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The global dimension of the group rings
of abelian groups II

by
S. Balcerzyk (Torun)

In the present paper we compute the global dimensions of group
rings R(IT) where II is an abelian torsion-free group and R is a com-
mutative Noetherian ring. We show that R(II) regarded as an R-algebra
gatisfies

) gl.dim R(IT) = gl. dim B+ dim R(IT)
for commutative Noetherian rings B and

r(IT)+1 if IT is a torsion-free not finitely generated

. _ abelian . group,
dimE(ID) = r(II) if IT is finitely generated torsion-free
abelian group

for an arbitrary commutative ring R (r(II) = rank (IT)).
The above theorem generalizes the author’s former results, published -
in [1] and concerning the case of R being the ring of rational integers.
Formuly () does not hold for arbitrary (non—Noetherlam) rings; for
such rings we have the inequalities

gldimR+r(II) <gl.dmR(T) <gl.dimR+r(II)4+1.
1. In this section we prove some preliminary lemmas. All rings

and groups are assumed to be commutative.
Levuma 1. If A is an R-module and

0<A Q< ... Qs <0

is an R-projective resolution of A and Im(Qs;>Q,—1) 48 not a direct sum-
mand of Qs—1; then dimp A4 =s.

Proof. If we had dimpd =% < s, then Im(Qr—>Qr-) would be
R-projective and ¢, i= %, k+1, ..., (s—1), would admit direct sum-
mands Im (@1 ~>Q:), contrary to our assumption.
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Lemua 2. If B i a commutative Noetherian ring, .B. is @ finitely
generated R-module and dimzB =1, then there ewist finitely gemerated
RB-projective module Q and an R-free resolution

1) 0<B Q—)Qé—Fu:—Fl <0
such that free generaiors Wiy ..., Wm of I, and free GENerators iy ..., Uy

of F, satisfy

m
) a(u,)_—_mej (t=1,2, ey M)
=1

and all ideals
ay = (1'"117 ey Ttm)

are different from R. ‘ .
Proof. Since dimgB =1, then there existy a resolution

and P,, P, are ﬁnitély generated R-projective modules; thus there exist
finitely genera,ted' R-projective modules @, @, wsuch that P, @ 0Qy,
P, ©Q, ® Q are R-free. Tf we add the exact sequences (2) and

0 0+@«@<0
0<—Q.<«-Q<—0+—0,

then we get an R-free resolution of type (1). Now we subject @ to the
additional condition that the rank r(Fy) is minimal. We show t_hat such
free resolution satisfies all conditions of our lerama. In fact,‘lf one of
ideals, say a,, were equal to R, then a(v,) would generate a direct sum-
‘mand of F, and we would get an R-resolution

0<B @ Q «FyRa(v,) < I /Bv; <0

with projéctive Fo/Ra(v,). Adding an appropriate projective module to
.the first and the second terms, we get an exact sequence

0<B @®Q «Fi<«Rv, @-.. @ Rop<0

with Q' projective and Fy free, contrary to our choice of J, of minimal rank.
Using the notation of [1], we have :

TEmMmA 3. If R is a ring and IT is a non cylclio torsion-free group
of rank 1 generated by elements 6y, Oy, ... such that ot = oy (M =1, 2, il
tn41 > 1), then the sequence

8 d;. s
0« R Py« P« Py« 0,

¥
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where
Py =R(II),
P, is an R(II)-free module on free generators @, m,, ..
P, is an R(II)-free module on free generators vy, ¥, ...
g 15 the unit augmentation,
di(@n) = 1— on,
AYYn) = Tn— Spr1nr1 With Spyy = L4 Opya+ Onrg+ .o+ oo,

is an R(IT)-free resolution of R (IT operates trivially on R) and dimpgn R = 2
This lemma was proved in [1], p. 298 for R = Z, but the same
proof applies to an arbitrary ring R. )

LemMA 4. If R is a Noetherian ring, B is a finitely generated R-mod-
ule, dimgB =1 and II is a non cyclic torsion-free group of rank 1, then
dimpm B =3 (II operates trivially on B).

Proof. By Lemma 3 it follows that for any R-projective module @
we have dimpyn @ < 2; then to prove the lemma it is sufficient to prove
dimgm (B@® Q) = 3. Let @ satisfy all the conditions of Lemma 2; we
then have an R-free resolution F' :

0B F, L F <0
of B=B®Q. .

Let 8= P ®zF be the tensor product of the R(II)-resolution P
of R and the R-resolution F of B’. The complex & is R(II)-free and
acyclic because Hy(P)== R is an R-free module. By Lemma 1 it is suf-
ficient to prove that Im(S;—> S,) is not a direct summand of §,.

Let us assume that Im(S;— 8,) is a direct summand of 8;; then

. there exists a homomorphism g: S;—> S; such that ed; iz the identity

on S;. If we write 2, = y» ® v,, then the module

W = R(I){z; %, ...}

i3 R(IT)-free and is a direct summand of S,. Let = be the natural pro-
jection of §; onto W. Thus we have

2n = 7 (2n)
= 70ds(Yn @ 1) .
= 71p[(dzyn) ® 11+¥a ® (di'01)]
= o[ (%n— Sn41®ns1) ® U1+ Y @ (di'01)],

and for the elements &, = 710 (2 ® v,) € W we get the relations

2y = E_ﬂ“" 8ni1 &1+ 7o[yn ®(di'v)]
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Since di'v, € 0, F,, we have me[yn ® (@'0,)] e B(INa, W, and writing
E=Rla,, W=WEIDoLW

we can easily see that W is an_R(II)-free module on free generators
%y %,y .. and that the elements & e W satisfy the system of equations

(3) Tn= Er—Bpprlnn (0=1,2,..).

The elements 3n41 aTe neither units nor zero divigors in R(IT); we then
get a contradiction with (1.4) of [1], which states that system (3) has
no solutions in W. .

2., In this section we prove
TEEOREM 1. If R is a commatative N oetherian ring and IT is an abelian
torsion-free group which is not finitely generated, then

gl.dim R (I7) = gl. dim R+ (II)+1,
and if A is such an R-module that dimpA = gl.dim R, then
gl.dim B(/T) = dimgum A
(IT operates trivially on A).

If R is a commutative ring ond IT is an abelian finitely generated
torsion free growp, then
gl.dim R (IT) = gl.dim B+ (II) ,
and if A is such an R-module 1hat dimp A = gl.dim R, then
gl. dim R(IT) = dimgum 4
(IT operates trivially on A).

Proof. The second part of the theorem was proved in [1].

If gl.dimR = oo or r(IT) = oo, then the theorem is obvious.

To prove the first part of our theorem let us start with a non-
cyclic group IT of rank 1 and a commutative Noetherian ring with
gl.dimR =38 < oo, )

If =0, then R is a direct product of a finite number of fields,
and we can consider the case where R is a field. By Lemma 3 we have
gl.iimR(IT) > dimgmR =2 and R(I) is a union of an increasing
sequence of rings of global dimension 1; then gl.dimE(II) < 2.

Tf 3> 0 and dimgd =s, then there exists an R-projective reso-
lution

D 0 A Qe Q.. Qs0.
Let us write B_y = 4, Bi=Im(Qu1—>Qs), i= 0,1, .., (s—1); we then
have exact sequences of E-modules

(4) 0« .B‘<-— Q‘.H*(—- B‘.{.l(— 0 (‘I; = f‘l, O,vl, wery (8—1)) .
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We can consider these sequences as exact sequences of R (IT)-modules
with trivial JI-operators. Since dimpmB =2, we have dimpumQs<2
and for any m >3 we have )

Exthun (Bis1, X) ~ BxtRn (B, X)
Consequently
Extiin (4, X) = Extiim(B_;, X) ~ Bxthum (Bss, X) -

‘We know that dimpB,.; = 1 and B, is a finitely generated R-module;
then by Lemma 4 it follows that there exists an R(II)-module X such
that Exthgy (Bs-z, X) # 0 and thus dimg4d > s-+2. On the other hand,

gl.dimR(IT) <1+ gl.dimR(Z) =842

for ¢=-1,0,1,..,(s—1).

because the ring R(IT) is a union of an increasing sequence of rings iso-
morphic to B(Z) (see (1.3) of [1]). Consequently

gl.dim R(IT) = dimppn 4 = gl. dim R+ +1

for groups IT of rank 1.

Let us assume that the theorem holds for groups of rank <r and
let IT be non-finitely generated torsion-free group of rank r. It is easy
to see that the group IT contains a subgroup II, of rank r which is not
finitely generated and is an extension of a group Il; ~ Z by a torsion-
free group Iy’ of rank r—1. By (1.3) of [1] we can deduce that

s+r<gldimR(IT) <st+r41

and it is sufficient to prove that gl.dimR(II) = s+4r+1.

For any R(I1;’')-module A and an R(IT,)-module 0 we have a spectral
sequence
(5) Exthan(4, Bxthay (B, 0)) = Extimy(4, C)

(see [2], Chapter XVI, Theorem 6.1). We take for 4 such an R-module
with trivial II’-operators that dimz4d = gl.dimR and for O such an
R(II,)-module with trivial ITj-operators that Ext;;;,‘,.,)(A, C) # 0. For
an R(II})-module B we have an R(IT;)-free resolution

) P A
0« R« R(II})«—R(I)<0,
where o} is a generator of IIj. Thus we have

» 0 for >1
Bty (B, 0) = {C' for g =1 i
and . )

Bxtfpn =0 for k>str.
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The “maximum term principle” of spectral sequences yields

Extiny' (4, 0)~ Exthizn (4, Bxthay (B, 0)) = Bxtgzn (4, 0) #0;
thus
gl.dim B (IT,) = dimpgm A=s+r+l

and the theorem follows.

Tt is easy to see that Theorem 1 does not hold for arbitrary non-
Noetherian rings. In fact, if we put B = K (II) where K i3 a Noetherian
ring and IT is an abelian torgion-free group of finite rank which is not
finitely generated, then

gl.dim R (IT) = gl. dim K (I x IT) = gl.dim K+ 2r (I1) 41,
gl.dimR+r (D) +1 = gl. dim K (IT}+r(II)+1
=gl.dim K+ 2r(I)+2.

In general we have the inequalities

gl.dim B+ (IT) < gl. dim B(IT) < gl.dimR+r(I)+1.
If B is a Noetherian ring, then
gl dimR = w.gl. dim R;
thus for Noetherian rings' the first formula of Theorem 1 takes the form
gl.dim R (1) = w.gl.dim B+ (I1)+1.
This formula does not hold for arbitrary non-Noetherian rings (take R
with w.gl.dimR =0 and gl.dimR > 1).

3, Tt is known (see [2], Chapter X, § 6) that for any commutative
ring B we have ‘
Uging the spectral sequence (5) we get by similar arguments (starting
with Lemma 3).
TrEROREM 2. If R is a commutative ring and IT is an abelian torsion-
free group, then
. I)-+1  if IT is mot finmitely generated group
dim R(IT ={’"( o 18 ol ’
un r(IT) if IT is finitely generated group,
where R(IT) i8 considered as R-algebra.

In paper [3] the following properties of an E-algebra I were studied
(R is a commutative ring): : .

(P,) for every R-algebra A
t.1gldim A ® I'= dimI'+f.Lgl.dim A
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and .
LegldimA® I'=dimI'LgldimA;

(Py) for every R-algebra A
dim A® I'=dim A4 dimT;
(Py) if B 48 o K-algebra, then
K-dimI’= R-dimI'4-K-dim E ;

and for commutative I’
(P,) if A is I'-algebra satisfying

AR, A® 4*)=0 for r>0, TI-dimA< oo,
then
R-dim A = R-dimI+I~dim 4.

It was proved in [3] that the R-algebra I'= R[2y, ., @] of poly-
nomials in » indeterminates has properties (Py), (Pa), (Ps) and (Py).

It is easy to check that if we put I'= R(II) and IT iy an abelian
torsion-free group of finite rank which is not finitely generated and if
we take for A an R-algebra R(IT') with II’ of the same type as II, then
Theorems 1 and 2 imply that all the left side terms are smaller by one
than the right side terms. Consequently no property (Pe)y, 1=1,2,3,4,
holds for I'= R(II).
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