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On the decidability of some problems
in special classes of groups

by
A. Wlodzimierz Mostowski (Warszawa)

1. Introduction.

L1. Problems considered. In the group theory almost every
problem is undecidable. A very large list of undecidable problems is given
in Baumslag, Boone, and Neumann’s paper [3]. The undecidability of
most of those problems follows from the undecidability of the word
problem, which was proved by Novikov [14], cf. also Britton [6] and
others.

The aim of this paper is to construct algorithms to decide various
problems, for wide classes of groups, in which those problems are de-
cidable. We shall investigate the class of residually finite groups, and
similar classes. Algorithms are given to decide the word problem, the
inclusion problem, and the conjugacy problem, in some classes of groups.
The algorithms are based on the residual properties of groups in those
classes. )

The idea of the paper is based on McKinsey’s method presented
in [13]. Some results announced by Malcev in [11] are proved. Some
further results are obtained. One of them is a positive solution of the
conjugacy problem for nilpotent groups—a problem which was first
posed by Malcev. The other new result is the decidability of the prob-
lem of isomorphism with a given finite group, in the class of all groups
with decidable word problem.

1.2. Notions and notation. Proving the decidability of group-
theoretical questions lies in proving that some sets of words are recursive.
The notion of recursivity and recursive enumerability, and theorems
on recursive functions are used. For those theorems, cf. Kleene [9].
Various results concerning the decidability or undecidability problems,
investigated in Tarski, Robinson, and Mostowski’s book [16], are
also used.

In order not to make the proofs too long and boring, the treatment
of metamathematical notions is mostly informal and intuitive. Only the
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formulations of the results, and the most difficult steps of the proofs
are a little more formalized.

At the end of this introduection the author wishes to express his
gratitude to his tutor professor Jerzy To§, for sympathetic interest and
helpful and stimulating suggestions during the preparation of this paper.

2. Presentations and classes of groups.

2.1. Finite presentations of groups. For any set of objects X,
we shall denote by F(X) the free group which is generated by elements
of X. For any subset B < F(X) we shall denote by N (R) the normal
dosure of B in F(X). We shall say that the pair P= (X, B) is a pres-
entation of a group @ = G(X, R) iff @ is isomorphic to the factor group
F(X)/N(R). Then the group G is a group with defining relations
7(2y, ooy &n) =1 for reR and generators @, .., % < X. We shall say
that a group is finitely presented (briefly an f.p. group) iff there exists
a presentation P = (X, R) of the group such that both X and R are
finite.

‘When presenting a group, it is sometimes convenient to distinguish
among the relations, those which hold identically in the group. Then as
a presentation we have a friple P = (X, R, V), where B < F(X) and V
it @ set of words consisting of other symbols (*). Then we shall say that
the presentation P is a presentation of a group G = G(X, R,V) with
identical relations V iff the group @ is isomorphic to the factor group
F(X)/N(R)-V7® (2). Here V'™ denotes the word subgroup of F(X)
defined by V. It is the subgroup of F(X) (necessarily fully invariant)
generated by elements which are obtained by substituting any elements
of F(X) on the variables in the words belonging to V.

Then for v(y,, ---, Ym) € V the relation

(2.1.1) Yy ey Ym) =1

holds identically in @ The set of relations: r(@,..,z,) =1 for reR
complemented by those which follow from identities (2.1.1) is a sebt of
defining relations for G.

When V is finite, then there exists a single word v» generating the

same word subgroup as V. E.g. when V= {&(¥y, ««o) Yn)y oYy s ¥}
then the word » is

’v(yl’ ey yzﬂ) = ,Dl(y17 e y") : 'vz(y’n‘HJ b f'/:m) .

(*) The elements of 7 meed not be words in X. They are treated in the sequel
a8 group-theoretic functions in some variables. They change into words from F(X)
when a substitution of elements from #(X) on the variables is made.

(%) There A.B denotes the set of products a-b for a ¢4 and b ¢B. If 4 and B
are subgroups, one of them normal, then 4.B is a group.
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We shall say that a group is an almost finitely presented group
(briefly an a.f.p. group) iff among all presentations of the group there
exists such a presentation P= (X, R,V) that X, B and ¥V are finite.
The finitely presented groups are a.f.p. groups; we can take as ¥V a set
composed of an empty word.

2.2. Residually finite groups. A group @ is called residually
finite (briefly an r.f. group) iff for any element g e @, g 7 1, there exists
a homomorphism g, of G such that g, (@) is finite and, moreover, ¢,(g) # 1.
An equivalent definition is that a group is an rf. group iff it can
be imbedded in an unrestricted direct product of finite groups. From
this definition one can easily see that the class of r.f. groups is closed
under subgroup and direct product operations. The examples in the
sequel show that this class is not closed under homomorphic images.

The class of r.f. groups is large. It contains free groups, solvable
free groups, nilpotent free groups (cf. Gruenberg [8]), and finitely gen-
erated nilpotent groups (see the next section).

2.3. Separation of subgroups. We shall say that a group @ is
a group with separable subgroups (briefly an s.s. group) iff for any sub-
group H of @, and any element g ¢ H, there exists a homomorphism ¢
such that (@) is finite, and ¢(g) ¢ ¢(H). Any s.s. group is an r.f. group,
because the former definition is a special case of the latter when H = {1}.
The notion of s.8. algebras was introduced and investigated by Maleev [11].
The class of s.s. groups is closed under subgroup and finite direct prod-
uct operations. In Malcev’s paper mentioned above a criterion is given
for a solvable group to be an s.s. group, which is a necessary and suf-
ficient condition in the case of torsion-free solvable groups. From this
criterion it follows that finitely generated nilpotent groups are s.8. groups,
but, say, the solvable free groups (non-abelian) are not.

2.4. Conjugacy separable groups. A group G is called a con-
jugacy separable growp (briefly a c.s. group) if for any two elements gy, g»
€ G, which are non-conjugate in &, there exists a homomorphism ¢ of &
outo a finite group Gy such that the images ¢(g) and ¢(g,) remains non-
conjugate in Gy. '

One can easily observe that c.s. groups are cloged under a finite
direct product. An important result concerning the question of the mag-
nitude of the class of e.s. groups is Blackburn’s result [4], stating that
finitely generated nilpotent groups are c.8. groups.

3. Recursivity and decidability.

3.1. Lemmas for recursively enumerable sets of words.
For a finite or a countable set X of any symbols, the set. of all words
in X, ie. the group F(X) is countable. It can be effectively mapped
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one to one onto the set of natural numbers such that the function lead-
ing from & pair of numbers of words f and g to the number of the word
f.g is a recursive function (3).

The question whether or not the word problem is decidable in a clags
T of presentations is the question whether or not for any P(X, R, V)
from § the normal subgroup U = N(R)- V'™ is a recursive subset of
F(X). This is because f(z, ..., %s) =1 holds in the group G(X, R, V)
iff f(2y, .y 20) e U.

A useful method of proving that a set U e F(X) is recursive is to
prove that both U and F(X)\U are recursively enumerable.

In this paragraph we shall prove some useful lemmas concerning
recursively enumerable subsets of F(X). These are the following:

Levwa 1. For any recursively enumerable subset B of F(X) and a re-
cursively enumerable set V of words in other symbols, the subgroups

{R}, N(R), and V'™
are recursively enumerable.

LeMuMa 2. For any recursively enumerable subsets U and W of F(X)
the set U-W of products w-v, where ue U and we W, ds recursively
enumerable.

Both lemmas are almost trivial, even in the case where X is
countable.

For U= (u, %y, ..) and W = (wy, w,, ...), both of which are re-
cursively enumerable sets, we order the products u; w; (i.e. the couples
of indices 4, j) as is done in Cantor’s proof that x,-%, = %y, make the
reductions in the strings u;-ws, then by omitting the repetent words
we obtain a recursively enumerable sequence of all elements of U.W.
The proof of lemma 2 is completed (4).

To prove that {R} is recursively enumerable for R recursively enu-
merable, we note that B*= Ru R ig recursively enumerable. Now by
lemma 2 the sets R¥, where Bf = R* R}, = Rf-R* are recursively
enumerable. Then the sum

[:jl Rf = (R}

_is recursively enmmerable.

In the case of N(R), we define the recursively enumerable sets RY
for i=1,2,.. as follows: Rf = R* U {1}, and for i> 1,

Rf = U <i f;ll‘RNh ﬁ;erfh

Mty d

() “Recursive” here always means “general recursive”.
. (*) Note that we cannot state that U.W iy recursive for recursive U and W,
since reductions in strings have been made.
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where f, = 1, sy «eey fiy ... is & Tecursive sequence of all words from F(X).
The conclusion of the lemma follows from the fact that

CJR’;:N(R)‘

Tn the case of V¥, let us note that by making in a word ©(¥y, - Ys)
from ¥ all possible substitutions of elements from F(X) for the variables
Yy -y Yr and then making reductions, we obtain a recursively enumer-
able set of words. Let us denote this set by R(v). Then if ¥ = (vy, v --.)

* . =
is a recursively enumerable set, then the set 7* = UIR(vi) is recursively
iz

epumerable. Since V7® = {V*}, the proof is reduced to the proof of
the first case of the lemma. This completes the proof.

As a corrollary to lemmas 1 and 2 we obtain:

LeMMA 3. For any recursively enumerable U, R, and V, the subgro%g
{T}-N(R) and {U}-N(R)V"®, as well as the normal subgroup N (E)-V
of F(X), are recursively enumerable. The set X is supposed to be finite or
countable.

3.2. A recursive sequence of homomorphisms. The aim of
this paragraph is to deseribe all homomorphisms of a group GX,R,V)
into finite groups.

Let X Dbe a finite set of any objects X = (a‘l,acz., ey X8)3 tpe'set_X
can be turned into a finite group of order i if we define a multiplication
table

L Xy PP X

Ly oy, &y, "
= —

&Iy Xty e L m‘f,

such that each row and column is a permutation o.f symbf)ls. from X,
and the operation ;- ;= @y, defined by the table, is assocla}tlve. Thel;
the table T gives a presentation P(T)= (X , R), Whe;re R is 2 _set.o
words ;- @;- @ for 1,j=1,2,..,1 of the group X with multiplication
i le.

defmﬁe‘grbgn;hte tixa(';e is a finite number of non-isomon.)hjc group tables,
and thus a finite number of presentations P (T) of non-isomorphic groups
of order . By ordering the presentations in & sequence

(3.2.1) Py, Py, Py, oo

first one presentation of the trivial group of order 1, then all presen’s?— '
tions of the groups of order 2 (there is only one), and so on, we obtain
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a recursive sequence of some special presentations of all finite groups,
up to isomorphism. For any presentation P = (X, E) with finite X and
finite R, there is a method of deciding whether or not P is in the se-
quence (3.2.1), and to compute its position in the sequence.

Note that no sequence of all presentations of finite groups is re-
cursive; cf. Adjan [1] or Rabin [15].

Let P= (X, R,V) be a presentation of a group @ = G(X, R,V)
and @ a group with a presentation P = (X, B) in the sequence (3.2.1),
A necessary and sufficient condition for a mapping x of X into X to be

extendable (uniquely) to a homomorphism of ¢ into G, is:

(x) For amy (@, ..., ) from Bz r(u(y), ..., p(@a)) = 1 in G, and more-
over V& = {1}.

Since the set of elements of the group @ equals X, a homomorphism
o of G into @ is uniquely described by a mapping u of X into X, which
satisfies condition (). This proves that for a finite X the set of all homo-
morphisms of ¢ into @ is finite, since the set of all mappings from a finite
set X to a finite set X is finite. More interesting is the fact that in the
case where R and V are finite, one can effectively check whether or not
a mapping x of X into X can be extended to a homomorphism of @
into G. That is so by a special form of the presentation of @ by a table T.

For any mapping x of X into X, the elements u(w,)- u (%) or u(wz)™
belong to X, and can be computed for any #,, #, from X by using the
table T' (or relations from R). Thus it can be effectively checked whether
or not a relation 7(u(#), ..., () holds, for any r from R. In a quite
similar way it can be effectively checked for any v from V whether or
not v =1 holds identically in the group &.

Note that from the above considerations it follows that one can
effectively check whether or not a mapping z of X into X can be ex-
tended to a homomorphism of & onto @. We need only to check in ad-
dition whether or not p(X) generates X, which can be done effectively
by a special form of the presentation P.

Now we shall deduce some conclusions from the given method of
descriptions ‘of homomorphisms of @ into & by some mappings of X
into X.

Let us form for a sequence (3.2.1) of presentations Py, Py, ...y & 8e-
quence of homomorphisms of @ = &(X, R, V)

(3.2.2) P1s Pay Pay erey

each homomorphism ¢; being described by a mapping of X into a set
:ng of geners?tors in a presentation Pj;. The method of forming (3.2.2)
is the following: First we set all homomorphisms of ¢ into @, = G(Py)

then all homomorphisms into @, = G(P,), and so on. ’
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Thus we have proved that the sequence (3.2.2) is a recursive se-
quence of homomorphisms since for any mapping u of X into some X;
we can effectively check whether or not z determines a homomorphism
of @ into @3 = G(P;). Moreover, in the case where y determines a homo-
morphism we ean compute its position in sequence (3.2.2).

This gives the following

LeMMA 4. There exists a recursive sequence (3.2.1) of some finite pres-
entations of all finite groups and for any a.f. presemtation of a group
a sequence of suitably described homomorphisms of the group such that it
is a recursive sequence of all homomorphisms (up to isomorphism) of the
group into finite groups.

The case where a presentation is finitely generated but infinitely
related by a recursive set of relations, i.e. X is finite and R infinite but
recursive is still an open problem. In this case there is a finite number
of mappings p of X into X, but to check whether or not a mapping u
can be extended to a homomorphism we have to check an infinite number
of relations in the group G. In this case, is the sequence (3.2.2) a re-
curgive one or not?

4. Decidability of some problems.
In this section we shall give some proofs concerning the decidability
of some questions, basing ourselves on the results given in section 3.

4.1. The word problem. By using the results of section 3.2 it is
easy to prove McKinsey’s result (cf. [13]) stating that the word problem
is decidable in the class of all r.f. groups.

For the proof we have to show that for any a.f. presentation
P=(X,R,V) of a rf group there is an effective method of deciding
for any word f(®y, ..., #n); %15 ..., &n € X, whether or not

fl@y ey @) =1

in the group G(P).

In an other formulation of that problem we have to prove that the
subgroup N (R)-VF B of P(X) is recursive if X, R, and V are finite.

It has been proved (lemma 3) that N (R)- V™ is recursively enu-
merable. It remains to prove that F(XN\N (R)- VI i3 recursively enu-
merable in the case where the group G(X, R,V) is an r.f. group. Then
we shall obtain the following lemma:

LeMyMA 5. If a group with an a.fp. P= (X, R, V) is an .. group,
then the subgroup N (R)- 7" X of F(X) is a recursive Set.

Proof. Let F(my, .., @) ¢ N(R)-V'™®. Then by the assumption of
residual finiteness of the group &= G(X, R, V), there exists a homo-
morphism g; of G onto a finite group @ = G(Py) such that @ulf (@15 oen s @)
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# 1. The homomorphism ¢; occurs in the sequence (3.2.2). There is an
effective method of constructing the homomorphisms ¢; in the sequence
and checking whether or not gi(f(®, ..., #s)) = 1 in the group Gy, pre-
sented by a presentation P; from the sequence (3.2.1) (since each @&, is
finite with explicitly given elements and group multiplication given by
a table; cf. section 3.2). This proves that the set of f which do not be-
long to N(R)-FPF® is a set of values of a certain recursive function.
So F(XNN(R)-V*® is a recursively enumerable seb. This completes
the proof of the lemma.
We shall state the result of lemma 5 as the following theorem.

THEOREM 1. The word problem is decidable relative to the class of all
r.f. groups.

We now give scme remarks concerning theorem 1.

The word problem is undecidable relatively to the class of all groups.
There exists a finite presentation P = (X, R) such that the subgroup
N(R) of F(X) is not recursive. For this result, see Novikov [14], Brit-
ton [6], or others.

The question whether or not a finite presentation is a presentation
of an r.f. group is undecidable. This is an easy result from Adjan [2],
theorem 1, when we take as the property «, the property of being an
r.f. group. For other results of this type, cf. Adjan [1] and Rabin [15].

Theorem 1 is well known. It is a special case of McKinsey’s result [13]
concerning the decidability of elementary sentences of special type for
various classes of algebras. The theorem states that the word problem
is decidable for a group when we know that the group in question is
an r.f. group.

Now we shall list some consequences of theorem 1.

CoroLLARY. The word problem is decidable relatively to the class of

(a) finite groups; .

(b) free groups;

(c) solvable free groups;

(d) nilpotent groups of any nil;

For the proof cf. section 2.2.

Now we shall give some explanations of these results. In case (a)
the result is that when we have a presentation of a group, and we know
that the group is finite, then the word problem is decidable for the pres-
entation. The result is well known, cf. McKinsey [13]. Let us note that
the question whether or not the group is finite is undecidable, cf. Adjan,
loc. cit. on the p. 8. .

In case (c) the result can also be deduced from MecKinsey’s result,
and is well known; many mathematicians have known it, but I could
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not find it in literature. Result (d) is one of the oldest; I Dbelieve it was
first obtained by Malcev [10].

Now we shall make some remarks concerning result (b). The state-
ment is: When we have a finite presentation P = (X, R), and we know
that G(X,R) is a free group (a group which is free in the class of all
groups), then there exists a decision method for the word problem for
G(X, R).

Remark. Statement (b) is false for infinite presentations. In Brit-
ton’s paper [5], example 2, page 50, a presentation P — (8, R) is given
with an infinite set S of generators and a recursive set B of relations
for which the word problem is undecidable. It is easy to observe that
the group (S, R) from Britton’s example is a free group of infinite
rank. The idea of Britton’s example is based on the existence of a re-
cursive function with (recursively enumerable) non-recursive set of values.

4.2. The inclusion problem. Now we shall investigate a non-
elementary problem—the inclusion problem. It consists in recognizing
for any words f,fu, .., hs with variables in X = (2, ..., 2,) whether
or not

(4.2.1) F@1s ooy ) € (@ ooy @) ooy By e, Tn)}
in a group with an almost finite presentation P = (X, R, V).

The word problem is a special case of the inclusion problem in the
case where the group generated by &, ..., ks is trivial. From this remark
it follows that the inclusion problem is undecidable in the class of all
groups. In this section we shall prove the result announced in Malcev’s
note [11]. The result is given by theorem 2.

THEOREM 2. The inclusion problem is decidable relatively to the class
of all subgroup separable groups.

The proof given below is very similar to that of theorem 1. It is
based on lemma 3, and on the recursivity of the sequence (3.2.2) of
homomorphisms.

The theorem will be proved when we show that for any almost
finite presentation P = (X, R,V) of an s.s. group the subgroup
W= {hyy e, hs}- N(R)- V'™ of F(X) is recursive, since

: f@y, oy 2p) e W in F(X)
is equivalent to (4.2.1) in the group G(X, R, V).

By lemma 3 the subgroup W is recursively enumerable. We shall
prove that F(X)\W is recursively enumerable.

Let f¢ W. Then by the s.s. property of the group G(X,R,V)
there exists a homomorphism ¢ of @ into a finite group &@ such that
®(f) ¢ o{hy, ..., hs}. The homomorphism ¢ is in the sequence (3.2.2). Since
every Q(P;) = G; is explicitly given by the presentation P;= (Xj, Rj)
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in sequence (3.2.1), as the set X; with multiplication defined by a table
described by R; we can decide for any j, in a finite number of steps,
whether or not @) € gi({hy, ..., bs}) in the group Gy, for i=1,2,..
After a finite number of steps we find @; = ¢ and @ = G. Thus we can
decide in a finite number of steps, that f¢ W.

This completes the proof of the theorem.

43. The conjugacy problem. This problem consists in recogniz-
ing for any words f, and f, in variables in X = (2, ..., #») Whether or not:

(4.3.1) there ewists @ word h(®y, ..., Tu) Such that
Fuil@ys ey @n) = B(@yy covy @) " Fol By, eory Tn) R (B, ooy Bn)
holds in a group with an almost finite presentation P= (X, R, V).

As before, we translate the problem to a problem concerning some
inclusion questions in the group F(X). Let S be the set of elements:
(X)) 1(X) h(X) for B(X) e F(X), and W the set §-N(R)-V'™®. The
sentence (4.3.1) in the group G(X, R,V) is equivalent to the sentence

Fo(@yy ooy Tu) € W

in the group F(X). It differs from the sentence appearing in the inclu-
sion problem only in the definition of the set W. In the definition we
have, instead of a subgroup, a class of conjugates.

We shall prove that W is recursive. The set § is recursively enu-
merable and so by lemmas 2 and 3 the set W is recursively enumerable.
It remains to prove that F(X)\W is recursively enumerable.

Suppose that f, does not belong to W. Then the elements f, and f,
are non-conjugate in G(X,R,V). By the c.s. property of the group,
there exists a homomorphism ¢ of G(X,R,V) onto a finite group G,
such that ¢(f;) and ¢(f.) are non-conjugate in G.

For a ¢ of (X, R,V) into G(Py), where ¢; is in sequence (3.2.2)
and Py, in sequence (3.2.1), we can decide, in a finite number of steps,
whether or not p; is a homomorphism onto. That is so by the special
form of the presentation Py, cf. section 3.2. In the case where @; maps
G(X, R,V) onto G(Py) we can find in a finite number of steps the class
of conjugates of @i(f,). That is so because by the special form of the
presentation Py = (X, R;), where the multiplication of elements in
X, leads to an element of X, given by the relation from Ry, both ¢i(f,)
and the conjugates of ¢4(f,) are elements of X;. Doing so for i =1, 2, ...,
we shall find after a finite number of steps the Gy, isomorphic to &,
and ¢; equal to ¢ (up to isomorphism). Thus we can effectively check
that @(f,) and ¢(f,) are non-conjugate. In other words, we can effectively
check that f, does not belong to W. This proves that F(XN\W is recur-
sively enumerable.
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The only assumption we have made to prove that W is recursive
was that the group G(X,R,V) was a c.s. group. Thus we have proved
the following theorem:

TrEEOREM 3. The conjugacy problem is decidable relatively o the class
of conjugacy separable groups.

The theorem is strictly connected with Blackburn's result, which
states that nilpotent groups are c.s. groups (cf. section 2.3, or [4]),
and gives the answer to the question, posed by Malcev, whether or not
the conjugacy problem is decidable for nilpotent groups. The answer is
given by the followingy corollary.

COROLLARY. The Zo\fﬁugacy problem is decidable relatively to the class
of all nilpotent groups.

As far as I know, there has been only one note concerning the de-
cidability of the conjugacy problem for nilpotent groups. This is Gol-
dina’s note with a positive solution in the case of metabelian free groups
(cf. [7], p. 530). Notwithstanding a few incorrect results announced in
this note, this one is correct.

5. Groups with x decidable word problem.

5.1. Isomorphism problem. The isomorphism problem consists
in deciding for any two finite presentations P and @ whether or not
the groups G(P) and G(Q) are isomorphic. The problem is undecidable
in the class of all finite presentations, even when we ask whether or not
a group is isomorphic with a given group, e.g. a finite ome (cf. loc. cit.
[17 or [15]). We shall prove in this section the following theorem.

THEOREM 4. The question whether or not a group is isomorphic with
a given finite growp is decidable relatively to a class of f.p. groups with
the word problem decidable. :

The proof divides into two parts, which are very similar to each other.

First it must be proved that, having a presentation of a finite group,
we can find the number ¢ of the presentation P; in sequence (3.2.1) of
the group. Secondly it must be proved that for any finite presentation
of a group with the word problem decidable and for any ¢=1,2, ...
we can decide whether or not the group is isomorphic to the group G(Ps).
Since any finite group is a group with the word problem decidable, it is
quite obvious that the proof of the second part covers the proof of the
first part.

Proof. Let P= (X, R) be a presentation in the sequence (3.2.1),
and ¢ a homomorphism from (3.2.2) for a group G(X,R,V). Let
X = (2, ..., %) and X = (&, ..., T). Then @(@) = Tap for i=1, ..., %
where a(i) is a function from integers to integers 1,...,%. According
to the remark on page 128, we can decide whether or not ¢ is a homo-
Fundamenta Mathematicae, T. LIX 10
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morphism onto G. If ¢ is not a homomorphism_ ontoz it is not am
isomorphism either. When ¢ is onto, we can effectively find some words
Ful@0y ey @)y very fo(@rs oo @) such that for j=1,..,1

p(fs(@ey e Tn)) =Ty -
In particular, we shall choose the words so that:
(5.1.2) Fa(@ys ey @n) = for i=1,.,n.
Now ¢ is an isomorphism iff the mapping
v(T) = [i{(@y oy @) for  j=1,..,1,
can be extended to an homomorphism of ¢ into @. Indeed, if ¢ is an
isomorphism, then ¢—* is an extension of » to a homomorphism. Con-

versely, if there is an extension of » to a homomorphism y, then
by (5.1.2) we have

plpl@) =2 for i=1,..,n.

Then wp is an identity mapping and so by finiteness of @, p is an iso-
morphism.

The group G has a finite number of explicitly given relations. To
check whether or not » can be extended to a homomorphism, we need
only to check, for a finite number of 7 e R, whether or not

F(7‘1(“"1, vees @n)y ey Fil®ry ory wn)) =1

holds in G. Since @ is a group with a decidable word problem, that ques-
tion is decidable.

This ends the second part of the proof, and by previous remarks
the proof of the theorem.

5.2. Determination of nilpotency. The question whether or not
the group is nilpotent is undecidable in the class of all groups. This is
an easy result from Adjan’s paper [2] cited on p.130 when we take as
the property «, the property: a group is nilpotent. But we have the fol-
lowing theorem:

THEOREM 5. The problem whether or not a group is nilpotent of a given
nil is decidable relatively to the class of all groups with the word problem
decidable. :

The proof is an immediate consequence of the fact that by lemma 3
from paper [12] the nilpotency of a given nil, for a finitely generated
group with given generators, follows from the finite number of explicitly
given relations in generators.

Let us note that from theorem 5 it does not follow that the prob-
lem whether or not a group is nilpotent (of any nil) is decidable rela-
tively to all groups with the word problem decidable.
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A note added'in proof. Theorem 1 on p. 130 with an outline of the
proof, was announced in the abstract: V. Huber Dyson, The word problem and
residually finite groups, AMNS 11 (1964), 666-7, p. 743.
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