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For the latter part, consider the lattice of figure 3 and the ideals
I, and I, namely the principal ideals generated by & and b. Then each
of 8(I,) and 6(I,) is the universal congruence on L and hence is their
intersection; while 6(I; A I,) is the null congruence on L. Thus g does
not preserve products.

My thanks arve due to Professor V. 8. Krishnan for his constant
help and encouragement.
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On the elementary theory of linear order*
by .

H. Liuchli and J. Leonard, (Tucson, Arizona)

A. Bhrenfeucht proved in [1] that the elementary theory I of linear
order, even with a finite number of unary predicates adjoined (then
denoted by T)), is decidable. Here we establish the same result by a dif-
ferent method. We think that our proof is of interest on its own, be-
cauge it gives further insight as to how much can be expressed in the
first-order language of linear order (see Theorem 2 below) (*). It is only
for the sake of a lighter notation that we restrict our proof to the the-
ory T; there is an obvious generalization to a proof for T (see also
remark 3 below).

1. Let L be the first-order language with identity and one binary
predicate <. 7' is the theory over L of the axioms

(a) “lwu<u, OB u<vrav<wu<w, (€ u=0Vuo2Vo<u

We use < y(modA) to denote the order relation of an ordered
set A, |[4] to denote the field of 4. B is said to be a segment of 4, it B
is a submodel of 4 and if # < y(modB) and 2 < z < y(mod A) implies
2¢€|B|. An ordered set # is said to be a splitting of 4, if |#| is a set of
(non-empty) segments of 4, which partitions (A, and if B< C(mod #£)
iff &< y(modd) for all ze|B|, ye|0]. The elements of |#] are called
the parts of the splitting.

o, w*,  Tespectively denote the order type of the positive integers,
negative integers, rationals. + and - denote sum and product of order
types (or ordered sets). Given a finite non-empty set F of order types,
oF denotes the type which is characterized as follows (“o” for “shuffl-
ing”): An ordered set A is of type oF iff there exists a splitting of A
of order type n such that every part has a type from F and between
any two different parts there are parts of each type from F®).

* The author wish to thank A, Tarski for his valuablé comments on this paper.

() A similar proof has been found independently by F. Galvin. .

() In (8], p. 32, Th. Skolem proves s theorem which grants the unigueness of
shuffling. Mrs. A. Morel makes extensive use of shuffling in [6].
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(Bxample: ¢{1} =17, o{a} = a-7n; the four types
o{1,2,3}, ofl,0{2,3}}, o{2,0(3,1}}, ¢{3,0(1,2}

are pairwise distinet.)

Let M be the smallest class of order types which contains 1 and
is closed under the operations a-+pf, a w, a-w*, off (F finite) We
write al=® to express that the formula @ holds for ordered sets of
type a.

The results are as follows.

THEOREM 1. The proposition “‘al=0" s decidable for the class of
pairs {a,P>e M XL (®).

THEOREM 2. For every sentence @ L which is consistent with T,
there exists an ae M such that af=d.

CoROLLARY. T s decidable.

Proof of the Corollary. Theorems 1 and 2 imply that the set
of consistent sentences is recursively enumerable. Therefore, so is the
set of refutable sentences. Since the valid sentences of T are recursively
enumerable, it follows that T is decidable.

Remarks. 1. Theorem 1 is slightly stronger than the following:
The theory of a is decidable for every ae< M. On the other hand it is
clear that there are order types whose theory is undecidable. For instance,
take a = X(n4-a,), where {as}ne. 1S & non-recursive sequence of 2's and
3’s. The theory of a is seen to be undecidable because the statement
“ap = 2" can be expressed by a single formula for each .

2. Theorem 2 says that the set M is, from the point of view of
elementary properties, dense in the class of all order types. It is inter-
esting to compare this with the following result of P. Brdos and
A. Hajnal ([4]): If our operations aw, a-w*, oF are replaced by the
operations of forming arbitrary sums of type w, w*, 7, respectively, then
the class of all denumerable order types is generated.

3. Concerning T;: Theorems 1 and 2 hold in reference to the set M,
which contains all possible one-element types and is generated by the
operations a+f, a0, aw*, oF (which have an obvious meaning for
types of models of T)).

4. The set M is not minimal with respect to Theorem 2: M con-

tains distinet types which are elementarily equivalent; also types like
o+ w* could be thrown out.

() It is understood that the elements of M are given as terms built by means

of the operation symbols introduced above. We do not try to solve the word problem
for the claas of these terms.
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Question: Is the subset M;C M, which contains all finitely axiom-
atizable types from M, good for Theorem 2 (in other words, is the
Boolean Algebra of sentences modulo 7' atomic)?

2. The Fraissé method applied to ordered sets. Given an
ordered set A and ae|d|, A* (4”% will denote the initial (terminal)
segment of A determined by a.

DEFINITION. The #-equivalence (=,) between two ordered sets 4,, 4,
is recursively defined by

(a) A, =,4, always,

(b) Ay =n414, iff for every a, € | 4| there exists a, € |4,], and for every
a, € |4, there exists a, € |4;|, such that AT™ =, 45" and A7% =, 47"

Let P, denote the set of all sentences from I which are in prenex
form with a prefix of length n. “=" denotes elementary equivalence.

Levma 1. (i) 4, = 4, iff 4; =, 4, for every n,

(fi) A4; =a Ay implies that for all @ e Py, 4,}=0 iff A,=P.

For the proof, see A. Ehrenfeucht [2], E. Engeler [3] or R. Fraissé [5].
Our version of the definition of n-equivalence is easily seen to be equiv-
alent to the definition given in [2], say, when restricted to ordered sets
(see also [2], Theorem 11).

The relation =, is an equivalence relation. The equivalence classes
will be called n-types.

LEMMA 2. For each n, there are only finstely many distinet n-types.

The proof is immediate from our definition of n-equivalence.

LeMMA 3. If ordered sets A, A, admit order isomorphic splittings
such that corresponding parts are n-equivalent, then A; =p4,.

Proof. The Lemma is trivial for n = 0. Assume then that ib is true
for n and that we are given isomorphic splittings #,, #, of 4y, 4, with
corresponding parts (n--1)-equivalent. Let a, e |4, i.e. a ¢ |B;} for
some B, € |#&,|. For the corresponding part B, ¢ |#,| we have B, =y, B,
and ASP o AFT, AT o 45T Let ay € |B| such that By® =, B3
and BX %=, B7™. The ordered sets Ar™, 45* admit order isomorphic
splittings with m-equivalent last parts Bi™ and B:™, and with all re-
maining corresponding parts (m+-1)-equivalent. Clearly, (n -[—1)-equ{v-
alence implies n-equivalence. Therefore, by induction hypothesis,

M=, 45%. Correspondingly, 47“ =, A7™. Therefore 4, =n41 4,.

COROLLARY 3.1. If ordered sets Ay, A, admit order isomorphic splittings
such that corresponding parts are elementarily equivalent, then A, = A4,.

Proof by Lemma 1, (i) and Lemma 3. )
 Since isomorphy implies elementary equivalence, which in turn implies
n-equivalence, = and =, can be considered as relations between order types.
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COROLLARY 3.2. The relations = and =, are compatible (%) with the
operations a+f, a-w, a- w* oF.

Proof by Lemma 3.

Lemma 4. If ordered sets A, A, admit n-equivalent [elementary equiv-
alent] splittings #;, &, such that B, =4B, [B;= B,] for all B, e |#y,
B, e |4y, then A =54, [4; = 4,].

Proof. Almost a repetition of the proof of Lemma 3.

3. Proof of Theorem 1. In this section, Greek letters a, §, ...
will denote terms which represent the elements of M. § <-a denotes
that o is one of the terms g+y, y+8, - 0, B+ ¥, oF with 8¢ F. The set
{8: B <-a} is finite for each ae M. L(a) denotes the language which
contains in addition to the constants of L a binary predicate ~, and,
corresponding to each f << -a, a unary predicate Q.

Z, denotes the following set of sentences from L(a):

Zi={Vu,vlu=0Au~ur"Tu <ul

If a #1 then X, contains:
1) axioms for linear order,
2) if a =4y [a=0oF]:
“~ is an equivalence relation which determines a splitting of
order type 2 [%]7,

if a=p 0 [a=4 0*:
“~ is an equivalence relation which determines a splitting of
the elementary type of o [w*]”?,

3) “every element belongs to just one predicate @z, f < - a;.if u~0v
then « and v belong to the same @,”,

4) if a=pf+9:
Vau, v{u <o AT u~v>Q5u) A Q,v)),
if a = ol

YV, vu <o AT u~v—>/p}(}[ﬁ[w(u<w <0 A Qp(w))] .

For @¢L and B¢ M, let &(B) denote the formula
Vo(Q4(v) B ~)) ,

where v is a variable not occuring in & and D(~n) is obtained from
& Dby restricting all quantifiers to the predicate Au{u~wv).

. () An equivalence relation ~ is said to be compatible with an operation ao f,
if @, ~a and B, ~ g, implies @y fy ~ agof,.
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Let
Ta={D(B): p< -« and G eL and § | d}.
T'(u) will denote the set of all consequences from the axioms X, o .

Given a model A6 of L(a), its natural reduction (°) to L will be de-
noted by JA'.

Lumma 5. (i) If M is a model of T(a) and @ eL, then M= iff
M = .

(ii) Lor every ordered set 4 of type « there is a model Mo of T{a)
such that M = 4.

(i) Mf = dly for any two models Mgy Moy 0f T'(a) (8).

(i) is immediate.

Proof of (ii). Immediate if A is a one-element set. If not, there
exists w splitting of 4 in accordance with the structure of term a, such
that the parts are of types §, f <-a. We interprete ~ as an equivalence
relation on |A4] which determines such a splitting, and we let @ mark
the f-puarts. The model A thus obtained satisties X, o I7,.

Proof of (iii). Immediate for ¢ = 1. For composite «, inspection
of 2, v Iy shows that 6] and A% admit splittings which satisfy - the
hypotheses of Corollary 3.1 in the cases « = gy, a = oF, and the
hypothesis of Lemma 4 in the cases a = Brw, u = f-o* Thus o] = M.

CoROLLARY 5.1, If ue M and @ L, then

DeT(a) iff al=0.

Proof. Let ®¢T(a) ~L. Let A be an ordered set of type a. Let
A6 e a model of T'(«¢) such that ' = A (Lemma 5 (ii)). Then 46 = .
Thevefore 4 =@ (Lemma 5 (i)). On the other hand, Lemma 5 implies
that 1'(e) is complete with respect to sentences in L. Therefore the con-
verse implication.

A finite sequence of pairs

a3y Py ey {apy Py

such that a;e M and GreLfwg), i =1,..,p, wil be called a proof se-
quence, if for all 4 =1, ..., p:

Lither ®; follows from formulas @; with j < ¢ and «; = «; by means
of the usual rules of inference,

or @; is a logical axiom,

or $;e X,

or @; = Dy(a;) for some § <@ with a7 <-a; and @;el.

ng_ A6 avises from AG by dropping interpretations of terms which do not

belong to L.

(%) In fact, 7'(¢) is complete. But our version of n-equivalence is not adequate
for the proof of this.

Fundamente Mathematicae, T. LIX 8
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LeMMA 6. (i) The set of all proof sequences is recursively enumerable,
(i) if ae M and D eL(a), then @ e T(a) iff the pair {a, P> occurs
in some proof sequence.

Proof. (i) is immediate and (i) follows from Corollary 5.1 by
a straight foreward induction.

Proof of Theorem 1. Corollary 5.1 and Lemma 6 together imply
that the set of pairs <a, &> ¢ M xL with a|=@ is recursively enumerable.
Since the theory of « is complete (and al=@ iff a|=@* &* universal
closure of @), the proposition “a|=@” is decidable.

4. Proof of Theorem 2. n will be fixed throughout this section.
An ordered set A4 [order type o] is said to be good if A[a] is n-equiv-
alent to some B e M.

As a consequence of Corollary 3.2, we have

LEMMA 7. The class of good order types is closed under the operations
a+t-B, a- o, a- w*, oF.

B is said to be a bounded segment of an ordered set 4, if B is
2 segment of some closed segment [z, ] of 4.

Levma 8. If every bounded segment of a denumerable ordered set A
is good, then A is good.

Proof. We assume that A has a first, but no last, element (the
proof is similar in the other cases).(?) Let § be a subset of A of order
type o which is cofinal in 4 (4 denumerable). We partition the set of
all unordered pairs {z,y} C § according to the n-type of the half-open
segment [2,y) of 4 (if »# <y. [y, x) otherwise). By Lemma 2, there is
only a finite number of n-types. Thus, by Ramsey’s Theorem (see [7]),
there iz an infinite subset S; C S such that any two segments [z,y)
with z,y in 8; and # <y are n-equivalent. As an infinite subset of an
ordered set of type w, §; is cofinal in 8. Therefore, §, is cofinal in A.
By Lemma 3,

4 EnA-<w+{m’ Y w

The segments A= and [x,y) are bounded, hence good. Therefore,
by Lemma 7, 4 is good.

LevMMA 9. Bvery. ordered set is good.

Proof. By the Skolem-Lowenheim Theorem and Lemma 1 (i), we
may assume that the given ordered set 4 is denumerable.

Let # ~y, x, y ¢ |4], denote that every segment of the closed segment
[z, 4] is good.

for any #,yeS;,, v<y.

(7) If 4 has no first and no last element then 4 = B+C+D where B has a last
element, D has a first element, and C is good since bounded.

icm°
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1. ~ is an equivalence relation with the splitting property.
Proof immediate by Lemma 7 (in reference to addition).
2. Bvery equivalence class O has the property thai each segment of €
18 good (8).
Proof immediate by Lemma 8.
3. The spliiting # determined by ~ is of a dense order type (°).
Proof immediate by 2 above and Lemma 7.
4. There is only one equivalence class: |#] = {4)}.

Proof. By 2 above and Lemma 2, there exists a finite subset
F'C M and o function b from || onto B such that h0 =,C, all 0 ¢ |#4|.
For 0 < O'(mod#), let h(C, (") denote the range of the function kb
restricted to the open segment (O, 0') of . Supposing that there are
different equivalence classes, h(Cy, C:) assumes a minimal subset F of 7"
for some O < Cy(mod ) (F' finite!). Let # ¢ |Cy], ¥ ¢|C;] and consider
a segment B of the segment [z, y] of 4. We prove that B is good. This
is true if B is segment of some C e |#|. Otherwise, by 3 above, B is of
the form B;+|J $+B,, where $ is some segment of (Cy, C,) of order
type 7, | B denotes the corresponding segment of 4, and B,, B, are
(possibly empty) segments of some classes Of, 0} |4l By minimality
of 7, h(C,0')=F for all C, (" ¢|B| with ¢ < 0’(mod#). Therefore,
by Lemma 3, | B =,0F. B;, B, are good by 2 above. Hence B is good.
Therefore #~y, which contradicts the assumption C; < C,.

The Lemma now follows from 2 and 4.

Proof of Theorem 2. Let @ be a sentence which is consistent
with 7. We may assume that & is in prenex form. Let A be a model
of @, n the length of the prefix of @¢. By Lemma 9, 4 =,a for some
aeM, and by Lemma 1 (ii), a|=D.

(%) In particular, C is good.
(*) That is, one of the types 1, #, 5+1, 14y, 14541
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