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at @ # b4+m). Next put b= a,2; then (a+2)2 =b,=2b,>..>b,
= (b+m,)@,. Thus, for each i, (bi-1, bs) is a multiplicative translate of
a prime interval (a;—:, as). Hence every prime interval of (b;_;, b;) is
projective to (a;_i, as) and so in turn projective to (a, b) for i =1,2, ..., n.
Thus there exists a maximal chain joining ((a—l—ml)a:g, (b+m1)wz) such
that each prime interval of it is projective to (a,b).

By a finite iteration of this process we see that there exists a finite
maximal chain joining (¢, d) such that each prime interval of it is pro-
jective to (a,bd). But ¢S>d. Hence (¢, d) is projective to (a,?d). Thus
the equivalence of the two definitions is established.

Note. It is worthwhile noting that we have given an answer to
problem 10 of [3] in the first part of this paper. Problem 10 of [3] is:
Give types of weakly modular lattices which are defined by identical
relations and are different from the following three classes of lattices:
(a) the class consisting of only the lattice of one element, (b) the class
of distributive lattices, and (c) the class of modular lattices.

We see that the supermodular lattice of any order satisfies the
requirements for an answer to the above problem.

In conclusion, my thanks are due to Professor V. S. Krishnan for
his constant help during the preparation of this paper.
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On a Galois correspondence
between the lattice of ideals and the lattice
of congruences on a lattice L *

by

Iqbalunnisa (Madras)

This paper deals with a natural Galois correspondence between the
lattice of congruence on L (denotes by 6(L)) and the lattice of ideals
of L (denoted by I(L)). To any congruence § on L there corresponds
an ideal of L, i.e., the zero class under the congruence 6 on L, denoted
by I(6). Let f denote the mapping 6->I(6), Le., & mapping from 0 (L)
into I(L). Conversely, starting with an ideal I of a lattice I there cor-
responds a congruence 6(I) on L, namely the congruence generated by
the ideal I of L. Let g denote the mapping T—6(I); Le., 2 mapping
from I(L) into 6(L). The mappings f and g define a Galois correspond-
ence G between the lattice of ideals of L (under the usual ordering <)
and the lattice of congruences on L (under the ordering <’, dual to the
usual ordering <), since:

(i) I 6 <’ then I(6)>I(g)-

(i) If I < J then 6(I)>'6(J).

(iii) For any I, I(6(I)) =1, and for any 0, 8{I(6)) =" 6.

Now in any Galois correspondence the closed elements of either
are the image elements of the other. The closed elements of I(L) (ele~
ments I such that I(6(I)) =1I) and closed elements of 6(L) (elements 6
such that 6(I(6)) = 6) are termed congruence ideals and zero CONGruences
respectively. Hence we have:

DEFINITION 1. An ideal I is a congruence ideal of L if and only if
any lattice translate of any interval of I belongs to I or lies completely
outside I.

An interval J is a lattice translate of an interval I of L if elements
@y, Bay or, #n can be found such that

J = (((I+w1) N ARN ) o
* This paper forms a part of the Doctoral thesis submitted to the University
of Madras in January 1964.
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or
I =((I- @)+ ) 2 ...)a05

where # is finite and +, - occur alternately (ef. [2]).

DEFINITION 2. A congruence 6 on L is a zero congruence on I if
and only if any interval annulled by 6 is a finite sum of lattice trans-
lates of intervals in the kernel of 6.

The smallest congruence 6 on L under which a set § in I belongs
to a single class under the congruence 6 on L is called the congruence
generated by the set 8 and is denoted by 6g. Further any interval an-
nulled by 6s consists of a finite sum of lattice translates of intervalg
of 8§ (cf. [2]).

Further we know that the closed elements of any lattice under any
Galois correspondence form a complete lattice which is a subsystem of
the original with respect to products. Also the complete lattice of cloged
elements of either lattice is anti-isomorphic to the complete lattice of
closed elements of the other in any Galois correspondence. Interpreting
these results in the usual orderings (I(L), <) and (6(L), <) we have

THEOREM 1. The congruence ideals on amy lattice L form a complete
lattice O(L) closed for ideal products, but not for ideal sums.

The fact that the family of congrnence ideals are mot closed for
ideal sums follow from figure 1 below, where the ideal I = the principal
ideal generated by a and J = the principal ideal generated by b are
congruence ideals, while the ideal sum of I and J, i.e. the principal ideal
generated by ¢ is not a congruence ideal. Because the congruence gen-
erated by I-+J is the universal congruence on L.

Lemva 1. The zero congruences on amy lattice L form a complete
lattice Z(L).

Lmyma 2. (0(L), <) is isomorphic to (z(@), <).
Thus we have the following theorem.

THEOREM 2. The sum of a family of zero congruences () is a zero
congruence on L determined by the sum of the congruence ideals I = I(6;)

tn O(L); while the product of even two zero congruences is not in general
a zero congruence on L.

Proof. The former part follows from lemmas 1 and 2. For the latter
we make use of an example.

Consider the lattice of figure 2. The congruence generated by the

principal ideals u(b) and u(e) are zero congruences. But their inter-

section is the congruence generated by the interval (a, b) and hence is
not a zero congruence on IL.
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THEOREM 3. Every ideal of a lattice I is closed under the Galois cor-
respondence G if and only if L is a distributive lattice.

Proof. Let L be a distributive lattice. Tt is well known (and can
be easily verified) that any ideal of L is a congruence ideal and hence
is closed under the Galois correspondence G.

Conversely, let every ideal of L be closed under @. Let, if possible,
L be non-distributive; then L contains a sublattice of one of the two
types given in figures 2 and 3. In either case the principal ideal gene-

1 1 1

o
o

0

Fig. 1 Fig. 2 Fig. 3
rated by a is not a congruence ideal and hence is not closed under th‘e
Galois correspondence @; a contradiction to our assumption. Thus L is
a distributive lattice.

THEOREM 4. Hvery congruence on o lattice L with zero is closed
under @ if and only if for any interval p = (x, y) of L, there ewists another
interval ¢ = (2, 0) such that 6, = 6, (8p, 6, being the congruences gemerated
by the intervals p and g, respectively).

Proof. Let every congruence on L be closed and let p = (x,y) be
any interval of L. Consider 6, the congruence generated _by p. Now
6, should be closed under G. Thus 6, = 6(T (Op)), whence 85 is generafsed
by I(6;). Thus p is annulled by 6(I(6y)), which implies that @ere em§ts
a finite chain & = @, > 2; > ... > @» = ¥ such that (s, a:) 18 & latt%ce
translate of some interval (as, bs) of I(8y). As I(6p) is an idee\..l contva,}n-
ving a; it contains the interval (a¢, 0). Thus, for each 4, (@:1,@s) is a lattice

n a . > .d 1
translate of some interval (a:, 0). But ‘Ulat is in I(8p); as I(fp) is an idea

n .
containing a; for each 4 and n is finite. Put 2 = 'U1 ai; then (@i, as) is
i

a lattice translate of (2, 0) for each 4, and hence p is annulled by 0,
where ¢ = (2, 0). Also 6, annuls ¢ as ¢ belongs to I(05). Hence 0, = 6.
Thus the necessity of the condition is established. .

Conversely let L be a lattice satisfying the con'ditlon. Let 6 be any
congruence on L. We have # = y(0) if and only if oy = xz+y(0). Let
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p be the interval (x+y,ay) of L Let ¢ = (2, 0) be the interval corre-
sponding to p such that 6, = 6;,. Then 2= y(0) implies oy = z4-4(0)
implies 0 ==2(0) (as 0, = 6,C 0) implies ¢ CI(6) implies 6, C (I(6) ()
implies 8, C 6(I(6)) (as 0p = 6,) implies p is annulled by (I (
Ty = w—{—y(B(I(O))) implies @ =y(6(I(0))-

Thus 6 C §(I(6)). But 62 6(Z(6)) for any 6 on any latiice L, whence
6 =0(I (6)), i.e. every congruence on L is closed under the Galois cor-
respondence G.

0)) implies

THEOREM 5. Huvery ideal of L and every congruence on L is closed
under G if and only if L is o relatively complemented, distributive lattice.

Proof. Let L be a relatively complemented distributive lattice;
then it satisfies the conditions of theorems 3 and 4; hence every ideal
of L and every congruence on L is closed under G. (For p = (@, %) (x> )
choose ¢ = (2, 0) where z is the complement of y in the interval (z, 0).)

Conversely let L be a lattice such that every ideal of L and every
congruence on L is closed under @. So L satisfies the conditions of theo-
rems 3 and 4 and hence it is a distributive lattice. To prove that it is
relatively complemented it will suffice to prove that every interval of
the type (z,0) is complemented (as L is distributive).

Now any lattice translate of (a, b) in a distributive lattice L can
be written as (az+y, bo+y) for some @,y in L (cf. [2]). Therefore any
lattice tramslate of (z,0) is of the type (2z-+y,¥). Thus, if ¢ = (2, 0)
and p = (v, ) is a lattice translate of ¢, then » = -2z for some # in L.
Consider any interval p = (¢, b) of L. Let ¢ be the interval corresponding
to p such that 6, = 6;, by Theorem 4. Now p is annulled by 6;; hence
it is a finite sum of lattice translates of ¢; say > (bs, bi—y), Where b = b,
<b < ... <by=c. Now (bs, b;—y) is a lattice translate of ¢ = (2, 0) for
each ¢. Hence, for each 4, b; = b;_,-}+2m; for some #; in L. Therefore
bn = byt > 2w, ie. ¢ = b-d, where d = 3 ;.

Next consider bd. Let, if possible, bd be other than zero. Now (bd, 0)
is annulled by 6, and the interval (¢, 0) being a sublattice of a distri-
butive lattice iy itself distributive and so is its dual. Thus 0 = bdt for
some t in (¢, 0) as ¢ becomes the zero of the lattice (¢, 0) under its dual
ordering. But bdf = bd = 0. Thus d is the complement of b in (¢, 0).

Hence every interval of the type (¢, 0) of I is complemented and so L
is relatively complemented.

TEREOREM 6. The mapping f: 0->I(0) preserves all products but does
not preserve sums in gemeral in I(L), not even in C(L).

Proof. Let (6) be a family of congruences on L. Let I; be the zero
class under 6; for each 4; and let 6 = ﬂ 6: and let I be the zero class
under 6.
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Required to prove I = [] ;. Now # is in I if and ouly if # = 0(/ 6:)

if and only if # = 0(6;) for each 4, if and only if « is in I; for each 4, if
and only if & is in n Is. Thus I = H I; and hence the mapping f pre-

gerves all products.

For the other part, we give an example. Consider the lattice of
figure 4 and the congruences 0, 0, of L. It is easily seen that the zero
class I under 6;+ 0, is neither I,+I, nor the sum of I, and I, in C(L).

7 and L ClL)

Fig. ¢

TEROREM 7. The mapping g: I—0(I) preserves all sums but does mot
preserve products in general.

Proof. Let (I;) be a family of ideals of L. Let 6(I;) be the con-
gruence generated by I;. Then 6 UI¢ U 6(I;). Because 0(I;) annuls

I; for each 4. Hence UG (Is) annuls UI¢ implies UB (Te) 2 6(UJ Is).

Also ULDI; for each 4, and so 6 UIi YD 8(I4) for each 4, which im-

plies B(U I)D UG(L Thus 6(JIr) = U 0(Zy). That is the correspon-
3 1

dence g preserves all sums.
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For the latter part, consider the lattice of figure 3 and the ideals
I, and I, namely the principal ideals generated by & and b. Then each
of 8(I,) and 6(I,) is the universal congruence on L and hence is their
intersection; while 6(I; A I,) is the null congruence on L. Thus g does
not preserve products.

My thanks arve due to Professor V. 8. Krishnan for his constant
help and encouragement.
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On the elementary theory of linear order*
by .

H. Liuchli and J. Leonard, (Tucson, Arizona)

A. Bhrenfeucht proved in [1] that the elementary theory I of linear
order, even with a finite number of unary predicates adjoined (then
denoted by T)), is decidable. Here we establish the same result by a dif-
ferent method. We think that our proof is of interest on its own, be-
cauge it gives further insight as to how much can be expressed in the
first-order language of linear order (see Theorem 2 below) (*). It is only
for the sake of a lighter notation that we restrict our proof to the the-
ory T; there is an obvious generalization to a proof for T (see also
remark 3 below).

1. Let L be the first-order language with identity and one binary
predicate <. 7' is the theory over L of the axioms

(a) “lwu<u, OB u<vrav<wu<w, (€ u=0Vuo2Vo<u

We use < y(modA) to denote the order relation of an ordered
set A, |[4] to denote the field of 4. B is said to be a segment of 4, it B
is a submodel of 4 and if # < y(modB) and 2 < z < y(mod A) implies
2¢€|B|. An ordered set # is said to be a splitting of 4, if |#| is a set of
(non-empty) segments of 4, which partitions (A, and if B< C(mod #£)
iff &< y(modd) for all ze|B|, ye|0]. The elements of |#] are called
the parts of the splitting.

o, w*,  Tespectively denote the order type of the positive integers,
negative integers, rationals. + and - denote sum and product of order
types (or ordered sets). Given a finite non-empty set F of order types,
oF denotes the type which is characterized as follows (“o” for “shuffl-
ing”): An ordered set A is of type oF iff there exists a splitting of A
of order type n such that every part has a type from F and between
any two different parts there are parts of each type from F®).

* The author wish to thank A, Tarski for his valuablé comments on this paper.

() A similar proof has been found independently by F. Galvin. .

() In (8], p. 32, Th. Skolem proves s theorem which grants the unigueness of
shuffling. Mrs. A. Morel makes extensive use of shuffling in [6].
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