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Characterization of the sets
of angular and global convergence,
and of the sets of angular and global limits,
of functions in a half-plane *

by
F. Bagemihl and J. E. McMillan (Milwaukee)

In the Euclidean plane provided with a Cartesian coordinate system,
let J¢ denote the upper half-plane and call the horizontal z-axis R. By
an angle at a point # e B we mean a set of the form

Ay a, f) = {w+re®: 0 <7< 400, a< < f}
(O<a<p<m, i=y=1).

We shall be concerned with functions f that are defined and single-
valued in J€ and assume finite real values. We call a point @, ¢ B a point -
of global convergence of f provided that there exists a finite real number ¥,
for which

Lm 7 (2) == gy ;

aedt
4, is then termed the global limit of f at @,. A point ¢ R is called a point
of angular convergence of f provided that there exists a finite real num-
ber y for which

limf(#)=y for every angle 4 at z;

Z2—rT

z€d

y is then termed the amgular limit of f at ». The set A4, of all points of
global convergence of f will be called the set of global convergence of f,
and the set 4 of all points of angular convergence of f will be referred
to as the set of angular convergence of f. Then clearly 4, C A (“C” stands
tor set inclusion, not necessarily proper). If, for every # e A, p(x) denotes
the angular limit of f at @, then ¢ is a single-valued real-valued function
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defined on A, which we call the boundary function of f. We designate
the set p(A) as the set of angular limits of f and the set ¢(4,) as the set
of global limits of f,

In this setting, our theorems afford a complete characterization,
for a function continuous in ¥, of the sets of angular and global con-
vergence, of the limit function, and of the sets of angular and global
limits.

THEEOREM 1. Let f be an arbitrary real-valued function with domain Je.
Let A, be the set of global convergence, let A be the set of angular conver-
gence, and let ¢ be the boundary function of f. Then A, is a Gy, A is an Fy,,
@ is of Baire class one on A and continuous (relative to A) on A,, and
A—A, is a set of first category.

Proof. Throughout the proof, %, m and # denote natural num-
bers. Set

Bpn={x+iy: —co< < 400, 0 <y <1fn}.

That A, is a G4 is pointed out by Hausdorff ([2], p. 275). We now
prove that 4 is an Fgs. Setb

A(w,n) = Az, Ln, n—1/n).
For each (k, m,n) the set Fim, of points x ¢ B such that
F)—Ff(&) <1k if 2,2"e¢d(x,n)8m

is closed. Clearly
4= U vy kayn
m

k.
and so A is an Fy,.

To prove that ¢ is of the first class on 4, it is sufficient to prove
that for each real number y each of the sets {x e Ad: p(x) >y} and
{ed: p) <y} is an F, relative to 4 ([2], p. 248). Let y be a real
number, and set 4z = A(x, =/4, 3x/4). For each (k,n) the set

|

1
Frp= {m: {4z~ 8y) C{y’: y =y 7;;”
is closed. Thus since
(U Fup) n 4 = {2 e 4: g(0) >y},
A3

the set {zed: p(x)> y} is an F, relative to 4. Similarly, {zed: ¢(z) <y}
is an F; relative to A.

It is clear that ¢ is continuous on 4,, and the fact that A—4, is
of first category follows from a theorem of Collingwood ([1], p. 1241,
Theorem 4). Thus the proof of Theorem 1 is complete.
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THEOREM 2. Let 4y be a Gy in R, let 4 be an Fyp containing Ay, and

let ¢ be a real-valued fumction of Baire class ome on A that is continuous
(relative to A) on Ay. Then there emists a function §, real-valued and con-
tinuwous in JC such that

(1) A s the set of angular convergence and g is the boundary function of f,
and
(2) ot each e Ay, | has the global limit ().

Moreover, if, in addition, A—A, is a set of first category, then there
ewists a function f, real-valued and continuous in I, such that (1) and

(8) A, is the set of global convergence of f.

Proof. We assume the hypotheses of the theorem except that we
at present do not assume that 4—A, is a set of first category.
We first prove the following

Levma. Let U’ be an open set, and let H' be an Fy such that
A, CU'CH and ACH'.

Let v be a function of the first class on A that is continuous (relative to A)
on 4,, and let & be a positive number. Then there ewist an open set U
containing Ay, an Fy set H containing Uy A, and a function ¥ defined
on H such that

UCU, HCH,

W ds of the first class on H and is continuous on U, the range of ¥ on
H—TU is an isolated set, and

(W(z)—p(z) <e if wmed.

Proof of the lemma. For each z ¢ 4,, let I, be an open interval
with midpoint » such that the diameter of (I, ~ 4) is less than &f4. Set

U=( L;ilz) AT,
We(@) = sup{p(a): Ty>a}  (zeD),
Yilw) =int{p(a'): Iysa} (xel).

Then ¥* is lower semi-continuous and ¥, is upper semi-continuous
(on T). Let ¥ be a continuous function on U such that

Fulw) <¥(e) <¥*x) (zeT)
(2], p. 248). By a simple calculation we find that
|P(2)—p(@)|<e i a2eUnA.
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Let 3 be the family of open intervals with rational endpoints ang
length less than s/4. Since y is of the first class on 4, each of the sets

piI)={wed: p@)el} (Led)

is an F, relative to 4 ([2], p. 248). For each I J, let H; be an (absolute)
F,; such that
Hryn A=y (I).
Set
H*=(UH)~H.
Ied

Then H* is an F,. Let ar denote the midpoint of the interval I, and set

w¥@) =sup{ar: Hrow, I €3} (wveH*),
wy(@) = inf{as;: Hysw, I €3} (v e H*).
Then in the notation of [2], p. 235, p* is of class (Fy, *), and v, is of

class (#, G5). Thus ([2], pp. 242, 243) there exists a function 9 of the
first class on H* such that

v (@) <P(z) <p*@)  (weH).
By a simple calculation,
[B(@)—p(@) <34 it wed.

Let § be a function of the first class on H* that has an isolated range
and satisfies ‘
Ple)—p@)| <e/t (veH*)
([2], D. 247). Then
[Flo)—p(e) <e if med.

Let H=H*v U, and extend the definition of ¥ to all of H by
Y@)=9@) if zeH-U.

Since a function is of the first class if and only if the preimage of each
open set is an F,, it follows easily that ¥ ig of the first class on H.
Since ¥ clearly has the desired properties, the proof of the lemma is
complete.

Let {U}} be a sequence of open sets, and let {H}} be a sequence
of sets F, such that UXC H,

00 o0
A,=NUs and A= \H:.
n=1 n=1
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We now define sequences {U,}, {H,} and {p,} inductively. Applying
the lemma, we let U; be an open set, let H, be an F,, and let @, be
a function defined on H, such that

4,CU,CH,, ACH,,
U,CUf, H,CH!,
g, is of the first class on H, and continuous on Uy, the range of ¢, on
H,—TU, is isolated, and
1 .
@) — ()| <z§ it zed.
Suppose now that U;, H; and g; are defined for j =1,...,2—1 (> 1)
so that (j =1, .., n—1)

(4) U; is an open set, H; is an F,,
(5) 4,CU,CH;, ACH;,
(6) U;CUy, H;CHf,
(7) @s is a function of the first class on H; that is continuous on Uy,
(8) the range of ¢; on H;—U; is isolated,
i
(9) l(p(m)——Zzp;;(w) <ﬁ i wed,
and =
(10) for j>1 and @ e Hy, |pfa) <=

47"
n—1

Then @— D ¢y is of the first class on 4 and continuous (relative
j=1

to A) on A,. Thus, from the lemma, there exists an open set U, con-
taining 4,, an F, set H, containing U, v 4, and a function ¢, defined
on Hy, such that

v, Cuy, H,CH},
on i8 of the first class on Hj and continuous on U,, the range of ¢, on
H,—U, is isolated, and

n—1

)= (plo)— D o))

§=1

It follows from (9) and (11) that

(11) < it wed.

1
s

1,
lon(®)| <Z'T if wmed.
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Set
1
U — {m Ty lgalo) <Zﬁ}

and
, 1
H;z{geﬂw WMwN<Z#.

Then U, is open, and since H, is an F, relative to the I, set H,, it is
an (absolute) Fy. Also, 4,C Uy ~n AC Uy, and ACH;. Set

H,=U,vH,.
Since Uy, ~ H,C U,, it follows that
Hy—U,CH,—Uy;
and we see that the range of g, on H,—U, is isolated. Clearly,

lpn(m)] < —1;’—; it  2eH,.

Thus Uy, H; and ¢; (j=1,..,n) satisfy conditions (4) through (10)
- for j=1,..,n%.

We note that the above description works equally well for the case
n = 2, although statement (10) is vacuous for this case. Thus we may
suppose that we have U;, H; and ¢; (j = 1) defined so that for each ,
statements (4) through (10) hold.

Observe that from (5) and (6) we have

(12) Ay=N\Un, A=\H,.
n=1 =1

For each open interval I = (%, ) and each real number i satis-
fying 0 <t <1, define the cross cut C(I,?) of J@ as follows. Set

Bty | L By —y
a,—————z —Ht—-—z y

and let C(I,?) = O, v C,, where O; is the shorter of the two arcs (in-
cluding a and excluding ;) with endpoints @ and x; of the circle through
o that.is tangent to R at ®;. The definition of the modified cross cut
On(I,t) agrees with that of C(I, 1) except that whenever ;¢ H,, we
replace C; by the rectilinear segment (including a and excluding )
joining a and ;. Let A (I, t) and 4,(Z,%) be the interiors of the Jordan
curves C(I,%) v I and Cu(I,t) U I, respectively (the bar denotes closure).

We now think of n as fixed, and suppose for the sake of our nota-
tion that U, has infinitely many components; modifications for the case
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in which Un has only finitely many components will be obvious. Let
P .

{Un,;}i=1 be an enumeration of the components of Uy, and let {#, )0,

be a sequence of closed sets such that F,,;C Fpi (j=1) and ,

Hy~Up=\JF,,.
i=1
Set Fry =y,
, -1
Frj=Fpyo [kL_JlUn,ﬂ (i>1),

and let {V,;1}x be an enumeration of the (possibly only finitely many)
components of R—F; ;. With each V,;, we associate a number f,;
such that "~
0< gk S,
(13) the diameter of the circles in the definition of CViiky Hnsz) is
greater than 1, ” v

and
(14) i Vg C Vs, (j > 1), then gy < Tng,tes «

Note that U,; ~Fpn,; = @, and let kn; be the natural number such
that, with the notation

V(”’z 7) = Vn.f,kn,u

it is the case that Un; CV(n,j). If U,; and V(n, j) have an endpoint zo

in common, then @, € F,;, and thus z, € H,. It follows that there exists
a positive number 1,; such that (t,; <1)

(15) On(Upy tng) C4 (V('n; 9)s tn,i,kn,j) .

For each V,; ., set
B 2e0(Vasn dtugr)

0
16 we) =1 1L
(16) fn(2) l = it 2eC(Vugk 2tz ,

and for each U,;, set (¢=x+dy)

0 if =ze O»n( Uy, $ni)
/4% it ze qn(UM, i),
on(®) if 2 ed(Ung, Huz) n 3.
Sincg Fog1 CFyy (> 1), it follows from (14) that definition (16) is
po§s1b1e; and from (15) we see that (17) is compatible with (16). At this
pomt we have defined fn(2) on a set which is closed relative to J& and
18 contained in the open set

Ay = [H {A (Vn,i,k: ‘unj.k)—" Z(Vn,f,ky tn,i,k)}] vl SJ Aﬂ(UﬂJ) tm?')] .

13*

(17) ful#) =
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We now suppose that the range of ¢ on Hy—Un is an infinite set;
modifications for the case in which it is finite will be obvious. Let {a,;}7,
be an enumeration of the range of g, on Hx— Un. Since the range of ¢,
on H,— U, is isolated, for each (n,j) the set

Hpj={# ¢ Hn—Un: ¢n(@) = Gn,s}
is an F, relative to the F, set Hy— Uy, and is therefore an (absolute) F,.
Let {Fy ;)i be a sequence of closed sets such that
(18) FojuClugrnn  (B21)
and

[}
= JFnsx.
k=1

Then for (n, k) fixed, {Fn;iliei i5 a pairwise disjoint family of closed
sets, and we can find a positive number 7, such that 7, < 1/k and,
with the notation

— @+ )] < T}

L

z€F sk

{1

Sn,i,k =
it is the case that {S,;:}i-1 is a pairwise disjoint family of closed sets.
For each (n,§, %) (j <Fk) set
(19) fu(?) = g 2 eSpjnnm (—~Ay).

By (16), (17), and (19), f» is defined on a set S, that is closed relative
to %, and f, is continuous on S,. From (10), (16), (17), and (19),

if

Ifa(2)l <= (2€8a, n>1).

Thus, by Tietze’s theorem, f, has a continuous éxtension f to all of X
and in the case #» >1, we can require that

'n.

(20) I7a(2)] <

(zedC, n>1).
Clearly,
if © € Uy, then f, has the global limit pu(#) at .

Un.

(21)

Suppose now that ¢ H,— ‘From (1

{&: 1t—

Keeping n fixed, we note that « is in only finitely many of the sets Vi,
Thus, in particular, we have from (15) that for all sufficiently large §,

A Ungy tng) A {8t [L—(2+i0)| <1} =@

3), if « ¢Vn.1,k; then

A(Vagie $ngm) A (@49 <1}=0
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Hence, for some sufficiently small positive number h,
dun {8 [i=(a+ih)| <1} =@

We see from (18) that for some sufficiently large %,
k
@l Fojp.
=1
Thus it follows from (19) that

(22) if » e Hy, then f, has the angular limit pu(®) at @.

Suppose now that z ¢ H,. If we@ U,;, then it follows from the
7=1 :

definition of Cy(I, t) and (17) that there exists an angle at # in which
the oscillation of fu at & is at least 1/4™ If 2 ¢ U Uy, then for each j,

# ¢ Py, and there exists %; such that z e V,, g+ Thus from (14) and (16),
fn has an oscillation at @ of at least 1/4™ in each angle at #. Hence,

(23) if @ ¢ Hy, then there exists an angle at # in which the oscillation
of fn ab @ is at least 1/4™

Set
f(2) = an(z) (zek).
From (20) we obtain (m =1, 2 <)
(24) D) o)l <5 - goes
n=m+1

in particular, f is continuous in Je.

It iy clear from (9), (12), (21), and (24) that (2) holds. Similarly
it is clear from (9), (12), (22), and (24) that if z ¢ A, then f has the an-
gular limit ¢(2) at . Suppose that = ¢ 4. We wish to prove that f does
not have an angular limit at ». Applying (12), let m be the least natural

m—1
number 7 such that @ ¢ H,. If m > 1, we have from (22) that > 7, has
n=1
an angular limit at . Thus from (23) and (24), there exists an angle
at # in which the oscillation of 7 at @ is positive, and we have estab-
lished (1).

We now assume that A—A, is a set of first category. Then A—A, is

contained in an Fy, set H of first category. By considering the set

U, w[H A, (Ha—TUn)],
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we see that we may suppose H, to have been chosen so that H,—T,
is a set of first category. Let # e A—A4,, and let m Dbe the least natural
number n such that @ ¢ Uy. Then # e Hy—Upn. Let Hy, denote the in-

terior of H,. Since _
H,—UnCHp—Un,

the open set Hp— Un is empty; in particular, o ¢ Hap— Um. Thus, either
© is an accumulation point of B—Hp, or # i8 an accumulation point
of Uy,. In the first case, it follows from (23) that the global oscillation
of fu at @ is at least 1/4™. But from the definition of m and (21), for

m—1

m>1, 2 fu has a global limit at . Thus from (24), f does not have

a global hmlt at #. In the second case, it follows from (17) and a similar
argument that f does not have a global limit at «, and we have esta-
blished (3). This completes the proof of the theorem.

By taking 4,= A or A,= O in Theorem 2, we obtain the following
corollaries.

COROLLARY 1. Let A, be a Gy on R, and let p be a continuous function
on A,. Then there exists a function f, continuous in I, such that 4, is the
set of amgular convergence as well as the set of global co'm;ergmce of f, and
@ is the boundary function of f.

COROLLARY 2. Let A be an Fyus of first category in R, and let ¢ be
a function of Baire class one on A. Then there exists a function f, conti-
nuous in 36, such that A is the set of angular convergence and @ is the
boundary function of f, and the set of global convergence of f is empty.

THEOREM 3. Let 8 and T be sels of real numbers with 8 CT. Then
8 and T are analytic sets if and only if there ewists a function f, real-valued
and continuous in J, such that S is the set of global limits and T' is the set
of angular limits of f.

Proof. Suppose first that f is an arbitrary real-valued function
with domain J, and denote the sets of global and angular convergence
of f by A, and A, respectively. Then according to Theorem 1, 4, is a G,
A is an Fys, and the boundary function ¢ of f is of Baire class one on 4.
Since the Baire image of a Borel set is an analytic set ([2], p. 266), the
sets p(4,) of global limits of  and ¢ (4) of angular limits of f are analytic.

Suppose now that § and T are analytic sets with § C T. 'We wish
to show that there exists a function f, continuous in J¢, having § as its set
of global limits and 7T as its set of angular limits. This is obvious if
T =0; so assume that T = @. Let ¢ be a perfect nowhere dense set
of positive real numbers. Then there exists ([3], p. 388) a real-valued
function z(x) of Baire clags one on O such that

(25) T{0) =

Oharacterization of the sets of angular and global convergence 187

Let R- denote the set of non-positive real numbers. If § == #= 0, let ([4],
p. 82) o(z) be a real-valued function R. such that

(26) K is continuous on the left at every point z<R-,

(27) o(B-)=§,

and

(28) fo(r )every 9 € 8 there exists a point x of continuity of ¢ such that
o) =y.

Let D be the set of points of discontinuity (including 0) of o. Be-
cause of (26), D is at most countable, and ¢ is of Baire class one on R-.

Now let
4y=R~D, A=CCR. if 8=0;
A, =0, A= it 8§=g;
and define -
o(z) for weR-
(p(w)-—{r(x) for zeC i 80

() =t(x) for zeC if §=0.

It is easily verified that all the hypotheses of Theorem 2 are satis-
fied, and so there exists a function f, real-valued and continuous in Je,
snch that A is the set of angular convergence, A, is the set of global
convergence, and ¢ is the boundary function of f. In view of (27) and (28),
8 is the set of global limits of f, and (25) and (27) imply that T is the
set of angular limits of f. This completes the proof of the theorem.

COROLLARY 3. A wnecessary and sufficient condition that a set T of
real numbers be an analytic set is that there ewist a function f, real-valued
and continuous in I, having T as its set of angular limils.

Poprougénko has shown ([4], p. 82) that & necessary and sufficient
condition that a non-empty set T of real numbers be an analytic set 18 that
there ewist a harmonic function f in & having T as its set of global limits.
It would be interesting to know whether this result remains valid with
“global” replaced by ‘“angular”.
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