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On types of lattices*
by

Igbalunnisa (Madras)

Lattices can be classified in many ways. The most natural way is
with the help of equalities. The most familiar lattices of this type are
the distributive lattices and the modular lattices. The question which
naturally arises in this connection is: Are there types of lattices other
than the modular and distributive lattices satisfying equalities? The
answer to this is shown to be in the affirmative. As a matter of fact
it is shown that there are infinitely many types of lattices satisfying
equalities. A set of these lattices satisfy equalities stronger than the
modular law but weaker than the distributive law. They are termed
supermodular lattices. Thus we define supermodularity in a lattice.

DerFixitioN 1. A lattice which satisfies the equality

n

@ [T@+vo-o2+ | f[ o)

fa=] Ta=l Foml

where 2y = s+y;if ¢ = § and 2y = y; if 4 % § for all elements =z, ¥y, Y.,
vy Yn in L is called a supermodular lattice of order n (n > 3).

Supermodular lattices for n <3 are not defined. Those lattices
which satisfy the equality dual to that of (I) are called dually super-
modular lattices of order n (n > 3).

As n increages these laws tend more and more away from modu-
larity and tend more and more towards distributivity. These imply
modularity if we put ¥, =95 = ... =Ya.

Another set of lattices satisfy equalities feebler than the modular
law. They are called slightly modular lattices. Thus we define slightly
modularity in a lattice. :

DEFINITION 2. A lattice which satisfies the equality

n

(1) [ @+y0 =2+ (][] =)

=1 Tl f=1

* This paper forms a part of the doctoral thesis submitted to the University
of Madras in January 1964.
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where 2y = y;if j = 1 and 2y = @-+y; if @ # 7, for all elements x,y,, y,,
oy Yn in L is called a slightly modular lattice of order m (n = 2).

Slightly modular lattices for n < 2 are not defined. Those lattices
which satisfy the equality dual to that of (II) are called dually slightly
modular lattices of order n (n > 2).

As n increases these tend more and more towards the modular law.
The fact that the modular law implies these laws is easily seen. Further
one can easily show that any sublattice, homomorphic image and prod-
uct of slightly modular / dually slightly modular / supermodular / dually
supermodular lattices of any order is a slightly modular / dually slightly
modular / supermodular / dually supermodular lattice of the same order.
We can also show that the lattice of ideals of a slightly modular / dually
slightly modular / supermodular [ dually supermodular lattice of any
order is a slightly modular/dually slightly modular / supermodular /
dually supermodular lattice of the same order.

The next way of classification of lattices is done with the help of
complementation. In this connection the well-known lattices are the
Boolean algebras, the complemented modular lattices, the relatively
complemented lattices and not too well-known weakly ecomplemented
lattices. (A lattice is called weakly complemented if every interval of the
type (z,0) is complemented.)

Another method of classification is done with the help of chains.
A lattice is called finite if it has a finite number of finite chains. It is
called discrete if all chains in it ave finite and semsd-discrete if between
every pair of comparable elements there exists a finite maximal chain.
The well-known results in this connection are:

(i) Any weakly complemented, modular lattice is relatively comple-
mented and is further complemented modular if @ has the unit element
(cf. [1], p. 114).

() Any semi-discrete modular lattice is discrete (cf. [1], p. 67).

Yet another way of classification of lattices is done with the help
of projectivity and lattice translation (cf. [4]). Clearly unlike projectiv-
ity, lattice tramslation is not a symmetric relation. Thus we define the
concept of an effective interval.

DerFINITION 3. An interval I is called effective if whenever I is
a lattice translate of J then there exists a nontrivial subinterval J,
(other than a point) of J such that J, is a lattice translate of I.

Any interval which is not effective iz called an ineffective interval.
One can easily see that any subinterval of an ineffective interval is an
ineffective interval (ef. [4]).

DEFINITION 4. A lattice is defined to be weakly modular if all inter-
vals in it are effective; and a lattice L is called submodular if every
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lattice translate of any interval I of L is a finite sum of intervals pro-
jective with I or with subintervals of I.

It is known that the weakly modular lattice is a generalization of
the modular and relatively complemented types (cf. [2]). In what fol-
lows we show that the submodular lattice is an intermediate general-
ization of the modular and relatively complemented types.

THEOREM 1. Any relatively complemented lattice is submodular but
not conversely.

Proof. Let L be a relatively complemented lattice. Let I = (x,y)
be an interval of L. Consider the interval J = (z+z,y+2) of L. Let
(u,v) be a subinterval of J, ie. z-+-2>u>v>y-+2. Let ¢t be a re-
lative complement of « in (z-+2, v); then 2> #i > y. Now 2+2z2> x4+t
> s+y+2>x+2 Hence x4+t = x4z Thus (u, ), (¢+=2,1) and (%, zf)
are successive transposes. Hence (#,9) is projective to a subinterval
of I. Similarly we can prove that any subinterval of (zz, yz) is also
projective to a subinterval of I.

Let K = (¢, d) be a lattice translate of I. Then ¢ = f (%, %1, ..., Za)
and d = f(y, @y, ..., Ln) Where @y, Ly, ..., &n ave in L and f is a finite
lattice polynomial. As f is finitary, K is projective to a subinterval of I,
by repeating the argument in the above para a finite number of times.
Thus any lattice translate of I is projective to a subinterval of I. Thus
any relatively complemented lattice is submodular.

EQ C
d .
0
Fig. 1
For the converse, consider the lattice of figure 1. It is submodular
as all prime intervals are projective to each other. But L is not rela-
tively complemented as the element a has no complement in the inter-
val (b, 0).
THEOREM 2. Any modular lattice is submodular but not conversely.
Proof. We shall prove that any subinterval of (x+42, y-+2) is pro-
jective to a subinterval of (z, y) for all ,y, 2 in L. Then the proof fol-
lows on similar lines as in theorem 1.
Let at+zzu>v>=y+z Now ztzzotuzacsto=zs+y+=2

—=g-+2 Thus #-tu = x+v. Therefore xv % xu (L is modular). Also
']*
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s>aou>av >y and v+ au = u(v+2) = % Thus (zu, 2v) is projective
to (u,v). Thus any subinterval of (w2, y+2) is projective to a sub-
interval of (z,y) and hence the theorem.

For the converse, it will suffice to note that the lattice of figure 1
contains the nonmodular five-element lattice as a sublattice; namely
the sublattice comsisting of the elements (0, a, b, ¢,1).

THEOREM 3. Any submodular lattice is weakly modular but not con-
versely.

Proof. That any submodular lattice is weakly modular follows
from the definition. For the converse, consider the lattice of figure 2.
This lattice is simple and hence is weakly modular. But it is not sub-
modular as (a, 0) and (1, b) are lattice translates of each other and they
are prime, but they are not projective.

7

Fig. 2

Remark. Any simple lattice is weakly modular but not necessarily
submodular.

LemmA 1. In o submodular lattice all prime lattice tramslates of any
prime interval I are projective with I. Conversely, if this property holds
in a lattice L and L is semidiscrete, then L is submodular.

Proof. Let L be a submodular lattice. Let I be any prime interval
of I and J a prime interval which is a lattice translate of I. As J is
prime and L is submodular, J is projective with a subinterval of I. But
a8 I is prime any subinterval of I is itself. Hence I is projective with oJ.

Conversely let L be a semi-discrete lattice such that all prime lattice
translates of any prime interval I are projective with I. Let (¢, d) be
any interval of I and let (a, b) be a lattice translate of (¢, d). Let ¢ = ¢,
& €. &~0n = d be a finite maximal chain joining ¢ to d (such a chain
ex1:sts a8 L is semi-discrete). As (a, b) iy a lattice translate of (¢, d) there
exist elements @,a,,..., 4 of L such that a = f(c, my, @,, ..., #s) and
b=f(d, %, €, ..., m,) where f iy a finite lattice polynomial. Let ay
=f(0i, @15 e @) for i =2,3,...,m Then a =ay>a, > ... > an = b and
(@i, ‘f") is a lattice translate of (¢;_y, ¢;). Let agy =byS b, S~ ... Sby=as
be 2 finite maximal chain joining a;_;to . Then (bj—1, by) 18 a lattice
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translate of (¢i—i, ¢;) for § =1,2,...,p. This is true for ¢ =1, 2, ..., 2.
Hence (4, b) consists of a finite sum of intervals projective to subinter-
vals of (¢, d). Thus L is submodular.

The word “submodular lattice”,is due to O. Tamaschke (cf. [5]),
who defines submodularity for lattices of finite length. He makes use
of the concept of a prime interval—a property of finite character—hence
the very same definition cannot be adopted to define submodularity
for general lattices. We give his definition in this section and show that
for all semi-discrete lattices both the definitions are equivalent.

DEFINITION 5. O. Tamaschke defines a lattice to be submodular
it it satisfies the following conditions:

(8) If s+ySy (aSb means a covers b), then for any prime interval
(p,q) such that & =p >q=>zy; (p,q) is projective to (z+y, y).

(8) If @S ay, then for any prime interval (p, q) such that o+y =p
Sazy: (2,9 is projective to (x, 2y).

THEOREM 4. For a semi-discrete lattice L, the definitions 4 and 5 of
submodularity are equivalent.

Proof. First we prove that definition 4 of submodularity implies
definition 5. Let ©-+y Sy and (p,g) be any prime interval such that
©>pSq>ay; then (p,q) can be written as (p, ) = ((@+9,9)- o)+
+q) -p and hence (p, g) is a lattice translate of (z4y, ¥)- Both the inter-
vals (z-+y,y) and (p, ¢) being prime, they are projective by lemma 1.
Thus L satisfies (8). Similarly we can prove that L satisfies (8) and
hence I is submodular in the sense of O. Tamaschke. _

Conversely, let L be a semi-discrete lattice satistying (8) and (S).
Let (a,b) and (c,d) be a pair of prime inbervals such that (¢, d) is
a lattice translate of (a, b). Tt will suffice to prove that (a, b) and (e, d)
are projective intervals as the submodularity of L will then follow by
Lemma 1.

Consider ((a, b)+a), a nontrivial additive translate of (a, ). Then
a> a(b+x) =b. Now a(b+=) # a. Becanse if a{(b-+x) = a, then (b+x)
>a and 50 at+2=a+bta =0+ 2 contradiction as a+x #= b42.
Thus a(b+2) =b (as aSb). Now asb = a(b+9) and so

() (a, b) s projective o every prime interval in (a2, b+az) as
a+o =a+z+b and L satisfies (8).

Dully we can prove that

(B) (a, b) is projective to every prime interval in (az, bx) (@ >D).

Next as (¢, d) is a lattice translate of (a, b) there exist a finite number
of elements @y, @, ..., #» such that (e, d) = (((a,b)—]—ml) o, )a:,. Let
6B = Gy S0 S S>an =b-+s be 3 maximal chain joining (@)
and (b4 ®,); then (a;_1, ai) is projective to (a,b) for each i, by («) (a8
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at @ # b4+m). Next put b= a,2; then (a+2)2 =b,=2b,>..>b,
= (b+m,)@,. Thus, for each i, (bi-1, bs) is a multiplicative translate of
a prime interval (a;—:, as). Hence every prime interval of (b;_;, b;) is
projective to (a;_i, as) and so in turn projective to (a, b) for i =1,2, ..., n.
Thus there exists a maximal chain joining ((a—l—ml)a:g, (b+m1)wz) such
that each prime interval of it is projective to (a,b).

By a finite iteration of this process we see that there exists a finite
maximal chain joining (¢, d) such that each prime interval of it is pro-
jective to (a,bd). But ¢S>d. Hence (¢, d) is projective to (a,?d). Thus
the equivalence of the two definitions is established.

Note. It is worthwhile noting that we have given an answer to
problem 10 of [3] in the first part of this paper. Problem 10 of [3] is:
Give types of weakly modular lattices which are defined by identical
relations and are different from the following three classes of lattices:
(a) the class consisting of only the lattice of one element, (b) the class
of distributive lattices, and (c) the class of modular lattices.

We see that the supermodular lattice of any order satisfies the
requirements for an answer to the above problem.

In conclusion, my thanks are due to Professor V. S. Krishnan for
his constant help during the preparation of this paper.
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On a Galois correspondence
between the lattice of ideals and the lattice
of congruences on a lattice L *

by

Iqbalunnisa (Madras)

This paper deals with a natural Galois correspondence between the
lattice of congruence on L (denotes by 6(L)) and the lattice of ideals
of L (denoted by I(L)). To any congruence § on L there corresponds
an ideal of L, i.e., the zero class under the congruence 6 on L, denoted
by I(6). Let f denote the mapping 6->I(6), Le., & mapping from 0 (L)
into I(L). Conversely, starting with an ideal I of a lattice I there cor-
responds a congruence 6(I) on L, namely the congruence generated by
the ideal I of L. Let g denote the mapping T—6(I); Le., 2 mapping
from I(L) into 6(L). The mappings f and g define a Galois correspond-
ence G between the lattice of ideals of L (under the usual ordering <)
and the lattice of congruences on L (under the ordering <’, dual to the
usual ordering <), since:

(i) I 6 <’ then I(6)>I(g)-

(i) If I < J then 6(I)>'6(J).

(iii) For any I, I(6(I)) =1, and for any 0, 8{I(6)) =" 6.

Now in any Galois correspondence the closed elements of either
are the image elements of the other. The closed elements of I(L) (ele~
ments I such that I(6(I)) =1I) and closed elements of 6(L) (elements 6
such that 6(I(6)) = 6) are termed congruence ideals and zero CONGruences
respectively. Hence we have:

DEFINITION 1. An ideal I is a congruence ideal of L if and only if
any lattice translate of any interval of I belongs to I or lies completely
outside I.

An interval J is a lattice translate of an interval I of L if elements
@y, Bay or, #n can be found such that

J = (((I+w1) N ARN ) o
* This paper forms a part of the Doctoral thesis submitted to the University
of Madras in January 1964.
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