varPi) = \operatorname{gl.dim} K + 2r(\varPi) + 1 \;, \\ \operatorname{gl.dim} R + r(\varPi) + 1 &= \operatorname{gl.dim} K(\varPi) + r(\varPi) + 1 \\ &= \operatorname{gl.dim} K + 2r(\varPi) + 2 \;. \end{split}$$

In general we have the inequalities

$$\operatorname{gl.dim} R + r(\Pi) \leqslant \operatorname{gl.dim} R(\Pi) \leqslant \operatorname{gl.dim} R + r(\Pi) + 1$$
.

If R is a Noetherian ring, then

$$\operatorname{gl.dim} R = \operatorname{w.gl.dim} R;$$

thus for Noetherian rings the first formula of Theorem 1 takes the form

$$\operatorname{gl.dim} R(\Pi) = \operatorname{w.gl.dim} R + r(\Pi) + 1$$
.

This formula does not hold for arbitrary non-Noetherian rings (take R with w.gl.dim R=0 and gl.dim R>1).

3. It is known (see [2], Chapter X, \S 6) that for any commutative ring R we have

$$\dim R(\Pi) = \dim_{R(\Pi)} R$$
.

Using the spectral sequence (5) we get by similar arguments (starting with Lemma 3).

THEOREM 2. If R is a commutative ring and II is an abelian torsionfree group, then

$$\dim R(\Pi) = \begin{cases} r(\Pi) + 1 & \text{if } \Pi \text{ is not finitely generated group,} \\ r(\Pi) & \text{if } \Pi \text{ is finitely generated group,} \end{cases}$$

where $R(\Pi)$ is considered as R-algebra.

In paper [3] the following properties of an R-algebra Γ were studied (R is a commutative ring):

 (P_1) for every R-algebra Λ

f. l. gl. dim
$$\Lambda \otimes \Gamma = \dim \Gamma + \text{f. l. gl. dim } \Lambda$$

and

l.gl.dim
$$\Lambda \otimes \Gamma = \dim \Gamma + l.gl.dim \Lambda$$
;

(P2) for every R-algebra A

$$\dim \Lambda \otimes \Gamma = \dim \Lambda + \dim \Gamma$$
;

(P3) if R is a K-algebra, then

$$K$$
-dim $\Gamma = R$ -dim $\Gamma + K$ -dim R ;

and for commutative Γ

(P₄) if Λ is Γ-algebra satisfying

$$H_r^R(\Gamma, \Lambda \otimes \Lambda^*) = 0 \text{ for } r > 0, \quad \Gamma\text{-dim } \Lambda < \infty,$$

then

$$R$$
-dim $\Lambda = R$ -dim $\Gamma + \Gamma$ -dim Λ .

It was proved in [3] that the *R*-algebra $\Gamma = R[x_1, ..., x_n]$ of polynomials in n indeterminates has properties (P_1) , (P_2) , (P_3) and (P_4) .

It is easy to check that if we put $\Gamma = R(II)$ and II is an abelian torsion-free group of finite rank which is not finitely generated and if we take for Λ an R-algebra R(II') with II' of the same type as II, then Theorems 1 and 2 imply that all the left side terms are smaller by one than the right side terms. Consequently no property (P_i) , i = 1, 2, 3, 4, holds for $\Gamma = R(II)$.

References

[1] S. Balcerzyk, The global dimension of the group rings of abelian groups, Fund. Math. 55 (1964), pp. 293-301.

[2] H. Cartan, S. Eilenberg, Homological algebra, Princeton 1956.

[3] S. Eilenberg, A. Rosenberg, D. Zelinsky, On the dimension of modules and algebras (VIII), Nagoya Math. Journal 12 (1957), pp. 71-93.

INSTYTUT MATEMATYCZNY POLSKIEJ AKADEMII NAUK UNIWERSYTET MIKOŁAJA KOPERNIKA W TORUNIU INSTITUTE OF MATHEMATICS, THE POLISH ACADEMY OF SCIENCES NICOLAS COPERNICUS UNIVERSITY IN TORUÑ

Recu par la Rédaction le 31.12.1964